
Outline

1 Organization

2 Motivation

3 NVIDIA Fermi Architecture

4 CUDA
Basics

Paul Springer (AICES) GPGPU 16.05.13 1 / 21

CUDA Execution Model

32 Threads = 1 warp

Smallest execution unit
Execute in lock-step

Single Instruction Multiple Thread (SIMT)

Similar to SIMD

Threads within the same threadblock can synchronize

Paul Springer (AICES) GPGPU 16.05.13 2 / 21

CUDA Execution Model

Threadblocks can not synchronize!

Multiple threadblocks run concurrently on the same SM

High thread-level parallelism
Hide memory latencies

Multiple grids can be executed simultaneously for CC ≥ 2.0

Paul Springer (AICES) GPGPU 16.05.13 3 / 21

Transparent Scaling

c ©
P
ro
g
ra
m
m
in
g
M
a
ss
iv
el
y
P
ar
a
ll
el

P
ro
ce
ss
or
s

Paul Springer (AICES) GPGPU 16.05.13 4 / 21

SAXPY example

Paul Springer (AICES) GPGPU 16.05.13 5 / 21

CUDA Memory Model

Paul Springer (AICES) GPGPU 16.05.13 6 / 21

c ©
N
V
ID

IA
F
er
m
i
W

h
it
ep

a
p
er

Global Memory

Cached in L1 and L2 by default

Cache line is 128 bytes

Cache only in L2 by compiling with -Xptxas -dlcm=cg

Cache line is 32 bytes
Reduce over-fetch for scattered memory accesses (e.g. SPMV)

Memory accessed by . . .

. . . a half-warp for CC 1.x

. . . a warp for CC ≥ 2.x

Paul Springer (AICES) GPGPU 16.05.13 7 / 21

Global Memory - Coalescing

c ©
N
V
ID

IA
C

P
ro
g
ra
m
m
in
g
G
u
id
e

Optimization: Use coalesced memory accesses

Threads may access the same word without issuing another memory
transaction (CC ≥ 2.0)

Paul Springer (AICES) GPGPU 16.05.13 8 / 21

Global Memory - Coalescing

c ©
N
V
ID

IA
C

P
ro
g
ra
m
m
in
g
G
u
id
e

Optimization: Use coalesced memory accesses

Threads may access the same word without issuing another memory
transaction (CC ≥ 2.0)

Paul Springer (AICES) GPGPU 16.05.13 8 / 21

Global Memory - Coalescing

c ©
N
V
ID

IA
C

P
ro
g
ra
m
m
in
g
G
u
id
e

Optimization: Use coalesced memory accesses

Threads may access the same word without issuing another memory
transaction (CC ≥ 2.0)

Paul Springer (AICES) GPGPU 16.05.13 8 / 21

Coalescing example

Paul Springer (AICES) GPGPU 16.05.13 9 / 21

Matrix transpose example

Paul Springer (AICES) GPGPU 16.05.13 10 / 21

SGEMM example

Paul Springer (AICES) GPGPU 16.05.13 11 / 21

Shared Memory

Each SM has its own shared memory

Higher throughput than global memory

Lower latency than global memory

Software-managed cache of size 16kB, 32kB or 48kB

Threads can cooperate via shared memory

E.g. via syncthreads()

Paul Springer (AICES) GPGPU 16.05.13 12 / 21

Shared Memory

Divided into 32 banks

Successive 4bytes map to successive banks
Each bank can service 4bytes per cycle

Access to the same bank may result in serialization

So called bank conflicts

Use shared keyword to declare a variable as shared

Memory accessed by . . .

. . . a half-warp for CC 1.x

. . . a warp for CC ≥ 2.x

Paul Springer (AICES) GPGPU 16.05.13 13 / 21

Shared Memory

Divided into 32 banks

Successive 4bytes map to successive banks
Each bank can service 4bytes per cycle

Access to the same bank may result in serialization

So called bank conflicts

Use shared keyword to declare a variable as shared

Memory accessed by . . .

. . . a half-warp for CC 1.x

. . . a warp for CC ≥ 2.x

No bank conflicts between different warps

Paul Springer (AICES) GPGPU 16.05.13 13 / 21

Shared Memory

(a) Linear addressing. (b) Random permutation.

Figure: No bank conflicts.

Paul Springer (AICES) GPGPU 16.05.13 14 / 21

Shared Memory

(a) Two-way bank conflict. (b) Three-way bank conflict.

Figure: Bank conflicts.

Paul Springer (AICES) GPGPU 16.05.13 14 / 21

Shared memory matrix transpose example

Paul Springer (AICES) GPGPU 16.05.13 15 / 21

Homework - SGEMM

Modify the SGEMM example of the lecture such that it utilizes the
shared memory of the SMs

Objective:

The results must be correct
The shared-memory version should be faster than the original version

Deadline: Monday, June 3rd at 2pm.

Paul Springer (AICES) GPGPU 16.05.13 16 / 21

Thread divergence

i f (i sOdd (i d x))
data [i d x] = s i n (data [i d x]) ;

e l s e
data [i d x] = 1 .0 / data [i d x] ;

Threads within the same warp can follow different execution paths

Why is it important?

Performance penalty of up to 32x

How can we avoid this?

Keep divergence to threads belonging to different warps

Paul Springer (AICES) GPGPU 16.05.13 17 / 21

SDOT example

Paul Springer (AICES) GPGPU 16.05.13 18 / 21

Pinned Memory

cudaMallocHost allocates pinned memory

Pinned memory is required for

Asynchronous memory transfers
Overlapping computation with communication

Higher bandwidth than non-pinned memory

Warning: Too much pinned memory can decrease performance!

Paul Springer (AICES) GPGPU 16.05.13 19 / 21

Pinned Memory example

Paul Springer (AICES) GPGPU 16.05.13 20 / 21

Pinned Memory

normal pinned

0

1

2

3

4

5

6

G
B

/s

Figure: HtD data transfer for NVIDA Quadro 6000.

Paul Springer (AICES) GPGPU 16.05.13 21 / 21

	Organization
	Motivation
	NVIDIA Fermi Architecture
	CUDA
	Basics

