Outline TRIEREEY

Q CuDA

@ Basics

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 1/21

CUDA Execution Model AT

= =
S
EEEEEE-
[El=l=|=|=|=]ele|

= ==

EEEEEEEE
B | O
Gid | [y . — EEEE | |

@ 32 Threads = 1 warp
e Smallest execution unit
o Execute in lock-step

@ Single Instruction Multiple Thread (SIMT)
e Similar to SIMD

@ Threads within the same threadblock can synchronize g.
&(EE

Paul Springer (AICES) GPGPU 16.05.13 2/21

CUDA Execution Model AT

[s[s]
[s]
[l
[s[[x]
3]
3]
151

FlEEEEEl

-
o=
w | = I —

Device _ N
-
=l
=l

S EEEEEER]
7 Stamg Mosproceser
Sinaming Mtrocesser
FEEEEEll]

[rlelelelelelele]
EEEEEEEE |
EEFFFEEE |)

o) | |
" Global Memory |

@ Threadblocks can not synchronize!

@ Multiple threadblocks run concurrently on the same SM

o High thread-level parallelism
o Hide memory latencies

@ Multiple grids can be executed simultaneously for CC > 2.0

Paul Springer (AICES)

GPGPU

16.05.13

(A[1]
ClelS]

3/21

- HEN
Scaling NS

Block 0 || Block 1

/ Block 2 || Block 3 \
Block 4 || Block 5

Block 0 |||/ Block 1

Block 6 || Block 7 Block 0 || | Block 1 Block 2 ||| Block 3

Block 2 ||| Block 3 time
Block 4 || | Block 5 ||| Block 6 || Block 7

Block 4 ||| Block 5 ,)
Each block can execute in any order relative to

other blocks.
Block 6 |||/ Block 7

(© Programming Massively Parallel Processors

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 4 /21

SAXPY example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 5/21

CUDA Memory Model AT

Thread
§ per-Thread Private
2 Local Memory

Thread Block

S

KK per-Block
S

3
SSSS S Shared Memory %
I 5
[}
3
K]
o3
o —
& : g
o per- g g
Application §‘ w
Context E
Global 5
uw
Memory | <
R 4 g
RRNE S
©

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 6 /21

RWTHAACHEN
Global Memory UNNERSTY

@ Cached in L1 and L2 by default
o Cache line is 128 bytes

@ Cache only in L2 by compiling with -Xptxas -dlcm=cg
o Cache line is 32 bytes
o Reduce over-fetch for scattered memory accesses (e.g. SPMV)

@ Memory accessed by ...

e ...a half-warp for CC 1.x
e ...a warp for CC > 2.x

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 7/21

Global Memory - Coalescing RN TR

Aligned and sequential

Addresses: 96 128 160 192 224 256 288
1 s s : s <
3
LA
Threads: 0 31 E
8
Compute capability: 1.0and 1.1] 1.2and 1.3 2.xand 3.0 :’_ﬁ
Memory transactions: Uncached Cached :
1x 64Bat128|1x 64Bat128(1x128Bat 128 §
1x 64Bat192|1x 64Bat 192 5

@ Optimization: Use coalesced memory accesses

@ Threads may access the same word without issuing another memory
transaction (CC > 2.0)

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 8/21

Global Memory - Coalescing RN TR

Aligned and non-sequential
Addresses: 96 128 160 192 224 256 288
IEXHIHHT Xt s
Threads: 0 31 3
L)
£
Compute capability: 1.0and 1.1 ‘ 1.2and 1.3 2.xand 3.0 E
Memory transactions: Uncached Cached §:
a
8x 32Bat128|1x 64Bat128|1x128Bat128|[v
8x 32Bat160|1x 64Bat192 %(
8x 32Bat192 N
8x 32Bat224 5

o Optimization: Use coalesced memory accesses

@ Threads may access the same word without issuing another memory

transaction (CC > 2.0)

A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 8/21

Global Memory - Coalescing RN TR

Misaligned and sequential
Addresses: 96 128 160 192 224 256 288

| I | L 1 l
Threads: 0 31 K
S
3
Compute capability: 1.0and 1.1 ‘ 1.2and 1.3 2.xand 3.0 w
Memory transactions: Uncached Cached E
7x 32Bat128|1x128Bat128(1x128B at 128 c%n
8x 32Bat160|1x 64Bat 192|1x128B at 256 (|u
8x 32Bat192|1x 32Bat 256 <
8x 32Bat 224 g
1x 32B at 256 E)

@ Optimization: Use coalesced memory accesses

@ Threads may access the same word without issuing another memory
transaction (CC > 2.0)

(Al1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 8/21

Coalescing example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 9/21

Matrix transpose example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 10 / 21

SGEMM example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 11 /21

Shared Memory N ERaTY

Each SM has its own shared memory

Higher throughput than global memory

Lower latency than global memory

(]

@ Software-managed cache of size 16kB, 32kB or 48kB

Threads can cooperate via shared memory
o E.g. via __syncthreads()

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 12 /21

Shared Memory N ERaTY

Divided into 32 banks

e Successive 4bytes map to successive banks
e Each bank can service 4bytes per cycle

@ Access to the same bank may result in serialization
e So called bank conflicts

Use __shared__ keyword to declare a variable as shared EESTE

© Memory accessed by ...

@ ...a half-warp for CC 1.x
e ...a warp for CC > 2.x

A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 13 /21

Shared Memory N ERaTY

Divided into 32 banks

e Successive 4bytes map to successive banks
e Each bank can service 4bytes per cycle

@ Access to the same bank may result in serialization
e So called bank conflicts

Use __shared__ keyword to declare a variable as shared [FBanksiti

@ Memory accessed by ...

@ ...a half-warp for CC 1.x
e ...a warp for CC > 2.x

o No bank conflicts between different warps

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 13 /21

RWTHAACHEN
Shared Memory UNNERSTY

(a) Linear addressing. (b) Random permutation.

Figure: No bank conflicts.

(Al1]
(Cle[S]

Paul Springer (AICES) GPGPU 16.05.13 14 /21

RWTHAACHEN
Shared Memory UNNERSTY

(a) Two-way bank conflict. (b) Three-way bank conflict.

Figure: Bank conflicts.

(Al1]
(Cle[S]

Paul Springer (AICES) GPGPU 16.05.13 14 /21

Shared memory matrix transpose example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 15 /21

Homework - SGEMM R THRREY

@ Modify the SGEMM example of the lecture such that it utilizes the
shared memory of the SMs

@ Objective:
o The results must be correct
e The shared-memory version should be faster than the original version

o Deadline: Monday, June 3rd at 2pm.

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 16 / 21

Thread divergence N ERaTY

(isOdd(idx))
data[idx] = sin(data[idx]);

data[idx] = 1.0 / data[idx];

@ Threads within the same warp can follow different execution paths
@ Why is it important?

o Performance penalty of up to 32x
@ How can we avoid this?

o Keep divergence to threads belonging to different warps

an
ClelS]
Paul Springer (AICES) GPGPU

16.05.13 17 /21

SDOT example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 18 / 21

o RWTHAACHEN
Pinned Memory UNNERSTY

o cudaMallocHost allocates pinned memory

@ Pinned memory is required for

e Asynchronous memory transfers
o Overlapping computation with communication

@ Higher bandwidth than non-pinned memory

@ Warning: Too much pinned memory can decrease performance!

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 19 /21

Pinned Memory example

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 20 /21

- RWTHAACHEN
Pinned Memory UNIVERSITY

GB/s
SO, NN W B 01O
|

normal pinned

Figure: HtD data transfer for NVIDA Quadro 6000.

(A[1]
ClelS]

Paul Springer (AICES) GPGPU 16.05.13 21 /21

	Organization
	Motivation
	NVIDIA Fermi Architecture
	CUDA
	Basics

