
Introduction to OpenACC

Paul Springer

Aachen Institute for Advanced Study in
Computational Engineering Science

Aachen, 06.06.13

Paul Springer (AICES) OpenACC 06.06.13 1 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 2 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 3 / 37

Why Coprocessors?

Power efficiency

Massive compute power
More than 1 TFLOPS/s DP per coprocessor

Figure: Theoretical peak performance. Taken from [1].

Paul Springer (AICES) OpenACC 06.06.13 4 / 37

Why OpenACC?

Directive-based parallel programming

Incremental parallelization

High productivity

Increased portability

Growing diversity of coprocessors

NVIDIA GPUs

AMD GPUs

Intel’s Xeon Phi

Digital Signal Processors (DSPs)

Field Programmable Gate Array (FPGAs)

Paul Springer (AICES) OpenACC 06.06.13 5 / 37

Why OpenACC?

Top500 List Nov 2012

Contains 62 heterogeneous systems

Titan @ Oak Ridge National Lab (17.6 PFLOPS/s)

NVIDIA K20X GPU accelerator

Stampede @ Texas Advanced Computing Center (2.7 PFLOPS/s)

Intel Xeon Phi

Top500 List Jun 2013 (Leaked information)
Tianhe-2 (≈ 30+ PFLOPS/s)

Intel Xeon Phi

Paul Springer (AICES) OpenACC 06.06.13 6 / 37

Why OpenACC?

Top500 List Nov 2012

Contains 62 heterogeneous systems

Titan @ Oak Ridge National Lab (17.6 PFLOPS/s)

NVIDIA K20X GPU accelerator

Stampede @ Texas Advanced Computing Center (2.7 PFLOPS/s)

Intel Xeon Phi

Top500 List Jun 2013 (Leaked information)
Tianhe-2 (≈ 30+ PFLOPS/s)

Intel Xeon Phi

Paul Springer (AICES) OpenACC 06.06.13 6 / 37

Common features of coprocessors

Massively parallel

Asynchronous execution to the host (i.e. CPU)

Separate memory space from the host

Paul Springer (AICES) OpenACC 06.06.13 7 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 8 / 37

OpenACC

Introduced in November 2011

PGI, CAPS, NVIDIA and CRAY

Directive-based approach

Offloads work to a coprocessor

More comprehensible way to program the GPU

Available for

C/C++ and Fortran
NVIDIA and AMD GPUs

Syntax

#pragma acc directive-name [clause, ...]

{ structured block }

Paul Springer (AICES) OpenACC 06.06.13 9 / 37

OpenACC

ACC Kernels

#pragma acc kernels [clause, ...]

{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]

{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

OpenACC

ACC Kernels

#pragma acc kernels [clause, ...]

{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]

{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

For i=1:N DO

...

END DO

For i=1:N DO

...

END DO

OpenACC

ACC Kernels

#pragma acc kernels [clause, ...]

{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]

{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

For i=1:N DO

...

END DO

For i=1:N DO

...

END DO

OpenACC

ACC Kernels

#pragma acc kernels [clause, ...]

{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]

{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

For i=1:N DO

...

END DO

For i=1:N DO

...

END DO

OpenACC

Live Demo
Vector-Vector Multiplication

Paul Springer (AICES) OpenACC 06.06.13 11 / 37

Live Demo

PGI Compiler Flags:

Minfo=accel
-ta=nvidia,cc20

Restict keyword

double * restrict x;

Compiler can automatically detect

Parallelism
Data transfers
Reductions

PGI ACC TIME=1

Timings

Paul Springer (AICES) OpenACC 06.06.13 12 / 37

OpenACC

Execution Units

Gang similar to CUDA threadblock
Worker similar to CUDA warp
Vector similar to CUDA threads

No synchronization between gangs (same as CUDA)

Paul Springer (AICES) OpenACC 06.06.13 13 / 37

OpenACC

ACC Loop

#pragma acc loop [clause, ...]

{ structured block }

Work-sharing directive

Specify scheduling policy

gang([integer])
worker([integer])
vector([integer])
seq

Paul Springer (AICES) OpenACC 06.06.13 14 / 37

OpenACC

ACC Data

#pragma acc data [clause, ...]

{ structured block }

Data region

Can save redundant data transfers

Explicitly state data transfers

Allocate: create(list)
Copy HtoD: copyin(list)
Copy DtoH: copyout(list)
Copy HtoD and DtoH: copy(list)
Data is present on device: present(list)

Paul Springer (AICES) OpenACC 06.06.13 15 / 37

OpenACC

Live Demo
Matrix-Vector Multiplication

Paul Springer (AICES) OpenACC 06.06.13 16 / 37

Advanced Features

Multi GPU support

Asynchronous execution and data transfers

CUDA interoperability

Paul Springer (AICES) OpenACC 06.06.13 17 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 18 / 37

Molecular Dynamics Simulation

Paul Springer (AICES) OpenACC 06.06.13 19 / 37

Molecular Dynamics

System of N interacting particles

E.g.: Atoms, molecules, planets

Simulate their motion

Detect chemical reactions

Forces of particle i
~fi = mi ~ai = −∇iU(t) (1)

Potential

U(t) =
1

2

N∑
i=1

N∑
j=1
j 6=i

Ui ,j(‖~ri ,j‖) (2)

Paul Springer (AICES) OpenACC 06.06.13 20 / 37

c ©
A
m
ir
N
ia
zi
,
A
IC
E
S

Molecular Dynamics

Algorithm 1 Overview of the main Molecular Dynamics routine.

1: for i = 1 to M do
2: t ← t + dt
3: compute forces(~r , ~f)
4: integrate(~r , ~f , ~v , dt)
5: //Do something with the data
6: end for

compute forces has a complexity of O(N2)

Paul Springer (AICES) OpenACC 06.06.13 21 / 37

Molecular Dynamics

Algorithm 2 Compute forces routine.

1: for i = 1 to N do
2: ~fi ← 0
3: for j = 1 to N do
4: ~ri ,j ← ~rj − ~ri
5: fi ,j ← compute force(‖~ri ,j‖)
6: ~fi ← ~fi + fi ,j ~ri ,j
7: end for
8: end for

Paul Springer (AICES) OpenACC 06.06.13 22 / 37

Molecular Dynamics

Algorithm 3 Naive OpenACC compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: for j = 1 to N do
5: ~ri ,j ← ~rj − ~ri
6: fi ,j ← compute force(‖~ri ,j‖)
7: ~fi ← ~fi + fi ,j ~ri ,j
8: end for
9: end for

Inner loop can not be parallelized

Loop-carried dependencies

Paul Springer (AICES) OpenACC 06.06.13 22 / 37

Molecular Dynamics

Algorithm 4 Improved compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: #pragma acc loop reduction(+:~fi)
5: for j = 1 to N do
6: ~ri ,j ← ~rj − ~ri
7: fi ,j ← compute force(‖~ri ,j‖)
8: ~fi ← ~fi + fi ,j ~ri ,j
9: end for

10: end for

Good: Inner loop can be parallelized

Bad: Arrays are reallocated in every iteration

Paul Springer (AICES) OpenACC 06.06.13 23 / 37

Molecular Dynamics

Algorithm 5 Overview of the main Molecular Dynamics routine with an
OpenACC data region.

1: #pragma acc data create (~r [0:N],~f [0:N])
2: for i = 1 to M do
3: t ← t + dt
4: compute forces(~r , ~f)
5: integrate(~r , ~f , ~v , dt)
6: //Do something with the data
7: end for

Paul Springer (AICES) OpenACC 06.06.13 24 / 37

Molecular Dynamics

Algorithm 6 Final compute forces routine.

1: #pragma acc update device(~r [0:N])
2: #pragma acc kernels present(~r [0:N], ~f [0:N])
3: for i = 1 to N do
4: ~fi ← 0
5: #pragma acc loop reduction(+:~fi)
6: for j = 1 to N do
7: ~ri ,j ← ~rj − ~ri
8: fi ,j ← compute force(‖~ri ,j‖)
9: ~fi ← ~fi + fi ,j ~ri ,j

10: end for
11: end for
12: #pragma acc update host(~f [0:N])

Paul Springer (AICES) OpenACC 06.06.13 25 / 37

Performance

1216 2560 4608 8704

100

200

300

400

500

#Particles

R
u

n
ti

m
e

(s
ec

)

Openmp ACC naive ACC improved ACC final CUDA

Figure: Runtime of a Molecular Dynamics (MD) Simulation for different
problem sizes over 10.000 iterations. All calculations are run in double
precision. OpenMP: 16 core SMP node. OpenACC/Cuda: Nvidia Quadro
6000 GPU.

Paul Springer (AICES) OpenACC 06.06.13 26 / 37

All versions are equally
well tuned

OpenACC is 40% faster
than OpenMP

OpenACC performs at
80% of CUDA

Conjugate Gradient Method

Paul Springer (AICES) OpenACC 06.06.13 27 / 37

Conjugate Gradient Method

Iterative solver

Solve a large sparse linear system

Ax = b (3)

Frequently arise from partial differential equations in physics

Runtime dominated by Sparse Matrix-Vector Multiplication SPMV

Paul Springer (AICES) OpenACC 06.06.13 28 / 37

c ©
M
a
tr
ix

M
ar
ke
t

Performance

fidap011 bcsstk18

1

2

R
u

n
ti

m
e

(s
ec

)

OpenACC 12.9 OpenACC 13.1 CUDA

Figure: Runtime of a Conjugate Gradient (CG) Method for two sparse
matrices. All calculations are run in double precision. OpenMP: 16 core
SMP node. OpenACC/Cuda: Nvidia Quadro 6000 GPU.

Paul Springer (AICES) OpenACC 06.06.13 29 / 37

All versions are equally
well tuned

PGI 13.1 50%/80%
faster than PGI 12.9

OpenACC performs at
≈ 50% of CUDA

OpenMP outperforms
CUDA

Productivity

Paul Springer (AICES) OpenACC 06.06.13 30 / 37

Productivity - Contra

Function calls require inlining

PGI compiler does not support C++

Limited debugging support for PGI compiler

Revert to debugging the logic of your application

Paul Springer (AICES) OpenACC 06.06.13 31 / 37

Productivity - Pro

OpenMP OpenACC CUDA

MD 23 16 92

CG 8 16 156

Table: Number of added and modified lines of source code for each case study
and paradigm with respect to the serial version.

Few added/modified lines of source code

Data transfers are straight forward

Reductions require almost no additional effort

No need to worry about “boundary conditions”

Compiler is able to tune for a specific coprocessor

Paul Springer (AICES) OpenACC 06.06.13 32 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 33 / 37

Future of OpenACC

OpenACC 2.0

Announced at SC 12 (November)
Additional features

Multi dimensional tiling
Nested parallelism
Function calls within accelerator regions

PGI support expected for mid 2013

PGI announced AMD and Xeon PHI support by mid 2013

OpenMP 4.0

OpenACC and OpenMP is likely to merge in the future

Paul Springer (AICES) OpenACC 06.06.13 34 / 37

Outline

1 Motivation

2 OpenACC
Basic
Advanced

3 Case Studies
Performance

Molecular Dynamics Simulation
Conjugate Gradient Method

Productivity

4 Future of OpenACC

5 Conclusion

Paul Springer (AICES) OpenACC 06.06.13 35 / 37

Conclusion

High productivity (if you don’t run into compiler bugs)

Decent performance

Limited debugging support for PGI compiler

Makes coprocessor programming more straightforward

C code → OpenACC code → CUDA code

Paul Springer (AICES) OpenACC 06.06.13 36 / 37

Additional Information

OpenACC
webinars

developer.nvidia.com/cuda/gpu-computing-webinars

www.pgroup.com/resources/articles.htm#webinars

www.openacc-standard.org

Thank you for your attention.

Paul Springer (AICES) OpenACC 06.06.13 37 / 37

References I

NVIDIA.
CUDA C Best Practices Guide, August 2012.
Version 4.2.

S. Wienke, P. Springer, C. Terboven, and D. an Mey.
OpenACC-First Experiences with Real-World Applications.
Euro-Par 2012 Parallel Processing, pages 859–870, 2012.

Paul Springer (AICES) OpenACC 06.06.13 37 / 37

	Motivation
	OpenACC
	Basic
	Advanced

	Case Studies
	Performance
	Productivity

	Future of OpenACC
	Conclusion

