Introduction to OpenACC

Paul Springer

Aachen Institute for Advanced Study in
Computational Engineering Science

Aachen, 06.06.13

ALl RWTH
Ccle]s]
(Al1]

ClelS]

Paul Springer (AICES) OpenACC 06.06.13 1/37

" RHERR)
© Motivation
© OpenACC
@ Basic

@ Advanced

© Case Studies

@ Performance
@ Molecular Dynamics Simulation
@ Conjugate Gradient Method

@ Productivity
@ Future of OpenACC

© Conclusion
Al
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 2 /37

Outline TRIEREEY

© Motivation

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 3/37

Why Coprocessors? NSRS

o Power efficiency

@ Massive compute power
o More than 1 TFLOPS/s DP per coprocessor

Theoretical
GFLOP/s
3250

3000

NVIDIA GPU Single Predision
2750 ==s==NVIDIA GPU Double Predsion
=e—Intel CPU Single Precision

2500 Intel CPU Dauble Predsion

2250

2000

1750

1500

1250

1000

750

500 Tesla C2050 Sandy Bridge

Tesla C1060

250 i Bipdhfield
0 0" Westmere
Sep-FFNEUM4 jun.04 Mar-0713PETtOMN pe"h9 Aug-12

Figure: Theoretical peak performance. Taken from [1]. g

Paul Springer (AICES) OpenACC 06.06.13 4 /37

Why OpenACC? NS

@ Directive-based parallel programming
o Incremental parallelization

e High productivity
o Increased portability
@ Growing diversity of coprocessors
o NVIDIA GPUs
e AMD GPUs
o Intel's Xeon Phi
o Digital Signal Processors (DSPs)
o Field Programmable Gate Array (FPGAs)

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 5/37

Why OpenACC? NS

@ Top500 List Nov 2012

o Contains 62 heterogeneous systems

e Titan @ Oak Ridge National Lab (17.6 PFLOPS/s)
o NVIDIA K20X GPU accelerator

o Stampede @ Texas Advanced Computing Center (2.7 PFLOPS/s)
o Intel Xeon Phi

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 6 /37

Why OpenACC? NS

@ Top500 List Nov 2012

o Contains 62 heterogeneous systems

e Titan @ Oak Ridge National Lab (17.6 PFLOPS/s)
o NVIDIA K20X GPU accelerator

o Stampede @ Texas Advanced Computing Center (2.7 PFLOPS/s)
o Intel Xeon Phi

@ Top500 List Jun 2013 (Leaked information)
o Tianhe-2 (~ 30+ PFLOPS/s)
o Intel Xeon Phi

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 6 /37

Common features of coprocessors s b

CPU Coprocessor
AL AL e —
HOTTTTITTTTT]

N —
HOTTTTTTTTT]
HOTTTTTTTTT]

o |

@ Massively parallel

Control

@ Asynchronous execution to the host (i.e. CPU)

@ Separate memory space from the host

(Al1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 7 /37

Outline TRIEREEY

© OpenACC

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 8 /37

OpenACC FROWTHAACHEN

Introduced in November 2011
o PGI, CAPS, NVIDIA and CRAY

Directive-based approach
Offloads work to a coprocessor

°
°
@ More comprehensible way to program the GPU
@ Available for

o C/C++ and Fortran
o NVIDIA and AMD GPUs

#pragma acc directive-name [clause,
{ structured block }

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 9 /37

OpenACC FROWTHAACHEN

#pragma acc kernels [clause,
{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]
{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel -
A
Cle[S]

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

OpenACC RWTHAACHEN

#pragma acc kernels [clause,
{ structured block }

Compiler responsible for finding parallelism END.]E)[']

For i=1:N DO

(]

Can generate multiple kernels
For i=1:N DO

Synchronization between kernels
END DO

ACC Parallel

#pragma acc parallel [clause, ...]
{ structured block 7

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel
an
Cle[s]

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

OpenACC RWTHAACHEN

#pragma acc kernels [clause,
{ structured block }

Compiler responsible for finding parallelism END.]E)[']

For i=1:N DO

(]

Can generate multiple kernels
For i=1:N DO

Synchronization between kernels
END DO

ACC Parallel

#pragma acc parallel [clause, ...]
{ structured block 7

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel
an
Cle[s]

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

OpenACC RWTHAACHEN

#pragma acc kernels [clause,
{ structured block }

Compiler responsible for finding parallelism END.]E)[']

For i=1:N DO

(]

Can generate multiple kernels
For i=1:N DO

Synchronization between kernels
END DO

ACC Parallel

#pragma acc parallel [clause, ...]
{ structured block 7

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel
an
Cle[s]

Paul Springer (AICES) OpenACC 06.06.13 10 / 37

OpenACC FROWTHAACHEN

Live Demo
Vector-Vector Multiplication

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 11 /37

Live Demo AT

PGI Compiler Flags:

o Minfo=accel
e -ta=nvidia,cc20

Restict keyword
o double * restrict x;

Compiler can automatically detect

o Parallelism
o Data transfers
o Reductions

o PGILACC_TIME=1

e Timings

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 12 / 37

OpenACC FROWTHAACHEN

@ Execution Units

e Gang similar to CUDA threadblock
e Worker similar to CUDA warp
e Vector similar to CUDA threads

@ No synchronization between gangs (same as CUDA)

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 13 / 37

OpenACC FROWTHAACHEN

ACC Loop

#pragma acc loop [clause, ...]
{ structured block }

@ Work-sharing directive

@ Specify scheduling policy
gang([integer])
worker([integer])
vector([integer])
seq

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 14 / 37

OpenACC FROWTHAACHEN

#pragma acc data [clause,
{ structured block 1}

@ Data region

@ Can save redundant data transfers

@ Explicitly state data transfers

Allocate: create(list)

Copy HtoD: copyin(list)

Copy DtoH: copyout(list)

Copy HtoD and DtoH: copy(list)

Data is present on device: present(list)

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 15 / 37

OpenACC FROWTHAACHEN

Live Demo
Matrix-Vector Multiplication

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 16 / 37

Advanced Features AT

@ Multi GPU support
@ Asynchronous execution and data transfers

o CUDA interoperability

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 17 / 37

Outline TRIEREEY

© Case Studies

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 18 / 37

Molecular Dynamics Simulation

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 19 / 37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

@ System of N interacting particles
o E.g.: Atoms, molecules, planets

@ Simulate their motion

g
<
@ Detect chemical reactions s
E
<
@ Forces of particle i ©
fl — mla_; — —V,’U(t) (1)
o Potential
u(t) = 222 Uii(ll7igl) (2)
i=1 j=1
J#i
(A1)
Cle[s]
Paul Springer (AICES) OpenACC

06.06.13 20 / 37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

Algorithm 1 Overview of the main Molecular Dynamics routine.
1: for i=1to M do
22 t+t+dt

—

3: compute_forces(7, f)

4: integrate(r, v, dt)

5. //Do something with the data
6: end for

e compute_forces has a complexity of O(N?)

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 21 /37

Molecular Dynamics TRy

Algorithm 2 Compute_forces routine.
1: for i=1to N do
2 i< 0
3: forj=1to N do
4 Py =
5 fu 4 compute _force(||7; jI)
6
7
8

f<—f—|—f,d rij
end for
: end for

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 22 /37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

Algorithm 3 Naive OpenACC compute_forces routine.
1: #pragma acc kernels
2: for i=1to N do
3: ﬁ ~0

4. forj=1to N do

T TR

6 fi j < compute_force(||7 ||)
. fef+fijy

8: end for

9: end for

@ Inner loop can not be parallelized
o Loop-carried dependencies

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 22 /37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

Algorithm 4 Improved compute_forces routine.
1: #pragma acc kernels
2: for i=1to N do
3: ﬁ <0
#pragma acc loop reduction(+:f,:)
for j=1to N do
hj4ri—r
i = _compute _force(]| 7 j|)
fie fi+ ey
9: end for
10: end for

I e e

° : Inner loop can be parallelized

@ Bad: Arrays are reallocated in every iteration
an
Cle[S]

Paul Springer (AICES) OpenACC 06.06.13 23 /37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

Algorithm 5 Overview of the main Molecular Dynamics routine with an
OpenACC data region.

1: #pragma acc data create (7[0:N],£]0:N])

2: for i=1to M do
3t tH4dt
4. compute_forces(7, f)
5
6
7

integrate(r, v, dt)
//Do something with the data
: end for

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 24 / 37

1 RWTHAACHEN
Molecular Dynamics UNIVERSITY

Algorithm 6 Final compute_forces routine.

1:

2: #pragma acc kernels

3: for i=1to N do

4: 7?, <0

5: #pragma acc loop reduction(+:f,:)
6: forj=1to N do

7 My

8: fi j < compute_force(||7 ;||)
9: fi fi+1ij7ij

10: end for

11: end for

12:

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 25 / 37

Performance R THRREY

’ll Openmp &2 ACC naive 8 ACC improved FB ACC final I8 CUDA ‘

500 [| .
o400 | g
a 2
o 30| TH
g 2001 , e @ All versions are equally
c % 7 well tuned
7 - 2
x© 100 [I 7 o OpenACC is 40% faster
i ‘Ix: LLELLEL L than OpenMP
1216 2560 4608 8704 @ OpenACC performs at
AL 80% of CUDA

FIgU €. Runtime of a Molecular Dynamics (MD) Simulation for different

problem sizes over 10.000 iterations. All calculations are run in double

precision. OpenMP: 16 core SMP node. OpenACC/Cuda: Nvidia Quadro

6000 GPU.
an
Cle[S]

Paul Springer (AICES) OpenACC 06.06.13 26 / 37

Conjugate Gradient Method

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 27 / 37

Conjugate Gradient Method TRy

@ lterative solver \2
@ Solve a large sparse linear system 5
Ax=b (3)

@ Frequently arise from partial differential equations in physics

@ Runtime dominated by Sparse Matrix-Vector Multiplication SPMV

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 28 / 37

Performance R THRREY

11 0penACC 12,988 OpenACC 13111 CUDA |

o All versions are equally

é 21 Il well tuned

o o PGI 13.1 50%/80%
= 1 i faster than PGl 12.9
& @ OpenACC performs at

~ 50% of CUDA

fidap011 besstk18 @ OpenMP outperforms
CUDA

FIgU €. Runtime of a Conjugate Gradient (CG) Method for two sparse
matrices. All calculations are run in double precision. OpenMP: 16 core
SMP node. OpenACC/Cuda: Nvidia Quadro 6000 GPU.

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 29 / 37

Productivity

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 30/ 37

Productivity - Contra NS

@ Function calls require inlining

@ PGI compiler does not support C++

@ Limited debugging support for PGl compiler
o Revert to debugging the logic of your application

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 31 /37

Productivity - Pro N ERaTY

| OpenMP | OpenACC | CUDA

23 16 92
8 16 156

MD
CG

Table: Number of added and modified lines of source code for each case study
and paradigm with respect to the serial version.

Few added/modified lines of source code
Data transfers are straight forward
Reductions require almost no additional effort

No need to worry about “boundary conditions”

Compiler is able to tune for a specific coprocessor
an
Cle[s]

Paul Springer (AICES) OpenACC 06.06.13 32 /37

Outline TRIEREEY

@ Future of OpenACC

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 33 /37

Future of OpenACC AT

@ OpenACC 2.0

e Announced at SC 12 (November)
o Additional features

@ Multi dimensional tiling
o Nested parallelism
o Function calls within accelerator regions

o PGI support expected for mid 2013

@ PGl announced AMD and Xeon PHI support by mid 2013

@ OpenMP 4.0
o OpenACC and OpenMP is likely to merge in the future

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 34 /37

Outline TRIEREEY

© Conclusion
Al
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 35 /37

Conclusion AT

High productivity (if you don't run into compiler bugs)

Decent performance

Limited debugging support for PGl compiler

@ Makes coprocessor programming more straightforward
o C code — OpenACC code — CUDA code

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 36 / 37

Additional Information AT

@ OpenACC
e webinars
o developer.nvidia.com/cuda/gpu-computing-webinars

@ www.pgroup.com/resources/articles.htm#webinars

e www.openacc-standard.org

Thank you for your attention.

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 37 /37

References | AT

@ NVIDIA.
CUDA C Best Practices Guide, August 2012.
Version 4.2.

[3] S. Wienke, P. Springer, C. Terboven, and D. an Mey.
OpenACC-First Experiences with Real-World Applications.
Euro-Par 2012 Parallel Processing, pages 859-870, 2012.

(A[1]
ClelS]

Paul Springer (AICES) OpenACC 06.06.13 37 /37

	Motivation
	OpenACC
	Basic
	Advanced

	Case Studies
	Performance
	Productivity

	Future of OpenACC
	Conclusion

