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Why Coprocessors?

Power efficiency

Massive compute power
More than 1 TFLOPS/s DP per coprocessor

Figure: Theoretical peak performance. Taken from [1].
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Why OpenACC?

Directive-based parallel programming

Incremental parallelization

High productivity

Increased portability

Growing diversity of coprocessors

NVIDIA GPUs

AMD GPUs

Intel’s Xeon Phi

Digital Signal Processors (DSPs)

Field Programmable Gate Array (FPGAs)
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Why OpenACC?

Top500 List Nov 2012

Contains 62 heterogeneous systems

Titan @ Oak Ridge National Lab (17.6 PFLOPS/s)

NVIDIA K20X GPU accelerator

Stampede @ Texas Advanced Computing Center (2.7 PFLOPS/s)

Intel Xeon Phi

Top500 List Jun 2013 (Leaked information)
Tianhe-2 (≈ 30+ PFLOPS/s)

Intel Xeon Phi
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Common features of coprocessors

Massively parallel

Asynchronous execution to the host (i.e. CPU)

Separate memory space from the host
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OpenACC

Introduced in November 2011

PGI, CAPS, NVIDIA and CRAY

Directive-based approach

Offloads work to a coprocessor

More comprehensible way to program the GPU

Available for

C/C++ and Fortran
NVIDIA and AMD GPUs

Syntax

#pragma acc directive-name [clause, ...]

{ structured block }
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OpenACC

ACC Kernels

#pragma acc kernels [clause, ...]

{ structured block }

Compiler responsible for finding parallelism

Can generate multiple kernels

Synchronization between kernels

ACC Parallel

#pragma acc parallel [clause, ...]

{ structured block }

User responsible for finding parallelism

Generates a single kernel

No synchronization between loops within kernel
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OpenACC

Live Demo
Vector-Vector Multiplication
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Live Demo

PGI Compiler Flags:

Minfo=accel
-ta=nvidia,cc20

Restict keyword

double * restrict x;

Compiler can automatically detect

Parallelism
Data transfers
Reductions

PGI ACC TIME=1

Timings
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OpenACC

Execution Units

Gang similar to CUDA threadblock
Worker similar to CUDA warp
Vector similar to CUDA threads

No synchronization between gangs (same as CUDA)
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OpenACC

ACC Loop

#pragma acc loop [clause, ...]

{ structured block }

Work-sharing directive

Specify scheduling policy

gang([ integer ])
worker([ integer ])
vector([ integer ])
seq
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OpenACC

ACC Data

#pragma acc data [clause, ...]

{ structured block }

Data region

Can save redundant data transfers

Explicitly state data transfers

Allocate: create(list)
Copy HtoD: copyin(list)
Copy DtoH: copyout(list)
Copy HtoD and DtoH: copy(list)
Data is present on device: present(list)
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OpenACC

Live Demo
Matrix-Vector Multiplication
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Advanced Features

Multi GPU support

Asynchronous execution and data transfers

CUDA interoperability
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Molecular Dynamics Simulation
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Molecular Dynamics

System of N interacting particles

E.g.: Atoms, molecules, planets

Simulate their motion

Detect chemical reactions

Forces of particle i
~fi = mi ~ai = −∇iU(t) (1)

Potential

U(t) =
1

2

N∑
i=1

N∑
j=1
j 6=i

Ui ,j(‖~ri ,j‖) (2)
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Molecular Dynamics

Algorithm 1 Overview of the main Molecular Dynamics routine.

1: for i = 1 to M do
2: t ← t + dt
3: compute forces(~r , ~f )
4: integrate(~r , ~f , ~v , dt)
5: //Do something with the data
6: end for

compute forces has a complexity of O(N2)
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Molecular Dynamics

Algorithm 2 Compute forces routine.

1: for i = 1 to N do
2: ~fi ← 0
3: for j = 1 to N do
4: ~ri ,j ← ~rj − ~ri
5: fi ,j ← compute force(‖~ri ,j‖)
6: ~fi ← ~fi + fi ,j ~ri ,j
7: end for
8: end for
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Molecular Dynamics

Algorithm 3 Naive OpenACC compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: for j = 1 to N do
5: ~ri ,j ← ~rj − ~ri
6: fi ,j ← compute force(‖~ri ,j‖)
7: ~fi ← ~fi + fi ,j ~ri ,j
8: end for
9: end for

Inner loop can not be parallelized

Loop-carried dependencies
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Molecular Dynamics

Algorithm 4 Improved compute forces routine.

1: #pragma acc kernels
2: for i = 1 to N do
3: ~fi ← 0
4: #pragma acc loop reduction(+:~fi )
5: for j = 1 to N do
6: ~ri ,j ← ~rj − ~ri
7: fi ,j ← compute force(‖~ri ,j‖)
8: ~fi ← ~fi + fi ,j ~ri ,j
9: end for

10: end for

Good: Inner loop can be parallelized

Bad: Arrays are reallocated in every iteration
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Molecular Dynamics

Algorithm 5 Overview of the main Molecular Dynamics routine with an
OpenACC data region.

1: #pragma acc data create (~r [0:N],~f [0:N])
2: for i = 1 to M do
3: t ← t + dt
4: compute forces(~r , ~f )
5: integrate(~r , ~f , ~v , dt)
6: //Do something with the data
7: end for
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Molecular Dynamics

Algorithm 6 Final compute forces routine.

1: #pragma acc update device(~r [0:N])
2: #pragma acc kernels present(~r [0:N], ~f [0:N])
3: for i = 1 to N do
4: ~fi ← 0
5: #pragma acc loop reduction(+:~fi )
6: for j = 1 to N do
7: ~ri ,j ← ~rj − ~ri
8: fi ,j ← compute force(‖~ri ,j‖)
9: ~fi ← ~fi + fi ,j ~ri ,j

10: end for
11: end for
12: #pragma acc update host(~f [0:N])
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Performance
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Figure: Runtime of a Molecular Dynamics (MD) Simulation for different
problem sizes over 10.000 iterations. All calculations are run in double
precision. OpenMP: 16 core SMP node. OpenACC/Cuda: Nvidia Quadro
6000 GPU.
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All versions are equally
well tuned

OpenACC is 40% faster
than OpenMP

OpenACC performs at
80% of CUDA



Conjugate Gradient Method
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Conjugate Gradient Method

Iterative solver

Solve a large sparse linear system

Ax = b (3)

Frequently arise from partial differential equations in physics

Runtime dominated by Sparse Matrix-Vector Multiplication SPMV
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Performance
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Figure: Runtime of a Conjugate Gradient (CG) Method for two sparse
matrices. All calculations are run in double precision. OpenMP: 16 core
SMP node. OpenACC/Cuda: Nvidia Quadro 6000 GPU.
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All versions are equally
well tuned

PGI 13.1 50%/80%
faster than PGI 12.9

OpenACC performs at
≈ 50% of CUDA

OpenMP outperforms
CUDA



Productivity
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Productivity - Contra

Function calls require inlining

PGI compiler does not support C++

Limited debugging support for PGI compiler

Revert to debugging the logic of your application
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Productivity - Pro

OpenMP OpenACC CUDA

MD 23 16 92

CG 8 16 156

Table: Number of added and modified lines of source code for each case study
and paradigm with respect to the serial version.

Few added/modified lines of source code

Data transfers are straight forward

Reductions require almost no additional effort

No need to worry about “boundary conditions”

Compiler is able to tune for a specific coprocessor
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Future of OpenACC

OpenACC 2.0

Announced at SC 12 (November)
Additional features

Multi dimensional tiling
Nested parallelism
Function calls within accelerator regions

PGI support expected for mid 2013

PGI announced AMD and Xeon PHI support by mid 2013

OpenMP 4.0

OpenACC and OpenMP is likely to merge in the future
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Conclusion

High productivity (if you don’t run into compiler bugs)

Decent performance

Limited debugging support for PGI compiler

Makes coprocessor programming more straightforward

C code → OpenACC code → CUDA code
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Additional Information

OpenACC
webinars

developer.nvidia.com/cuda/gpu-computing-webinars

www.pgroup.com/resources/articles.htm#webinars

www.openacc-standard.org

Thank you for your attention.
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