
High Performance Matrix Computations

Homework 2 — Reference Solution

Elmar Peise

June 30, 2015

1 Step 1: Installation

1.1 System description

We use ELAPS on a cluster node with two Intel Sandy Bridge-EP E5-2670 CPU running
at 2.6 GHz. Each CPU has 8 cores and up to 2 hardware threads per core (hyper-threading).
Each core can perform 8 double precision floating point operations per cycle: 1 ADD + 1 MUL on
vectors of 4 doubles (AVX). Hence the theoretical double precision peak performance is 2.6·8 = 20.8
GFLOPS/s per core. The single precision performance is twice is high.

The node is used interactively and exclusively.

1.2 Sampler Setup

Our Sampler uses OpenBLAS version 0.2.14 and is generated with the following configuration
file (step1/SandyBridge OpenBLAS.cfg):

1 BLAS_NAME=OpenBLAS
2 SYSTEM_NAME=SandyBridge
3 CFLAGS="-fopenmp"
4 CXXFLAGS="-fopenmp"
5 LINK_FLAGS="-L${HOME}/ software/openblas/lib/ \
6 -lopenblas_sandybridgep -r0.2.14 -lgfortran -fopenmp \
7 -L${PAPI_ROOT }/lib64 -lpapi"
8 INCLUDE_FLAGS="-I${PAPI_ROOT }/ include"
9 BACKEND_PREFIX="OPENBLAS_NUM_THREADS ={nt}"

10 . ./ gathercfg.sh
11 DFLOPS_PER_CYCLE =8

The Sampler is set up to be used interactively. If we were to use it through the LSF batch
job system, we would add the similar to the following:

1 BACKEND="lsf"
2 BACKEND_HEADER="#BSUB -x -M 10000 -W 00:15 -R model== SandyBridge_EP"

Note that this script configures how the number of threads for OpenBLAS is controlled in
line 9.

1.3 dgemm performance

We use the following bash script as an input for the generated Sampler to test the performance
of dgemm on square matrices of increasing size (step1/input.sh):

1 #!/ bin/bash
2 for n in {100..4000..100}; do
3 echo dgemm N N $n $n $n 1 [$((n * n))] $n [$((n * n))] $n 1 [$((n * n))] $n
4 done

(The produce output can be found in step1/output.txt.)
The GFLOPS/s plot for this experiment in Figure 1 is generated using the following gnuplot

script (step1/gflops.plt):

1

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

G
FL

O
P
S

/s

m = n = k (matrix size)

Figure 1: Performance of dgemm

1 set term pdfcairo
2 set output "gflops.pdf"
3 set xlabel "m = n = k (matrix size)"
4 set ylabel "GFLOPS/s"
5 set nokey
6 set yrange [0:20.8]
7 plot "output.txt" u (100 * ($0 + 1)):(2.6 * 2 * (100 * ($0 + 1)) ** 3 / $1) w l t "dgemm"

The plot shows the expected performance profile for dgemm, reaching ≈ 19 GFLOPS/s, which
corresponds an to efficiency of ≈ 90%.

2 Step 2: BLAS-3

2.1 Performance of symm

We consider the kernel symm (C = C + AB, where A is symmetric). For ssymm we use the
experiment setup step2/{s,d,c,z}symm.elr (Figure 8). The experiments for the other datatypes
are analogous.

The resulting execution time and efficiencies of these experiments shown in Figure 2. For single
real, single complex, and double real, OpenBLAS reaches an efficiencies between 80 and 95%; for
double precision complex on the other hand the efficiency doesn’t even reach 50%, which indicates
that the kernel is not optimized for AVX 2. Considering the execution times, the double precision
kernels take about twice as long as the corresponding single precision counter parts since the CPU
can perform twice as many single precision operations per cycles as double precision operations.
The execution times for the complex kernels is about four times higher than for the real kernels
since these kernels involve four times more mathematical operations.

2.2 Multithreaded OpenBLAS vs. OpenMP

With step2/{mt,omp}.elr (Figure 9),w e compare the performance of multithreaded OpenBLAS
with running single-threaded kernels in parallel through OpenMP for a sequnce of 16 dsymm

kernels. Here, the symmetric matrix A is the same in each kernel invocation, while dfferent
matrices B and C are used. The efficiency and execution time of their results are shown in
Figure 3; across the board running single-threaded kernels in parallel through OpenMP is faster

2

0 500 1000 1500 2000 2500 3000
i

0

20

40

60

80

100
e
ff

ic
ie

n
cy

 [
%

]

ssymm
dsymm
csymm
zsymm
med
std

(a) Efficiency

0 500 1000 1500 2000 2500 3000
i

0

5

10

15

20

25

ti
m

e
 [

s]

ssymm
dsymm
csymm
zsymm
med
std

(b) Execution time

Figure 2: Perfromance of symm for all data types

0 500 1000 1500 2000 2500 3000
i

0

20

40

60

80

100

e
ff

ic
ie

n
cy

 [
%

]

OpenBLAS
OpenMP
med
std

(a) Efficiency

0 500 1000 1500 2000 2500 3000
i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
 [

s]

OpenBLAS
OpenMP
med
std

(b) Execution time

Figure 3: Multithreaded OpenBLAS vs. OpenMP-parallel kernels

than running the kernels one after the other with multithreaded OpenBLAS. Note that in these
experiments an efficiency of 100% corresponds to 128 flops/cycle.

3 Step 3: Cholesky

3.1 Cholesky Variants for Different Matrix Sizes

The three blocked algorithms for the Cholesky decomposition with increasing matrix size n and
the block-size fixed to 32 is given by step3/chol{1,2,3}.elr (Figure 10). Here, p represents the
traversal along the diagonal. Note that the SPD randomization kernel dporand is only invoked
on A11. The performance of the experiments are shown in Figure 4; all variants present a similar
behaviour, while variant 3 is the fastest.

3.2 Block-Size Optimization for Cholesky Variant 3

We use the experiment step3/chol3 nb.elr (Figure 11) to determine the optimal block-size for
Cholesky variant 3 and matrix-size 2500. The resulting performance is shown in Figure 5. The

3

0 500 1000 1500 2000 2500 3000
n

0

10

20

30

40

50

60

70

80

e
ff

ic
ie

n
cy

 [
%

]

Variant 1
Variant 2
Variant 3
med
std

(a) Efficiency

0 500 1000 1500 2000 2500 3000
n

0

100

200

300

400

500

600

700

800

ti
m

e
 [

m
s]

Variant 1
Variant 2
Variant 3
med
std

(b) Execution time

Figure 4: Performance of the Cholesky variants for different matrix sizes

0 50 100 150 200 250 300 350 400
b

0

20

40

60

80

100

e
ff

ic
ie

n
cy

 [
%

]

Variant 3
dpotf2
dtrsm
dsyrk
med
std

(a) Efficiency

0 50 100 150 200 250 300 350 400
b

0

50

100

150

200

250

300

350

400

ti
m

e
 [

m
s]

Variant 3
dpotf2
dtrsm
dsyrk
med
std

(b) Execution time

Figure 5: Performance of Cholesky variant 3 for varying block-sizes at matrix size 2500.

best efficiency is obtained for a block-size of 112. Furthermore, we can see how the block-size
influences performance: For very small block-sizes, dsyrk is invoked very often with a very thin
A21, for which is not very efficient; as the block-size increases, the efficiency of dsyrk increases
quickly, while the computational load is shifted towards dtrsm and eventually dpotf2; since the
latter is very inefficient for larger matrices, increasing the block-size too far, will also yield poor
performance.

3.3 Parallel Scalability

We analyze the scalability of the three Cholesky variants for matrix size 2500 and block-size
112 with the experiments step3/chol{1,2,3} mt.elr (Figure 12). The resulting performance is
shown in Figure 6. For all three variants, the eficiency quickly drops from ≈ 80% to 15-40, while
variant 3 remains the fastest.

4

2 4 6 8 10 12 14 16
t

0

10

20

30

40

50

60

70

80

90

e
ff

ic
ie

n
cy

 [
%

]

Variant 1
Variant 2
Variant 3
med
std

(a) Efficiency

2 4 6 8 10 12 14 16
t

0

50

100

150

200

250

300

350

ti
m

e
 [

m
s]

Variant 1
Variant 2
Variant 3
med
std

(b) Execution time

Figure 6: Scalability of the three Cholesky variants for matrix size 2500 and block-size 112

3.4 Bottleneck analysis

For the bottleneck analysis we consider the parallel scaling experiments step3/chol{1,2,3} mt.elr
from the previous section. A breakdown of the time spent in each kernel is given in Figure 7. The
results show that for each kernel the scaling behaviour is strongly dominated by the kernel that
covers most of the algorithm’s computation. These are dtrsm involving A00 (variant 1), dgemm
involving A21 (variant 2), and dsyrk involving A22 (variant 3).

5

2 4 6 8 10 12 14 16
t

0

50

100

150

200

250

300

350

ti
m

e
 [

m
s]

Variant 1
dtrsm
dsyrk
dpotf2
med
std

(a) Variant 1

2 4 6 8 10 12 14 16
t

0

50

100

150

200

250

300

350

ti
m

e
 [

m
s]

Variant 2
dsyrk
dpotf2
dgemm
dtrsm
med
std

(b) Variant 2

2 4 6 8 10 12 14 16
t

0

50

100

150

200

250

300

ti
m

e
 [

m
s]

Variant 3
dpotf2
dtrsm
dsyrk
med
std

(c) Variant 3

Figure 7: Breakdown of the time spent in each kernel of the scalability experiments.

6

A Experiment Setups

Figure 8: Setup for step2/ssymm.elr.

7

(a) Setup for multithreaded OpenBLAS (step2/mt.elr)

(b) Setup for OpenMP parallel kernels (step2/omp.elr)

Figure 9: Setups for the parallelism comparison OpenBLAS vs. OpenMP

8

(a) Variant 1 (step3/chol1.elr) (b) Variant 2 (step3/chol2.elr)

(c) Variant 3 (step3/chol3.elr)

Figure 10: Setups for the blocked Cholesky algorithms

9

Figure 11: Block-size optimization for Cholesky variant 3 (step3/chol3 nb.elr)

10

(a) Variant 1 (step3/chol1 mt.elr) (b) Variant 2 (step3/chol2 mt.elr)

(c) Variant 3 (step3/chol3 mt.elr)

Figure 12: Setups for the blocked Cholesky algorithms with increasing number of threads

11

	Step 1: Installation
	System description
	Sampler Setup
	dgemm performance

	Step 2: BLAS-3
	Performance of symm
	Multithreaded OpenBLAS vs. OpenMP

	Step 3: Cholesky
	Cholesky Variants for Different Matrix Sizes
	Block-Size Optimization for Cholesky Variant 3
	Parallel Scalability
	Bottleneck analysis

	Experiment Setups

