High-Performance Matrix Computations Final Projects

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

Deadline: Midnight, the evening before your oral exam

Routines

r1. Generalized eigensolvers	<pre>{ xSYGV, xSYGVD, xSYGVX xHEGV, xHEGVX, xHEGVX</pre>	$x \in [s d]$ $x \in [c z]$
r2. Dense eigensolvers	<pre>{ xSYEVR, xSYEV, xSYEVD, xSYEVX xHEEVR, xHEEV, xHEEVD, xHEEVX</pre>	$x \in [s d]$ $x \in [c z]$
r3. Tridiagonal eigensolvers	xSTEMR, xSTEQR, xSTEDC, xSTEVX	$x \in [s d]$
• Matrix size n1. $n \in [10,, 200]$ n2. $n \in [200,, 1500]$ n3. $n \in [1500,, N]$	$N = \begin{cases} 10000 & \text{for r3} \\ 7000 & \text{for r2} \\ 4000 & \text{for r1} \end{cases}$	
 Matrix types 		

- t1. Random entries, uniform distribution (0,1)
- t2. Random entries, std normal distribution
- t3. Random eigenvalues, uniform (0,1)
- t4. Random eigenvalues, std normal distr.
- t5. Uniform eigenvalue distribution*
- t6. Geometric eigenvalue distribution*
- t7. n-1 eigvalues are ϵ , one is 1
- t8. one eigvalue is ϵ , n-1 are 1

- t9. Matrix 1-2-1*
- t10. Wilkinson-type matrix*
- t11. Clement-type matrix*
- t12. Legendre-type matrix*
- t13. Laguerre-type matrix*
- t14. Hermite-type matrix*
- *: See page 119 of http://arxiv.org/pdf/1401.4950v1.pdf

Eigensolver study

Consider the eigensolvers in the group [r?] for datatype [?].

r1: $Az = \lambda Bz$ r2: $Ay = \lambda y$ r3: $Tx = \lambda x$

- Q1. Compare the eigensolvers in terms of accuracy, performance and scalability, over a set¹ of matrices of type [t?] and different size [n?]. Document and report.
- Q2. For each solver, give one or more indicative breakdowns of the computation time in terms of the calls directly within the routine. Repeat for 1 and ≥ 8 cores. Identify the bottleneck(s).
- **QB.** Bonus (difficult): Assess the rate at which the flops of the tridiagonal solvers are performed. Compare with the TPP.
- **Q3.** Groups r1 and r2: Optimize the blocksize NB of the reduction to tridiagonal form. Repeat with 1 and ≥ 8 cores.
- Q4. Group r1: Relate the accuracy of each generalized solver to that of the corresponding dense and tridiagonal ones.
- Q5. Everybody: You are given a sequence of at least 50 random symmetric tridiagonal matrices (type t1) of fixed size². The solver of choice is xSTEDC. What is the best way to make use of the available cores? Motivate your reasoning.

¹At least 6 matrices per matrix type. ²Fix a size $\bar{n} \in [n?]$.

How to build a matrix M with a given eigenspectrum?³

- The idea is to use similarity transformations, as they preserve the eigenspectrum. If Q is a dense orthogonal matrix, then $A := Q * \Lambda * Q^H$ is dense and $\lambda(A) = \lambda(\Lambda)$.
- For a dense eigenproblem, first construct Λ and then compute A.

In order to create a dense orthogonal matrix Q, compute the QR factorization of a random matrix M.

• For a generalized eigenproblem, first build a dense problem, then construct an SPD matrix B, compute its Cholesky factor L, and $A := L * A * L^H$.

Accuracy for a generalized eigenproblem

• The eigenvectors X of the generalized eigenproblem $Ax = \lambda Bx$ are B-orthogonal: $X^H * B * X = I$.

³See attached file.

- Execute on one of the compute nodes of RZ's cluster: https://doc.itc.ruth-aachen.de/display/CC/Hardware+of+the+RWTH+Compute+Cluster
- Possible approaches are manual instrumentation, ELAPS, profilers and tools such as gprof and VTune, and any combination of them.
- Submit all your work, code, scripts, makefiles.
- For Q1, submit the tridiagonal representation of the matrices used.
- Prepare a report (pdf,org,html). Describe mathematically your computations.
- Archive the files: your_name.tgz Or your_name.zip
- Submission by email to pauldj@aices.rwth-aachen.de
- Email's subject: "HPMC-15 Project your_last_name"
- Deadline: On midnight, the evening before your oral exam.