
High-Performance Matrix Computations
Final Projects

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

Deadline: Midnight, the evening before your oral exam
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Routines

r1. Generalized eigensolvers
{

xSYGV, xSYGVD, xSYGVX x ∈ [s|d]
xHEGV, xHEGVD, xHEGVX x ∈ [c|z]

r2. Dense eigensolvers
{

xSYEVR, xSYEV, xSYEVD, xSYEVX x ∈ [s|d]
xHEEVR, xHEEV, xHEEVD, xHEEVX x ∈ [c|z]

r3. Tridiagonal eigensolvers xSTEMR, xSTEQR, xSTEDC, xSTEVX x ∈ [s|d]

Matrix size

n1. n ∈ [10, . . . , 200]

n2. n ∈ [200, . . . , 1500]

n3. n ∈ [1500, . . . , N ]

N =


10000 for r3
7000 for r2
4000 for r1

Matrix types

t1. Random entries, uniform distribution (0,1)
t2. Random entries, std normal distribution
t3. Random eigenvalues, uniform (0,1)
t4. Random eigenvalues, std normal distr.
t5. Uniform eigenvalue distribution∗

t6. Geometric eigenvalue distribution∗

t7. n− 1 eigvalues are ε, one is 1
t8. one eigvalue is ε, n− 1 are 1

t9. Matrix 1-2-1∗

t10. Wilkinson-type matrix∗

t11. Clement-type matrix∗

t12. Legendre-type matrix∗

t13. Laguerre-type matrix∗

t14. Hermite-type matrix∗

∗ : See page 119 of http://arxiv.org/pdf/1401.4950v1.pdf
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Eigensolver study

Consider the eigensolvers in the group [r?] for datatype [?].
r1: Az = λBz r2: Ay = λy r3: Tx = λx

Q1. Compare the eigensolvers in terms of accuracy, performance and scalability,
over a set1 of matrices of type [t?] and different size [n?]. Document and report.

Q2. For each solver, give one or more indicative breakdowns of the computation time in terms of
the calls directly within the routine. Repeat for 1 and ≥ 8 cores. Identify the bottleneck(s).

QB. Bonus (difficult): Assess the rate at which the flops of the tridiagonal solvers are performed.
Compare with the TPP.

Q3. Groups r1 and r2: Optimize the blocksize NB of the reduction to tridiagonal form.
Repeat with 1 and ≥ 8 cores.

Q4. Group r1: Relate the accuracy of each generalized solver to that of the corresponding dense
and tridiagonal ones.

Q5. Everybody: You are given a sequence of at least 50 random symmetric tridiagonal matrices
(type t1) of fixed size2. The solver of choice is xSTEDC.
What is the best way to make use of the available cores? Motivate your reasoning.

1At least 6 matrices per matrix type.
2Fix a size n̄ ∈ [n?].
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How to build a matrix M with a given eigenspectrum?3

The idea is to use similarity transformations, as they preserve the eigenspectrum.
If Q is a dense orthogonal matrix, then
A := Q ∗ Λ ∗QH is dense and λ(A) = λ(Λ).

For a dense eigenproblem, first construct Λ and then compute A.

In order to create a dense orthogonal matrix Q,
compute the QR factorization of a random matrix M .

For a generalized eigenproblem, first build a dense problem,
then construct an SPD matrix B, compute its Cholesky factor L,
and A := L ∗A ∗ LH .

Accuracy for a generalized eigenproblem

The eigenvectors X of the generalized eigenproblem Ax = λBx are B-orthogonal:
XH ∗B ∗X = I.

3See attached file.
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Rules and Submission

Execute on one of the compute nodes of RZ’s cluster:
https://doc.itc.rwth-aachen.de/display/CC/Hardware+of+the+RWTH+Compute+Cluster

Possible approaches are manual instrumentation, ELAPS, profilers and tools such as gprof
and VTune, and any combination of them.

Submit all your work, code, scripts, makefiles.

For Q1, submit the tridiagonal representation of the matrices used.

Prepare a report (pdf,org,html). Describe mathematically your computations.

Archive the files: your_name.tgz or your_name.zip

Submission by email to pauldj@aices.rwth-aachen.de

Email’s subject: “HPMC-15 Project your_last_name”

Deadline: On midnight, the evening before your oral exam.
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