Introduction to Scientific Computing Languages

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

RWTH AT

Forschungsgemeinschaft

clels

1/1

Languages for Scientific Computing

What is a programming language?

2/1

Languages for Scientific Computing

What is a programming language?

@ A set of instructions and constructs for
communicating with a computing device.

@ Instructions and constructs are combined and
organized into programs.

2/1

Languages for Scientific Computing

What is a programming language?

@ A set of instructions and constructs for
communicating with a computing device.

@ Instructions and constructs are combined and
organized into programs.

@ Examples: Basic, Pascal, Cobol, Fortran, C, C++, Lisp,
Prolog, SQL, Java, Perl, Python, Ruby, ...

2/1

Languages for Scientific Computing

What is a programming language?

@ A set of instructions and constructs for
communicating with a computing device.

@ Instructions and constructs are combined and
organized into programs.

@ Examples: Basic, Pascal, Cobol, Fortran, C, C++, Lisp,
Prolog, SQL, Java, Perl, Python, Ruby, ...

“Computing device”?

2/1

Languages for Scientific Computing

What is a programming language?

@ A set of instructions and constructs for
communicating with a computing device.

@ Instructions and constructs are combined and
organized into programs.

@ Examples: Basic, Pascal, Cobol, Fortran, C, C++, Lisp,
Prolog, SQL, Java, Perl, Python, Ruby, ...

“Computing device”?

sequential processors, embedded processors, ...,
parallel computers, supercomputers.

2/1

Processor's Components

From Computer Daskacp Encyciopedis
Reprodused wEh pemission
2001 resl Copermion

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Reqgisters, ...

3/1

Processor's Components

@ Languages let the users specify
how to use these components.

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Reqgisters, ...

3/1

Processor's Components

@ Languages let the users specify
how to use these components.

@ Only Assembly operates on
components: Low-level language.

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Reqgisters, ...

3/1

Processor's Components

From Computer Daskacp Encyciopedis
Reprodused wEh pemission
2001 resl Copermion

@ Languages let the users specify
how to use these components.

@ Only Assembly operates on
components: Low-level language.

@ High-level languages only specify
the computations to be performed.

@ A compiler and/or an interpreter
translates high-level programs into
a sequence of component actions.

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Reqgisters, ...

3/1

Assembly

4/1

Assembly

@ Very fast!

@ Not the lowest level. Not directly executable.

4/1

Assembly

@ Very fast!
@ Not the lowest level. Not directly executable.

@ Assembler translates assembly into machine code. Executable.

4/1

Assembly

@ Very fast!
@ Not the lowest level. Not directly executable.
@ Assembler translates assembly into machine code. Executable.

@ Assembly consists of mnemonic codes.
Machine code: only numbers.

@ Translation Assembly <> machine code is almost 1-1.
This is not true for high-level languages.

@ Assembler is hardware-specific. Control over chips’ components.

4/1

Assembly

.text
.globl poly

poly:

Loop:

Exit:

li.s
mtcl

mul.s
mul
addu
1l.s
add.s
addi

$£0, 0.0
$6 $f12

$£14, $£12, $£0
$2, $5, 4

$3, $2, $4
$£16, 0($3)
$f0, $f16, $f14
$5, $5, -1

$2, $5, $0
$2, $0, Loop

$31

H

H OB H HF O H

H# #*

y = 0, running & return result
x, move to float register

compute (x * y)

$5 = i, compute address of al[il
a + (ix4)

al[il, load coefficient

y = ali]l + (x*y)

decrease i

$2 =1 if i <0
goto Loop if i >= 0

5/1

Assembly

.text
.globl poly
poly:
li.s $£0, 0.0 # y = 0, running & return result
mtcl $6 $£12 # x, move to float register
Loop:
mul.s $£14, $£f12, $£0 # compute (x * y)
mul $2, $5, 4 # $5 = i, compute address of alil
addu $3, $2, $4 # a + (ix4)
1l.s $£16, 0($3) # al[i], load coefficient
add.s $£0, $f16, $£14 # y = ali] + (x*xy)
addi $5, $5, -1 # decrease i
slt $2, $5, $0 #9$2=1i1if i <0
beq $2, $0, Loop # goto Loop if i >= 0
Exit:
j $31

Evaluate the value of a polynomial using Horner’s algorithm.
£ = al0] + al1] * x + a[2] * x”2 + ... + a[n] * x™n

5/1

What is the oldest programming language still in use?

6/1

What is the oldest programming language still in use?

FORTRAN 1957, 1977, 1995, . ..

6/1

What is the oldest programming language still in use?

FORTRAN 1957, 1977, 1995, . ..

late '50s | Fortran(’57)..., Algol(’58), Lisp(’59)

'60s Cobol(’61), Basic('64)
'70s Pascal(’70), C(’72), Prolog('72), SQL(’78), Matlab('78)
‘80s C++(’83), Perl('87), Mathematica(’87)

'90s Python('91), Ruby('93), Java('95)

6/1

What is the oldest programming language still in use?

FORTRAN 1957, 1977, 1995, . ..

late '50s | Fortran(’57)..., Algol('58), Lisp('59)

'60s Cobol(’61), Basic('64)

'70s Pascal(’70), C('72), Prolog('72), SQL(’78), Matlab(’78)
‘80s C++(’83), Perl('87), Mathematica(’87)

'90s Python('91), Ruby(’93), Java(’95)

Oldest programming language?

6/1

What is the oldest programming language still in use?

FORTRAN 1957, 1977, 1995, . ..

late '50s | Fortran(’57)..., Algol('58), Lisp('59)

'60s Cobol(’61), Basic('64)

'70s Pascal(’70), C('72), Prolog('72), SQL(’78), Matlab(’78)
‘80s C++(’83), Perl('87), Mathematica(’87)

'90s Python('91), Ruby(’93), Java(’95)

Oldest programming language?
Plankalkil (1940s). For the Z1 computer, by Konrad Zuse.

6/1

History of Programming Languages

1954 1960 1965 1970

W E B = = = 2 -

7/1

http://hpac.rwth-aachen.de/teaching/lsc-12/prog_lang_poster.pdf

Compiled vs. Interpreted Languages

Compiled Languages

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

@ The program can then be executed separately, at a later time.
@ The executable is portable only to compatible platforms. The program?

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

@ The program can then be executed separately, at a later time.

@ The executable is portable only to compatible platforms. The program?
@ Speed!

@ Examples: C, Fortran.

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

@ The program can then be executed separately, at a later time.

@ The executable is portable only to compatible platforms. The program?
@ Speed!

@ Examples: C, Fortran.

Interpreted Languages

@ The instructions are parsed and executed in real time by an interpreter.

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

@ The program can then be executed separately, at a later time.

@ The executable is portable only to compatible platforms. The program?
@ Speed!

@ Examples: C, Fortran.

Interpreted Languages

@ The instructions are parsed and executed in real time by an interpreter.
@ No generated code. The interpreter is always needed.

8/1

Compiled vs. Interpreted Languages

Compiled Languages

@ The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.

@ The program can then be executed separately, at a later time.

@ The executable is portable only to compatible platforms. The program?
@ Speed!

@ Examples: C, Fortran.

Interpreted Languages

@ The instructions are parsed and executed in real time by an interpreter.
@ No generated code. The interpreter is always needed.

o Ease!

@ Examples: Matlab, Mathematica, Python.

8/1

Computer Programs

9/1

Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

@ Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

9/1

Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

@ Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

@ [[P]] is the semantics of the program P.
[]] = Semantics operator. Operational, Denotational, Axiomatic.
Out of the scope of this class.

@ Generally, we want P to compute f(i), with i € I.
f is a mathematical function, a procedure, a simulation, . . .

9/1

Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

@ Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

@ [[P]] is the semantics of the program P.
[]] = Semantics operator. Operational, Denotational, Axiomatic.
Out of the scope of this class.

@ Generally, we want P to compute f(i), with i € I.
f is a mathematical function, a procedure, a simulation, . . .

@ The question is: “does P implement the function that we have in mind?”

9/1

Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

@ Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

@ [[P]] is the semantics of the program P.
[]] = Semantics operator. Operational, Denotational, Axiomatic.
Out of the scope of this class.

@ Generally, we want P to compute f(i), with i € I.
f is a mathematical function, a procedure, a simulation, . . .

@ The question is: “does P implement the function that we have in mind?”

@ A program P is correct if Vi € I,P(i) = f(i).

9/1

Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

@ Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

@ [[P]] is the semantics of the program P.
[]] = Semantics operator. Operational, Denotational, Axiomatic.
Out of the scope of this class.

@ Generally, we want P to compute f(i), with i € I.
f is a mathematical function, a procedure, a simulation, . . .

@ The question is: “does P implement the function that we have in mind?”
@ A program P is correct if Vi € I,P(i) = f(i).

@ Surprisingly... when working with floating point numbers,
correctness is not enough!

9/1

subroutine = function = procedure =

subprogram (= module = method)

10/1

subroutine = function = procedure =

subprogram (= module = method)

@ Portions of the code that perform one specific task and
that are reusable.

10/1

subroutine = function = procedure =

subprogram (= module = method)

@ Portions of the code that perform one specific task and
that are reusable.

@ They are very much like mathematical functions:

result := routine_name(arguments)

10/1

subroutine = function = procedure =

subprogram (= module = method)

@ Portions of the code that perform one specific task and
that are reusable.

@ They are very much like mathematical functions:
result := routine_name(arguments)

@ BUT! One difference: side-effects.
Many languages allow subroutines to have side-effects.
The routine alters the state of the system even after its
completion.

10/1

Side Effects

{(res =...)A State }

res =

routine_name(args);

{ (res =...)A State’ }

o If (State = State’) — no side-effects.

@ Most languages allow constructs with side-effects.

@ Print statements; iterative constructs; ...

11/1

More on Subroutines
Subroutines are good!

@ Improve readability: code is shorter.

12/1

More on Subroutines
Subroutines are good!

@ Improve readability: code is shorter.

@ Enable modularity: programs are built as a composition
of functionalities. Avoid reinventing the wheel.

12/1

More on Subroutines
Subroutines are good!

@ Improve readability: code is shorter.

@ Enable modularity: programs are built as a composition
of functionalities. Avoid reinventing the wheel.

@ Optimization: They solve a smaller and well-defined
task. Better suited to be optimized.

12/1

More on Subroutines
Subroutines are good!

@ Improve readability: code is shorter.

@ Enable modularity: programs are built as a composition
of functionalities. Avoid reinventing the wheel.

@ Optimization: They solve a smaller and well-defined
task. Better suited to be optimized.

@ Structure:

routine_name(args)
//
body
//

return(value)

args, body and value are optional, depending on the
language.

12/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
o Yes! — Recursion.

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
@ No — lteration.

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
@ No — lteration. Fortran '77.

@ What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_1?

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
o No — lteration. Fortran '77.
@ What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_17?
@ Mutual recursion.

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
o No — lteration. Fortran '77.
@ What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_17?
@ Mutual recursion. Fortran '77: No.

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
o No — lteration. Fortran '77.
@ What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_17?
@ Mutual recursion. Fortran '77: No.

@ Are recursive languages more expressive than iterative
ones? Can they compute more or fewer functions?

13/1

Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
!/ //
body_1 body_2
// //

return(value2) return(value_2)

@ Can body_1 include a call to routine_name_1?
e Yes! — Recursion. Recursion Limit? Termination?
o No — lteration. Fortran '77.
@ What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_17?
@ Mutual recursion. Fortran '77: No.

@ Are recursive languages more expressive than iterative
ones? Can they compute more or fewer functions?

Recursion = iteration!

13/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.

@ ltis reusable, i.e., it provides a certain functionality.

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.

@ A collection of germane subroutines yields a library.

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK
LINPACK

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK
LINPACK
EISPACK

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK PETSc
LINPACK
EISPACK

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK PETSc MPI
LINPACK
EISPACK

14/1

From Subroutines to Libraries

@ A subroutine solves a specific problem / it computes a specific operation.
@ ltis reusable, i.e., it provides a certain functionality.
@ A collection of germane subroutines yields a library.

@ Alibrary is not a program per se.
It provides building blocks to be used when writing a program.

@ BLAS LAPACK PETSc MPI Pthreads ...
LINPACK
EISPACK

@ Libraries can be written in one or more languages.
Can they be accessed from a program written in a different language?

14/1

Imperative vs. Functional Languages

Imperative Languages
@ Concept of Variables and State.
@ Program is an ordered sequence of commands and assignments.
@ Commands modify state. Side-effects.
@ C, C++, Fortran, Java, Python, Matlab, . ..

15/1

Imperative vs. Functional Languages

Imperative Languages
@ Concept of Variables and State.
@ Program is an ordered sequence of commands and assignments.
@ Commands modify state. Side-effects.
@ C, C++, Fortran, Java, Python, Matlab, . ..

4

Functional Languages

@ No variables or assignments.

@ Program consists of Functions and Recursion.

@ No side-effects!

@ Subset of Declarative Languages.

@ Lisp, APL, ADA, Haskell, Mathematica, Clojure, F# ...

A\

15/1

Program A;

Var I:Integer;
K:Char;
R:Real;

Procedure B;
Var K:Real;
L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;
Begin
// Body #2
End;
Begin
// Body #3
End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;
Var K:Real;
L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;
Begin
// Body #2
End;
Begin
// Body #3
End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;
Var K:Real; I:Integer, R:Real, K:Real, L:Integer,

L:Integer; M:Real

Procedure C;
Var M:Real;
Begin
// Body #1
End;
Begin
// Body #2
End;
Begin
// Body #3
End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;
Var K:Real; I:Integer, R:Real, K:Real, L:Integer,

L:Integer; M:Real

Procedure C; @ Where is K used as Real?
Var M:Real;

Begin
// Body #1
End;
Begin
// Body #2
End;
Begin
// Body #3
End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;
Var K:Real; I:Integer, R:Real, K:Real, L:Integer,

L:Integer; M:Real

Procedure C; @ Where is X used as Real?
Var M:Real;
Begin Body #1 and Body #2
// Body #1
End;
Begin
// Body #2
End;
Begin
// Body #3
End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;

Var K:Real; I:Integer, R:Real, K:Real, L:Integer,
L:Integer; M:Real
PEOEEELEE L @ Where is K used as Real?
Var M:Real;
Begin Body #1 and Body #2
// Body #1
ol @ Can L be referenced in Body
Begin #27? Body #37?
// Body #2
End;
Begin
// Body #3

End;

16/1

Program A;
Var I:Integer;
K:Char;
R:Real; @ Which variables (of which
type) are defined in Body #17?

Procedure B;

Var K: Real; I:Integer, R:Real, K:Real, L:Integer,
L:Integer; M:Real
pselle IR @ Where is K used as Real?
Var M:Real;
Begin Body #1 and Body #2
// Body #1
ol @ Can L be referenced in Body
Begin #2? Body #3?
// Body #2
End; Body #2:yes;Body #3: no
Begin
// Body #3

End;

16/1

Scope (2)

program main

var y: Real;
procedure compute ()
var x : Integer;

procedure initialize()
var y: Integer;

var z: Real;

begin {initialize}

// Body #1

end {initialize}

procedure transform()
var x: Real;
begin {transform}
// Body #2
end {transform}
begin {compute}
// Body #3
end {compute}
begin {main}
// Main body
end {main}

17/1

Scope (2)

program main

var y: Real;
procedure compute ()
var x : Integer;

procedure initialize()
var y: Integer;

var z: Real; @ What is the scope of the
begin {initialize} variable x declared in the
// Body #1

procedure compute?
end {initialize}

procedure transform()
var x: Real;
begin {transform}
// Body #2
end {transform}
begin {compute}
// Body #3
end {compute}
begin {main}
// Main body
end {main}

17/1

Scope (2)

program main

var y: Real;
procedure compute ()
var x : Integer;

procedure initialize()
var y: Integer;

var z: Real; @ What is the scope of the
begin {initialize} variable x declared in the
// Body #1

procedure compute?
end {initialize}

Body #1 and Body #3
procedure transform()
var x: Real;
begin {transform}

// Body #2
end {transform}
begin {compute}
// Body #3
end {compute}
begin {main}
// Main body
end {main}

17/1

Scope (2)

program main

var y: Real;
procedure compute ()
var x : Integer;

procedure initialize()
var y: Integer;

var z: Real; @ What is the scope of the
begin {initialize} variable x declared in the
// Body #1 procedure compute?

end {initialize}
Body #1 and Body #3
procedure transform()

var x: Real; @ What is the environment for

Brergilal ORI the procedure transform?
// Body #2

end {transform}
begin {compute}
// Body #3
end {compute}
begin {main}
// Main body
end {main}

17/1

Scope (2)

program main

var y: Real;
procedure compute ()
var x : Integer;

procedure initialize()
var y: Integer;

var z: Real; @ What is the scope of the
begin {initialize} variable x declared in the
// Body #1 procedure compute?

end {initialize}
Body #1 and Body #3
procedure transform()

var x: Real; @ What is the environment for

Brergilal ORI the procedure transform?
// Body #2

end {transform} y:Real and x:Real
begin {compute}
// Body #3
end {compute}
begin {main}
// Main body
end {main}

17/1

