1. Floating point arithmetic

Consider $\beta = 2, t = 3, e_{\min} = -2, e_{\max} = 2$

- What are the normalized floating point numbers?
- What are the subnormal numbers?
- How is 7/10 represented? What is the relative error?
- How is 7/10 represented in $\beta = 2, t = 4, e_{\min} = -2, e_{\max} = 2$? What is the relative error?
- How is 7/10 represented in $\beta = 2, t = 3, e_{\min} = -2, e_{\max} = 3$? What is the relative error?
- What is the first integer that cannot be represented?
- ...

2. Matlab

2.1)

Write a recursive Matlab function H that takes as input an integer $n \ge 0$, and returns as output the matrix H_n defined on the right. while and for loops are not allowed.

	$\lceil n \rceil$	n	n	•••	n	n
$H_n =$	n	n-1	n-1		n-1	n-1
	n	n-1	n-2		n-2	n-2
	:	:	:	·		÷
	n	n-1	n-2		1	1
	$\lfloor n$	n-1	n-2		1	0

2.2)									
M =									
	1	5	9	13	17				
	2	6	10	14	18				
	3	7	11	15	19				
	4	8	12	16	20				
Μ(????) = M ((????)					
М =									
	1	5	9	13	17				
	20	16	12	8	4				
	3	7	11	15	19				
	18	14	10	6	2				

What is the assignment that transforms the matrix ${\tt M}$ as shown?

2.3)

The following expressions are evaluated in Matlab. What is the result?

- a) [1 point] sqrt(sqrt(sqrt(((((2^2)^2)^2)^2))))
- b) [1 point] sqrt(sqrt(sqrt(2^(2^(2^(2^2)))))))
- c) [1 point] [pi,[pi,pi],pi]*[1 -1 1 -1]'