1. Floating point arithmetic

Consider $\beta=2, t=3, e_{\text {min }}=-2, e_{\max }=2$

- What are the normalized floating point numbers?
- What are the subnormal numbers?
- How is $7 / 10$ represented? What is the relative error?
- How is $7 / 10$ represented in $\beta=2, t=4, e_{\min }=-2, e_{\max }=2$? What is the relative error?
- How is $7 / 10$ represented in $\beta=2, t=3, e_{\min }=-2, e_{\max }=3$? What is the relative error?
- What is the first integer that cannot be represented?
- ...

2. Matlab

2.1)

Write a recursive Matlab function H that takes as input an integer $\mathrm{n} \geq 0$, and returns as output the matrix H_{n} defined on the right. while and for loops are not allowed.

$$
H_{n}=\left[\begin{array}{cccccc}
n & n & n & \ldots & n & n \\
n & n-1 & n-1 & \ldots & n-1 & n-1 \\
n & n-1 & n-2 & \ldots & n-2 & n-2 \\
\vdots & \vdots & \vdots & \ddots & & \vdots \\
n & n-1 & n-2 & & 1 & 1 \\
n & n-1 & n-2 & \ldots & 1 & 0
\end{array}\right]
$$

```
2.2)
M =
\begin{tabular}{llrll}
1 & 5 & 9 & 13 & 17 \\
2 & 6 & 10 & 14 & 18 \\
3 & 7 & 11 & 15 & 19 \\
4 & 8 & 12 & 16 & 20
\end{tabular}
M( ???? ) = M ( ???? )
M =
\begin{tabular}{rrrrr}
1 & 5 & 9 & 13 & 17 \\
20 & 16 & 12 & 8 & 4 \\
3 & 7 & 11 & 15 & 19 \\
18 & 14 & 10 & 6 & 2
\end{tabular}
```

What is the assignment that transforms the matrix M as shown?

2.3)

The following expressions are evaluated in Matlab. What is the result?
a) $[1$ point $] \operatorname{sqrt}\left(\operatorname{sqrt}\left(\operatorname{sqrt}\left(\operatorname{sqrt}\left(\left(\left(\left(2^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2\right)^{\wedge} 2\right)\right)\right)\right)$
b) $[1$ point $]$ sqrt (sqrt (sqrt(sqrt(2^(2^(2^(2^2)))))))
c) [1 point] [pi,[pi,pi],pi]*[1 -1 1 1 -1],

