
Parallel Programming WS15 HOMEWORK #6 (Solutions)

MPI – Part 4

1. In this task we ask you to sketch another version of Homework 5, exercise 1 using one-sided
communication. Notice that we are asking for a sketch (algorithm) and not actual C code.
To solve this task, the following instructions are available:

• Y = fetch(var name, j, label);

fetch gets the content of variable var name, local to processor pj , and stores it onto the
local variable Y. label is a numeric label –local to pi– that uniquely identifies the data
transfer. The instruction is one-sided and asynchronous: pi executes the next instruction
in the program without waiting for fetch to complete; pj does not participate in the
data exchange.

• wait(label);

pi idles until the data transfer identified by label is completed.

• barrier();

pi idles until every processor issues a barrier().

Solution.

All processes Pi have room for two blocks of size n
2 × n

2 . We will assume two variables blk0

and blk1 point to those two blocks.

The algorithm (see below) proceeds as follows. Each process initializes its block of A and
stores it in blk0 (line 2). Before starting the computation, the processes must synchronize
(line 4) to make sure everyone initialized its data, so that subsequent data fetching from other
processes contains the expected values.

Next, each process gets the id of its partner (line 6), grabs the required data from its partner,
waits until the data has been completely transfered, and operates (lines 8 through 10). Notice
that they overwrite the block that was just transfered to avoid overwriting data that their
partners may have not read yet. op corresponds to + or − depending on the process id.

An explicit barrier (line 12) is then needed for two reasons:

(a) Make sure the partner for the next stage has already computed its block of B, and data
is ready to proceed with stage 2 and compute C.

(b) Make sure that when reading the partner’s block of B, we can already overwrite our
local blk0. When passing through the barrier, our partner in stage 1 has already read
and computed with the data in blk0.

The second stage proceeds analogously. The final barrier synchronizes every process to be
able to declare the job completed.

1

Algorithm 1 : Exercise 1. Computation of C with 4 processes.
1: # Initialize my blk0

2: blk0 = initialize(A, i)
3: # Sync to make sure everyone initialized

4: barrier()
5: # Get my partner’s id for the first stage

6: mypartner = (i % 2 == 0) ? i+1 : i-1
7: # Grab, wait and operate

8: blk1 = fetch(blk0, mypartner, label0)
9: wait(label0)

10: blk1 = blk1 op blk0
11: # Sync to make sure everyone completed stage 1

12: barrier()
13: # Get my partner’s id for the second stage

14: mypartner = (i / 2 == 0) ? i+2 : i-2
15: # Grab, wait and operate

16: blk0 = fetch(blk1, mypartner, label1)
17: wait(label1)
18: blk0 = blk0 op blk1
19: # Sync with everyone and we’re done

20: barrier()

2

