
Parallel Programming WS15 HOMEWORK #6

Submit by email to: fabregat@aices.rwth-aachen.de
Due by: Friday, December 4th, 5pm.

MPI – Part 4

1. In this task we ask you to sketch another version of Homework 5, exercise 1 using one-sided
communication. Notice that we are asking for a sketch (algorithm) and not actual C code.
To solve this task, the following instructions are available:

• Y = fetch(var name, j, label);

fetch gets the content of variable var name, local to processor pj , and stores it onto the
local variable Y. label is a numeric label –local to pi– that uniquely identifies the data
transfer. The instruction is one-sided and asynchronous: pi executes the next instruction
in the program without waiting for fetch to complete; pj does not participate in the
data exchange.

• wait(label);

pi idles until the data transfer identified by label is completed.

• barrier();

pi idles until every processor issues a barrier().

2. In this task you will parallelize a given sequential code that solves a steady-state heat conduc-
tion problem over a thin square plate. Concretely, the code simulates the diffusion of heat on
a plate to determine at which temperature it stabilizes. The initial temperature of the surface
is 50 degrees, and a constant temperature is applied at the boundaries. Specifically, the left,
top and right boundaries are kept constant at 100 degrees while the bottom boundary is kept
at 0 degrees.

The code relies on the iterative computation of the Poisson equation ∆φ = f using finite
differences. The surface is discretized in a grid of n × n grid points. At each iteration, the
interior grid points1 φi,j are updated following the rule:

φ(i, j) =
φ(i− 1, j) + φ(i, j − 1) + φ(i+ 1, j) + φ(i, j + 1)

4
.

The sequential program provided represents the discretized grid as a matrix of size n × n.
The matrix is initialized according to the conditions described above, and then the program
performs an indefinite number of timesteps (iterations). At each iteration, the program
estimates the new temperature at timestep t from that of the previous (old) iteration t − 1.
When the difference between every pair (φoldi,j , φnewi,j ) from two consecutive iterations is
below a given threshold, the program has found the steady state and it terminates.

1Remember that the boundaries are kept constant at a temperature of either 0 or 100 degrees.

1



You have to parallelize the given code using the MPI library. Your program will partition the
matrices φold and φnew by blocks of rows, where each of p processes will work on n

p contiguous
rows. Figure 1 illustrates an example with n = 11 and p = 3. In the example, the blue
pattern (known as stencil) represents the update rule for each point in the grid: to compute
the new value of each point, we need the old value of the corresponding four neighbors. Notice
that the stencil is not applied to the gray points, since their values are constant. Also, when
applying the stencil to the red points, each process needs data “belonging” to its neighbor(s).

In your program, each process will initialize its own portion of the grid. Then, at each
iteration, the processes will compute the new values of their subgrid, performing the necessary
communication. When the computation converges, the processes will terminate and the
program will finish.

We ask you to generate two versions of the parallel program using:

1) Blocking communication.

2) Non-blocking communication, where communication and computation overlap.

P = 2

P = 1

P = 0

Communication

Communication

Figure 1: Data partitioning and communication for a matrix of size 11 × 11 and 3 processes.

2


