Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 16/17

RWTHAACHEN
UNIVERSITY

Collective Communication: Lower Bounds

Cost of communication: «+ nf

Cost of computation: ~ #ops
o = “latency”, “startup” B8 = 1/“bandwidth”
n = size of the message ~ = cost of 1 flop

p = # of processes

Paolo Bientinesi | MPI

Collective Communication: Lower Bounds

Cost of communication: «+ nf

Cost of computation: ~ #ops
o = “latency”, “startup” B8 = 1/“bandwidth”
n = size of the message ~ = cost of 1 flop

p = # of processes

Primitive Latency Bandwidth Computation

Broadcast [logs(p) np =
Reduce [logs(p)] np pTTlnv

Paolo Bientinesi | MPI

Collective Communication: Lower Bounds

Cost of communication: «+ nf

Cost of computation: ~ #ops
o = “latency”, “startup” B8 = 1/“bandwidth”
n = size of the message ~ = cost of 1 flop

p = # of processes

Primitive Latency Bandwidth Computation
Broadcast [logs(p) np =
Reduce [logs(p)] np ijlnv
Scatter [logs(p)]a %nﬁ =
Gather [logy(p)] I%nﬂ =

Paolo Bientinesi | MPI

Collective Communication: Lower Bounds

Cost of communication: «+ nf

Cost of computation: ~ #ops
o = “latency”, “startup” B8 = 1/“bandwidth”
n = size of the message ~ = cost of 1 flop

p = # of processes

Primitive Latency Bandwidth Computation
Broadcast [logs(p) np =
Reduce [logs(p)] np ijlnv
Scatter [logs(p)]a %nﬁ =
Gather [logy(p)] I%nﬂ =
Allgather [logs(p) e p%lnﬂ =
Reduce-Scatter [log,(p)]a %nﬁ pTTln’y

Paolo Bientinesi | MPI

Implementation of Bcast and Reduce

e IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

e How to map the idea to the specific topology?

Paolo Bientinesi | MPI

Implementation of Bcast and Reduce

e IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

e How to map the idea to the specific topology?
e ring: linear doubling

e (2d) mesh: 1 dimension first, then another, then another ...
e hypercube: obvious, same as mesh

e Cost?

Paolo Bientinesi | MPI

Implementation of Bcast and Reduce

e IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

e How to map the idea to the specific topology?

e ring: linear doubling
e (2d) mesh: 1 dimension first, then another, then another ...
e hypercube: obvious, same as mesh

e Cost?
o # steps: log, p

e cost(step): a+np
e total time: log,(p)a + log,(p)nf lower bound: log, (p)a + nfS

e note: cost(p?) = 2 cost(p)!

Paolo Bientinesi | MPI

Implementation of Bcast and Reduce

e IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

e How to map the idea to the specific topology?

e ring: linear doubling
e (2d) mesh: 1 dimension first, then another, then another ...
e hypercube: obvious, same as mesh

e Cost?
o # steps: log, p

e cost(step): a+np

e total time: log,(p)a + log,(p)nf lower bound: log, (p)a + nfS
* note: cost(p?) = 2 cost(p)!
e Reduce

BCast in reverse; cost(computation) ?

Paolo Bientinesi | MPI

Implementation of Scatter (and Gather)

e IDEA: MST again
At step 4, only %-th of the message is sent

e # steps:

e cost(step;):

e total time:

log, p
a+ 573
log, (p)

n
Z a+ gﬁ = logy(p)a +

i=1

p—1

np

e lower bound: log,(p)a + %nﬂ optimal!

Paolo Bientinesi

MPI

A different implementation of Bcast

e IDEA: Scatter + cyclic algorithm (e.g., pass to the right)

e Cost?

Paolo Bientinesi | MPI

Implementation of Allgather (and Reduce-scatter)

¢ IDEA: “Recursive-doubling” (bidirectional exchange)
Recursive allgather of half data + exchange data between disjoint nodes.

Node; | Node; | Node: | Nodes
v[0]
v[1]
v[2]
v[3]
3
Node, | Node; | Node, | Nodes e # steps: log, p
v[0] v[0] ® total time:
v[1] v[1] 2l 2] logs (p) 1
v v na_ i
Vi3l | v 2 oty = lon et T e
3
Nodeo, | Node: | Node, | Nodes
v[0] v[0] v[0] v[0]
v[1] v[1] v[1] v[1]
v[2] v[2] v[2] v[2]
V[3] V[3] Vv[3] V[3]

Paolo Bientinesi

MPI

Another implementation of Allgather

e IDEA: Cyclic algorithm

Nodeo | Node; | Nodes | Nodes
v[0]
v[1]
v[2]
v[3]
4
Nodeo | Node: | Nodes | Nodes e # steps: p—1
v[0] v[0] e total time:
v[1] v[1] p—1 .
v[2] v[2] N (0 p—1
Vi3] Vi3] ;a—l- pﬂ (p—1Da+ » nB
4
Nodeo | Node; | Nodes | Nodes
v[0] v[0] v[0]
V(1] v[1] v[1]
v[2] v[2] v[2]
v[3] v[3] v[3]

Paolo Bientinesi

MPI

