
Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 16/17

Collective Communication: Lower Bounds
Cost of communication: α+ nβ

Cost of computation: γ #ops

α = “latency”, “startup” β = 1/“bandwidth”
n = size of the message γ = cost of 1 flop
p = # of processes

Primitive Latency Bandwidth Computation
Broadcast dlog2(p)eα nβ -
Reduce dlog2(p)eα nβ p−1

p nγ

Scatter dlog2(p)eα
p−1
p nβ -

Gather dlog2(p)eα
p−1
p nβ -

Allgather dlog2(p)eα
p−1
p nβ -

Reduce-Scatter dlog2(p)eα
p−1
p nβ p−1

p nγ

Paolo Bientinesi | MPI 2

Collective Communication: Lower Bounds
Cost of communication: α+ nβ

Cost of computation: γ #ops

α = “latency”, “startup” β = 1/“bandwidth”
n = size of the message γ = cost of 1 flop
p = # of processes

Primitive Latency Bandwidth Computation
Broadcast dlog2(p)eα nβ -
Reduce dlog2(p)eα nβ p−1

p nγ

Scatter dlog2(p)eα
p−1
p nβ -

Gather dlog2(p)eα
p−1
p nβ -

Allgather dlog2(p)eα
p−1
p nβ -

Reduce-Scatter dlog2(p)eα
p−1
p nβ p−1

p nγ

Paolo Bientinesi | MPI 2

Collective Communication: Lower Bounds
Cost of communication: α+ nβ

Cost of computation: γ #ops

α = “latency”, “startup” β = 1/“bandwidth”
n = size of the message γ = cost of 1 flop
p = # of processes

Primitive Latency Bandwidth Computation
Broadcast dlog2(p)eα nβ -
Reduce dlog2(p)eα nβ p−1

p nγ

Scatter dlog2(p)eα
p−1
p nβ -

Gather dlog2(p)eα
p−1
p nβ -

Allgather dlog2(p)eα
p−1
p nβ -

Reduce-Scatter dlog2(p)eα
p−1
p nβ p−1

p nγ

Paolo Bientinesi | MPI 2

Collective Communication: Lower Bounds
Cost of communication: α+ nβ

Cost of computation: γ #ops

α = “latency”, “startup” β = 1/“bandwidth”
n = size of the message γ = cost of 1 flop
p = # of processes

Primitive Latency Bandwidth Computation
Broadcast dlog2(p)eα nβ -
Reduce dlog2(p)eα nβ p−1

p nγ

Scatter dlog2(p)eα
p−1
p nβ -

Gather dlog2(p)eα
p−1
p nβ -

Allgather dlog2(p)eα
p−1
p nβ -

Reduce-Scatter dlog2(p)eα
p−1
p nβ p−1

p nγ

Paolo Bientinesi | MPI 2

Implementation of Bcast and Reduce

IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

How to map the idea to the specific topology?

ring: linear doubling
(2d) mesh: 1 dimension first, then another, then another ...
hypercube: obvious, same as mesh

Cost?
steps: log2 p

cost(step): α+ nβ

total time: log2(p)α+ log2(p)nβ lower bound: log2(p)α+ nβ

note: cost(p2) = 2 cost(p)!

Reduce
BCast in reverse; cost(computation) ?

Paolo Bientinesi | MPI 3

Implementation of Bcast and Reduce

IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

How to map the idea to the specific topology?
ring: linear doubling
(2d) mesh: 1 dimension first, then another, then another ...
hypercube: obvious, same as mesh

Cost?

steps: log2 p

cost(step): α+ nβ

total time: log2(p)α+ log2(p)nβ lower bound: log2(p)α+ nβ

note: cost(p2) = 2 cost(p)!

Reduce
BCast in reverse; cost(computation) ?

Paolo Bientinesi | MPI 3

Implementation of Bcast and Reduce

IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

How to map the idea to the specific topology?
ring: linear doubling
(2d) mesh: 1 dimension first, then another, then another ...
hypercube: obvious, same as mesh

Cost?
steps: log2 p

cost(step): α+ nβ

total time: log2(p)α+ log2(p)nβ lower bound: log2(p)α+ nβ

note: cost(p2) = 2 cost(p)!

Reduce
BCast in reverse; cost(computation) ?

Paolo Bientinesi | MPI 3

Implementation of Bcast and Reduce

IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

How to map the idea to the specific topology?
ring: linear doubling
(2d) mesh: 1 dimension first, then another, then another ...
hypercube: obvious, same as mesh

Cost?
steps: log2 p

cost(step): α+ nβ

total time: log2(p)α+ log2(p)nβ lower bound: log2(p)α+ nβ

note: cost(p2) = 2 cost(p)!

Reduce
BCast in reverse; cost(computation) ?

Paolo Bientinesi | MPI 3

Implementation of Scatter (and Gather)

IDEA: MST again
At step i, only 1

2i -th of the message is sent

steps: log2 p

cost(stepi): α+ n
2i β

total time:
log2(p)∑
i=1

α+
n

2i
β = log2(p)α+

p− 1

p
nβ

lower bound: log2(p)α+ p−1
p nβ optimal!

Paolo Bientinesi | MPI 4

A different implementation of Bcast

IDEA: Scatter + cyclic algorithm (e.g., pass to the right)

Cost?

Paolo Bientinesi | MPI 5

Implementation of Allgather (and Reduce-scatter)
IDEA: “Recursive-doubling” (bidirectional exchange)
Recursive allgather of half data + exchange data between disjoint nodes.

Node0 Node1 Node2 Node3

v[0]
v[1]

v[2]
v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0]
v[1] v[1]

v[2] v[2]
v[3] v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0] v[0] v[0]
v[1] v[1] v[1] v[1]
v[2] v[2] v[2] v[2]
v[3] v[3] v[3] v[3]

steps: log2 p

total time:
log2(p)∑
i=1

α+
n

2i
β = log2(p)α+

p− 1

p
nβ

Paolo Bientinesi | MPI 6

Another implementation of Allgather

IDEA: Cyclic algorithm

Node0 Node1 Node2 Node3

v[0]
v[1]

v[2]
v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0]
v[1] v[1]

v[2] v[2]
v[3] v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0] v[0]
v[1] v[1] v[1]

v[2] v[2] v[2]
v[3] v[3] v[3]

steps: p− 1

total time:
p−1∑
i=1

α+
n

p
β = (p− 1)α+

p− 1

p
nβ

Paolo Bientinesi | MPI 7

