
 1

Parallel Programming
OpenMP – Pt. 1

William McDoniel and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
mcdoniel@aices.rwth-aachen.de

WS 17/18

mailto:mcdoniel@aices.rwth-aachen.de

 2

Why Parallelism?

We program in parallel because of our architecture:

● One big core would be great!

● A multi-core CPU with shared memory (like in a laptop) needs
to be told how to split up the work.

● Many CPUs with distributed memory (like in a cluster) need to
split up the work and talk to each other.

 3

OpenMP and MPI

The two major standards for parallelism are OpenMP and MPI.

OpenMP (Open Multi-Processing)
● Higher-level interface based on:

● compiler directives
● library routines
● runtime

● Shared memory

MPI (Message Passing Interface)
● Relatively low-level programming model

● API provides communication primitives for languages
● Data distribution and communication must be done manually
● Primitives are easy to use, but designing parallel programs is hard

● Distributed memory

 4

Concurrency

Time-sharing or Multitasking systems

● CPU executes multiple processes by switching among them

● Switching occurs often enough for users to interact with each
program while running

● In multi-core / multi-computer, processes may run in parallel

 5

Process

● A process is an instance of a program in execution

● States of a process
● New: the process is being created
● Ready: waiting to be assigned to a processor
● Running: instructions are being executed
● Waiting: waiting for some event to occur (e.g., I/O completion)
● Terminated: has finished execution

 6

Thread

● Basic unit of CPU utilization

● Shares memory with other threads within the same process

● Usually a process will use 1 or 2 threads per core

 7

Processes vs Threads

● Processes:
● Independent
● Have separate address spaces
● Creation, context-switching, etc. is more expensive
● Communicate via system-provided inter-process

communication mechanisms

● Threads:
● Exist within processes
● Share address spaces
● Lighter (faster creation, context switching, etc.)
● Communicate via shared variables

 8

 9

 10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

