William McDoniel and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
mcdoniel@aices.rwth-aachen.de

WS 17/18

mailto:mcdoniel@aices.rwth-aachen.de

Why Parallelism?

We program in parallel because of our architecture:
® One big core would be great!

e A multi-core CPU with shared memory (like in a laptop) needs
to be told how to split up the work.

e Many CPUs with distributed memory (like in a cluster) need to
split up the work and talk to each other.

OpenMP and MPI

The two major standards for parallelism are OpenMP and MPI.

OpenMP (Open Multi-Processing)
e Higher-level interface based on:
e compiler directives
e library routines
® runtime
e Shared memory

MPI (Message Passing Interface)
e Relatively low-level programming model
e API provides communication primitives for languages
e Data distribution and communication must be done manually
® Primitives are easy to use, but designing parallel programs is hard
e Distributed memory

Concurrency

Time-sharing or Multitasking systems
e CPU executes multiple processes by switching among them

e Switching occurs often enough for users to interact with each
program while running

* In multi-core / multi-computer, processes may run in parallel

P3 P3
P2 P2
P1 P1

Time

Process

® A process is an instance of a program in execution

e States of a process
e New: the process is being created
e Ready: waiting to be assigned to a processor
e Running: instructions are being executed
e Waiting: waiting for some event to occur (e.g., I/O completion)
e Terminated: has finished execution

admitted

preempted terminated

running

dispatched

wait satisfied wait for resource

waiting

Thread

e Basic unit of CPU utilization

e Shares memory with other threads within the same process

e Usually a process will use 1 or 2 threads per core

Processes vs Threads

® Processes:
* Independent
® Have separate address spaces
e Creation, context-switching, etc. iIs more expensive
e Communicate via system-provided inter-process
communication mechanisms

® Threads:
e EXxist within processes
e Share address spaces
e Lighter (faster creation, context switching, etc.)
e Communicate via shared variables

» API for shared-memory parallelism
Steered by the OpenMP ARB (industry, research)
» Supported by compilers on most platforms

- Not a programming language. Mainly annotations to the
(sequential) code.

» OpenMP API consists of:

» Compiler directives
» Library routines
 Environment variables

» Simple to use, high-level, incremental parallelism
» Performance oriented
» Data (and task) parallelism

» User gives a high-level specification of the portions of code
to be executed in parallel

int main(...)
{
#pragma omp parallel
{
<region executed by multiple threads>
¥

pragma (pragmatic): tell the compiler to use some compiler-dependent fea-
ture/extension.

User may provide additional information on how to
parallelize

o #pragma omp parallel num_threads(4)
omp_set_schedule(static | dynamic | ...);

OpenMP takes care of the low level details of creating
threads, execution, assigning work, ...

» Provides relatively easy variable scoping, synchronization
and primitives to avoid data races.

» Usage:
» #include "omp.h"
[gcclicc] —fopenmp <source.c> -o <executable.x>

10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

