
One-Sided Communication, MPI on Threads
Overlap of communication
Old MPI topics – New Answers? 

Dr. Heinrich Bockhorst, Intel



© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Introduction

Some ideas and concepts have been around since the first definition of MPI. One sided 
communication is an elegant way of avoiding unnecessary synchronization. MPI and Threads or 
MPI on Threads may also help to accomplish this goal. 

Both concepts can be used to overlap computation and communication. The ultimate goal will be 
to hide the latency of communication. This will be the key to scalability necessary for Exascale
Computing. 

The picture on the poster shows 2 neighborhood exchanges. The first with overlap and the second 
without. We come back to this later.

Thanks to: Jeff Hammond for providing material for One-Sided and MPI + Threads

Klaus-Dieter Oertel for valuable comments

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Agenda

• MPI History

• Overlap of communication and computation

• MPI on threads

• One sided communication

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI History: MPI-1 ( 1994)

• Standardized a bunch of existing messaging libraries.

• Developed when CPU much faster than network and before multicore.

• Send-Recv couple synchronization and data motion.  Collectives were synchronous.

• Send-Recv requires either copy from eager buffer or partial rendezvous (to setup RDMA) due to 
lack of complete information about transaction on either size.

• MPI communicators are amazing for hierarchy, topology, libraries, etc.

• Good match for a lot of numerical apps…

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Why people used MPI-1

• Parallel programmers were using Intel NX, IBM MPL, P4, PARMACS, PVM, TCGMSG, Thinking 
Machines CMMD, Zipcode, etc. already.

• Standard required! 

• Message passing a good match for:
• Dense linear algebra.

• Domain decomposition and boundary exchange.

• Numerical solvers.

• Monte Carlo.

• Good semantic match for inexpensive networks (via TCP/IP).

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI History: MPI-2 (1997)

• First awareness of threads.  Unfortunately, no one implemented THREAD_MULTIPLE efficiently 
until Blue Gene/Q.  As a result, most applications rely upon THREAD_FUNNELED and fork-join 
threading.

• Dynamic processes adopted in order to make PVM to disappear.  This was arguably the only 
useful purpose of this feature until people started to think about resilience.

• MPI-IO: parallel IO 

• One-sided communication forced into horrible semantic corner by the existence of one strange 
but unfortunately #1 system (EarthSim), which was not cache-coherent.

• Really dropped the ball on atomics.

21 years later, we still do not have good 
implementations of some of these features… 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI History: MPI-3 (2012)

• Nonblocking collectives!  Implementations must get better and reward users for avoiding 
synchronization.

• Thread-safe Probe (Mprobe) – the right way to do active-messages in MPI-3.

• Topology is a first-class object with distributed graph communicators and neighborhood 
collectives.

• One-sided (RMA) communication is fixed.  Supporting PGAS programming models like Global 
Arrays, UPC, and OpenSHMEM was an explicit goal.

• POSIX/SysV shared memory rolled into RMA.

• Better (non-collective) subcommunicator creation.

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Agenda

• MPI History

• Overlap of communication and computation

• MPI on threads

• One sided communication

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Overlap of ComPUTATION and Communciation

1. Initiate communication

2. Do unrelated computations. Communication should proceed in the background and provide 
data on the remote process. After the computation finishes the data is already in the right 
buffer and can be used. 

3. Use/Fetch data from communication

• This is also called Latency Hiding 
(Encyclopedia of Parallel computing https://doi.org/10.1007/978-0-387-09766-4_415):

Latency hiding improves machine utilization by enabling the execution of useful operations by a 
device while it is waiting for a communication operation or memory access to complete. 
Prefetching, context switching, and instruction-level parallelism are mechanisms for latency 
hiding.

https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://doi.org/10.1007/978-0-387-09766-4_415


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Overlap I/III

Implementation without overlap

Compute #1

Communicate: 
Isend
Irecv
Wait

Compute #2

Communication of updated 
values from Compute #1 needed 

in Compute #2 

Compute #1

Communicate: Isend
Irecv
Wait

Compute #2

Rank N

Rank N+1

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Overlap II/III 

Implementation with some overlap

Receive started before 
computation. Good if send 

processor is ahead! 

Compute #2Compute #1
Communicate:

Isend
Wait

Start 
Irecv

Compute #2Compute #1
Communicate:

Isend
Wait

Start 
Irecv

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Overlap III/III

• Implementation with full overlap

Communication overlaps with inner 
points!

Compute #1
without halo

Finish 
Comm.

Wait
Compute #2Start 

Irecv
Compute 

Halo
Start 
Isend

Compute #1
without halo

Finish 
Comm.

Wait
Compute #2Start 

Irecv
Compute 

Halo
Start 
Isend

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Single Iteration with and without Overlap

Imbalance causes 
MPI waiting time!

Overlap: Message 
starts before compute 
block and ends after it NO Overlap: Message 

starts and is directly 
received 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Programming for OVERLAP

red();    // update red points

exchange(); // exchange halo points

black();      // update black points

exchange(); // exchange halo points

red_halo();   // update red halo

exchange_send_red_halo(); 

red-();   // update red point wo halo

exchange_wait_red_halo(); 

// halo points received

black_halo();

exchange_send_black_halo();

black-();  // update black wo halo  

exchange_wait_black_halo();

Original Overlap

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Does MPI support Overlap? 

• MPI message may only start after MPI_Wait is called on the receiver side  no overlap is 
possible! 

• True overlap maybe only possible with additional helper thread doing all the spinning and 
polling

• MPICH environment variable MPICH_ASYNC_PROGRESS=1 will start a helper thread (Intel: 
I_MPI_ASYNC_PROGESS)

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

I_MPI_ASYNC_PROGRESS=1

• Additional thread is spawned from the thread doing MPI calls. Usually the OpenMP master 
thread

• Observation: Helper Thread does interfere with OpenMP threads. OpenMP master still has some 
MPI overhead (synchronization with Helper Thread)

• Helper Threads can be pinned by help of variable: I_MPI_ASYNC_PROGRESS_PIN

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Helper Thread Unpinned

Helper Thread: 
poisson.x

Is by chance located on 
the same core as OMP 

Thead # 11 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Pinned helper threads; 2 MPI ranks per node

Helper Threads: 
poisson.x

Both helper 
Threads are located 

on core 0 of each 
socket

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

ISSUES and FURTHER OPTIMIZATION 

• Overlap version does not provide the expected benefit

• Progress engine of MPI does pause during computation on the receiver rank

• ASYNC Progress does use an additional “Helper Thread” for keeping the progress engine busy

• Helper Thread interferes with other computation and communication threads 

• Explicit pinning of Helper Thread is possible but needs complicated affinity settings

• Benchmarking shows now real benefit

• Idea: reserve cores for MPI communication thread and additional Helper Threads

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Agenda

• MPI History

• Overlap of communication and computation

• MPI on threads

• One sided communication

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI + ThREADS intro

• MPI and threads is defined since MPI-2

• We have different levels of threading support: 

MPI_THREAD_SINGLE: only single thread will execute

MPI_THREAD_FUNNELED: may be multithreaded but only main calls MPI

MPI_THREAD_SERIALIZED: may be multithreaded and MPI can be called on different threads. 
Only one thread is allowed to call MPI at a time (serialization)

MPI_THREAD_MULTIPLE: multiple threads can call MPI without restrictions

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

2
2

• MPI_Init_thread(.., FUNNELED);
• #omp parallel
• {
• for (..) { Compute(..); }
• #omp master
• { MPI_Bar(..); }
• }
• MPI_Foo(..);

• MPI_Init_thread(.., SERIALIZED);
• #omp parallel
• {
• for (..) {
• Compute(..);
• #omp critical
• { MPI_Bar(..); }
• }
• }
• MPI_Foo(..);

MPI-2 and Threads

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

• MPI_Init_thread(.., MULTIPLE);
• #omp parallel
• {
• Compute(..);
• MPI_Bar(..);
• }
• MPI_Foo(..);

MPI-2 and Threads II

• int MPI_Bar(..)
• {
• if (MULTIPLE) Lock(Mutex);
• rc = MPID_Bar(..);
• if (MULTIPLE) Unlock(Mutex);
• return rc;
• }

int MPI_Bar(..)

{

return MPID_Bar(..);

/* ^ fine-grain locking

inside of this call… */

}

This is the ONLY method that works 
reliably with more than one 

threading model!

Common 
Implementation

Optimized

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Timeline diagram: Light green arrow - rank, Dotted arrow - thread, Blue - computation, Red - MPI communication, Connectors - parallel region

Funneled Model

MPI_Init_thread(MPI_THREAD_SINGLE)
The best MPI can do now

True Multi-threaded Model (MPI-MT)

MPI_Init_thread(MPI_THREAD_MULTIPLE)
Why is MPI so slow ???

Communication thread(s) model

MPI_Init_thread(MPI_THREAD_SINGLE) or
MPI_Init_thread(MPI_THREAD_MULTIPLE)

MPI + Threads Programming Models

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI in Multi-threads - What's Wrong

• Any thread may send/receive a message to a peer

• Single global receive queue has to be supported
• Global, or fine grained lock imposed

• Overheads are more than just serialization

• MPI objects are global
• Object management overhead incurred

MPI 3.1 Standard: "threads are not separately addressable: a rank in a send or 
receive call identifies a process, not a thread"

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI on multiple threads – how to RESOLVE

• Message from different threads may be distinguished by providing a tag that encodes the thread 
id

• Message from different threads may also be given different communicators

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® MPI 2019: Enhanced support for hybrid programming models
• New MPI_THREAD_MULTIPLE optimization

• Available with release_mt library version: I_MPI_THREAD_SPLIT=1

• The optimization allows to achieve the following:

• Improve aggregated communication bandwidth & message rate

• Communicate as soon as data is ready, not waiting for the slowest thread

• Avoid implied bulk synchronization threading barriers, overhead on parallel sections start/stop

• Full stack is available with Intel® Omni-Path Fabric Software 10.5 and OFI 1.5.0

Improved flexibility for fine grain collective operations tuning

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI-MT: How to Get Performance

• Reduced/narrowed MPI_THREAD_MULTIPLE model introduced: MPI_THREAD_SPLIT (or 
thread-split model)

• Non-standard, available in Intel MPI with I_MPI_THREAD_SPLIT=1

• Threads are addressed with a dedicated communicator - now separate per-thread queues 
possible

• Matching the same message from concurrent threads not allowed

• Explicit/implicit thread addressing sub-models apply (next slide)

• MPI request objects cannot be accessed from >1 thread at the same time - now can be in 
TLS

• No multi-threads access penalty

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Programming with the Thread-split Model

Implicit sub-model

#define n 2 

MPI_Comm split_comm[n]; 

int main() { 

int i, j, provided; 

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE,

&provided); 

for (i = 0; i < n; i++) 

MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);                                                    

#pragma omp parallel for private(j) num_threads(n) 

for (i = 0; i < n; i++)

MPI_Allreduce(&i, &j, 1, MPI_INT, MPI_SUM,

split_comm[i]); 

MPI_Finalize(); 

}

export OMP_NUM_THREADS=2

export I_MPI_THREAD_SPLIT=1

Explicit sub-model

#define n 2

int thread_id[n];

MPI_Comm split_comm[n];

pthread_t thread[n];

void *worker(void *arg) {

int i = *((int*)arg), j;

MPI_Allreduce(&i, &j, 1, MPI_INT, MPI_SUM, split_comm[i]);

}

int main() {

...

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE,

&provided);

MPI_Info_create(&info);

for (i = 0; i < n; i++) {

MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);

...

MPI_Comm_set_info(split_comm[i], info);

pthread_create(&thread[i], NULL, worker,

(void*) &thread_id[i]);

}

for (i = 0; i < n; i++) pthread_join(thread[i], NULL);

...

}

export I_MPI_THREAD_MAX=2

export I_MPI_THREAD_SPLIT=1

Refer to the Intel® MPI Library Developer Guide for the full set of examples

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® MPI 2019: Enhanced support Provided by all Libraries

The I_MPI_THREAD_SPLIT feature allow to get minimal amount of serialization 

HW

OFI

MPI

Threads

App Process

thread0

api

sep0

cx0

thread1

api

sep1

cx1

thread2

api

sep2

cx2

thread3

api

sep3

cx3

- OFI scalable endpoint

- Independent HW context

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® MPI 2019 Technical preview: hybrid programming model impact Example
Grid QCD Performance Benchmark
(courtesy of Prof. Peter Boyle)

1 The benchmark software uses the Grid QCD library 
https://github.com/paboyle/Grid and the peformance benchmark 
benchmarks/Benchmark_comms.cc is used.
The tests are run on 16 nodes system is divided into a four 
dimensional Cartesian communicator with 24 ranks, and
one rank per node. These dimensions are called {x, y, z, t}. Each 
node is given a four dimensional volume L4, and
the global volume is G4 = (2L)4. The code mimics the 
communications pattern for a halo exchange PDE arising in
quantum chromodynamics.
Each node sends packets of size the surface L3 to neighbors in each 
of +x, -x, +y, -y, +z, -z, +t, and -t directions,
while concurrently receiving the neighbors data.

Hardware:
- Intel® Xeon® Platinum 8170 processor
- Intel® Omni-Path Host Fabric Interface, dual-rail
Software:
- Intel® MPI Library 2017 Update 4
- Intel® MPI Library 2019 Technology Preview
- Libfabric 1.5 (OFI)
- IFS 10.5
- Grid benchmark1
- huge memory pages

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

49152 393216 1327104 3145728 6144000 10616832 16859136 25165824

B
an

d
w

id
th

, M
B

/s

BytesIntel MPI 2017 ST

Intel MPI 2017 MT

Intel MPI 2019 Technology Preview ST

Intel MPI 2019 Technology Preview MT

https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://github.com/paboyle/Grid


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Multi-EP Software Recipe

3
2

• Requires components from:
• Intel® Omni-Path Fabric Suite Fabric Manager (IFS) version 10.5 or newer

• OpenFabrics Interfaces (OFI) Libfabric version 1.5 or newer

• Intel® MPI Library 2019 (or 2019 Technical Preview)

• Example execution, using 16 nodes, 1 MPI rank per node with 4 endpoints:

• source /opt/intel/impi/2019.0.070/bin64/mpivars.sh release_mt -ofi_internal

• export I_MPI_THREAD_SPLIT=1

• export I_MPI_THREAD_RUNTIME=openmp

• export PSM2_MULTI_EP=1

• mpirun -np 16 -ppn 1 -hostfile 16nodes -genv I_MPI_FABRICS shm:ofi -genv
OMP_NUM_THREADS=4 ./myapplication

PSM - Performance Scaled Messaging

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI + threads advanced  (Communication thread Model) 

#pagma omp parallel 
num_threads(2)

#pagma omp parallel
nested compute 

region 

Master Thread

Communication Thread

Computation Thread(s)

#pagma omp barrier
// for necessary sync. 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Environment Variables for Nested OPENMP

• OMP_NESTED=true   # without this the nested region is serialized

• KMP_HOT_TEAMS_MAX_LEVEL=2 # maximum nested level used. Keeps threads of nested 
(Intel) # regions ready for next region  

• KMP_HOT_TEAMS_MODE                    # = 0 : extra threads are freed and put into pool (default)
(Intel) # = 1 : extra threads kept in team, for faster reuse

• OMP_NUM_THREADS=2,MAXTH-1     # MAXTH=(#cpus/#mpi_ranks)

• Setting these variables is necessary to get any performance. Hot Teams will ensure that the same 
threads will run on nested parallel regions of compute threads

• The two level OMP_NUM_THREADS was the missing part to make it work!

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI on threads Benchmarking  ( simple 2D Poisson solver)

KNL NODES of JURECA 
Booster

KNL 7250F with OPA

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI on OPENMP tasks - Plan for NEAR FUTURE

• OpenMP/TBB tasks are getting more interest because of more opportunities for dynamic, 
unstructured workloads

• Tasks offer dependencies for minimizing synchronization instead of only barriers

• Affinity with HW resources is hard to achieve

• IDEA: Run  MPI task(s) that synchronizes with compute tasks via dependencies

• Flow Graph Analyzer is a tool with experimental support of OMP tasks 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

SWIFT CODE - University of DURHAM

• Astrophysics code. Competition to Gadget

• (Smoothed Particle Hydrodynamics) SPH with Inter-dependent fine-grained Tasking: 
http://swift.dur.ac.uk/

•
Task Library can be used for other problems like Molecular Dynamics (tried by TU Munich)

• MPI is used on send and receive Tasks. Issue was the too large number of tags used. 2019 
version shows much lower MPI usage times.

https://software.intel.com/en-us/articles/optimization-notice#opt-en
http://swift.dur.ac.uk/


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Agenda

• MPI History

• Overlap of communication and computation

• MPI on threads

• One sided communication

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

ONE-Sided Communication InTRO

• MPI One-Sided Communications were introduced already with the MPI2 standard. There was no 
great adoption of the new routines because syntax and missing hardware support were 
preventing well performing implementations.

• The great advantage of One-Sided Communication is to avoid synchronization. A process can put 
data into the memory of another process without an explicit receive call. In MPI-2 a lot of bulk 
collective synchronization is necessary (MPI_Win_fence)

• MPI-3 allows more fine grained synchronization between pairs of processors  

• The conditions have changed now with the MPI3 standard and more appropriate hardware (Cray 
DMAPP,  Intel Omni-Path)

• Book: Using Advanced MPI, Chapter 3+4

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI2: One-Sided Programming 

Typical pattern for MPI_Get usage:

MPI_Win_Create(buff, size, …, win) 

MPI_Win_Fence(0, win)    // collective operation on all PE using win

MPI_Get(&buff2, size1, ..,from_PE, …, win)

// computation….

// more non overlapping MPI_Get calls

MPI_Win_Fence(0,win) // collective operation on all PE using win

 High synchronization cost, not scalable 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

One-SiDED Programming - Picture

Remote Access Memory (RMA) windows 

Local Memory 

win2

win1

Rank 0 Rank 1

MPI_Put

MPI_Get

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Disadvantage of MPI-2 OnE-SIDED Communication

• Collective calls to MPI_Win_fence are necessary to separate RMA operations from local loads 
and stores

• The target process is actively involved because it has to call MPI_Win_fence: 
active target synchronization

• This cumbersome syntax was chosen to ensure that One-Sided Communication could be 
implemented on a wide range of HW with or without Cache Coherence.

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI -3 : One-SIDED Communication

• One of the main targets was to relax the memory model of MPI-2 One-Sided Communications

• Passive target synchronization in MPI-3 does not need an explicit call on the target processor

• An communication access epoch is started by a MPI_Win_lock call and ended by a 
MPI_Win_Unlock call . These calls can be used to access remote memory on a specific target 
processor.  MPI_Win_lock_all gives access to all remote processes of a memory window

• The name “lock” may be confusing because It does not behave like a shared memory lock we 
know from threading. The lock/unlock is more like a start/end of RMA operation for the specified 
window. 

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI-3 programming Example – Synchronization EPOCHS

MPI_Win w;

/* construct window */

MPI_Win_lock_all(MPI_MODE_NOCHECK,w); /* “PGAS mode” */

{

…

MPI_Put(..,pe,w); /* all RMA communications are nonblocking */

MPI_Win_flush_local(pe,w); /* local completion */

MPI_Win_flush (pe,w);  /* remote completion = global visibility */

…

}

MPI_Win_unlock_all(w);

MPI_Win_free(w);

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI-3 programming : Request Based 

• The request based versions MPI_Rput and MPI_Rget have a MPI_Request as additional argument.

• Programming MPI_Requests is well known from MPI_Isend, MPI_Irecv, MPI_Wait,…

• The additional advantage is that we can use MPI_Test etc to determine the state of the 
communication procedure

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI-3 request based coding Sketch

MPI_Request request;

MPI_Win_allocate(size, …,comm ,&buf, &win); // collective win. alloc.

MPI_Win_lock_all(0,win);             // access win on all pe of comm

MPI_Rget(&data, …, target_pe, .., win, &request) 

//Compute unrelated to data to be overlapped

MPI_Wait(&request, MPI_STATUS_IGNORE);  // wait on rget to be finished  

compute(&data,…);                       // use the data  

MPI_Win_unlock_all(win);

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

MPI_RGET/MPI_RPUT advantage

• Multi-Buffering can be used to overlap communication and computation. Each buffer will be 
associated with a request. Buffer can be read and reused after request is finished by MPI_Wait

• MPI_Test can be used to check the status of an request

• MPI_Waitall/MPI_Waitany can be used to finish all requests or find a finished request and start a 
new MPI_Rget/MPI_Rput using the “free” request

• Existing logic from programs with MPI_Isend, MPI_Irecv,  MPI_Wait may be used and improved 
because only MPI_Rget + MPI_Wait or MPI_Rput + MPI_Wait are necessary!  

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

CP2K by Alfio Lazzaro, ETH Zürich I/II

https://arxiv.org/pdf/1705.10218.pdf

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

CP2K by Alfio Lazzaro, ETH Zürich II/II

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Presentation and PROJECT Links About ONE-SIDED

• Florian Wende HLRN ZIB: 
https://www.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/ws_mpi3_onesided.pdf

• Jeff Hammond, Intel: ARMCI-MPI is a completely rewritten version of ARMCI based on MPI-3 RMA: 
https://github.com/jeffhammond/armci-mpi.  The paper 
http://www.mcs.anl.gov/publication/supporting-global-arrays-pgas-model-using-mpi-one-sided-communication describes 
ARMCI-MPI using MPI-2 RMA.  This won't be particularly helpful since the major result of the paper is that we fixed MPI-3 RMA to
make libraries like Global Arrays (and DDI) work better

• Jeff Hammond, Intel: OSHMPI is an implementation of OpenSHMEM written in MPI-3 RMA: 
https://github.com/jeffhammond/oshmpi.  
https://github.com/jeffhammond/oshmpi/blob/master/docs/iwosh-paper.pdf?raw=true is a paper 
about OSHMPI that describes MPI-3 RMA and how it maps to SHMEM, in case you have any familiarity 
with SHMEM

• William Gropp: lectures on One-Sided: 
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture34.pdf and 
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture35.pdf

https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://www.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/ws_mpi3_onesided.pdf
https://github.com/jeffhammond/armci-mpi
http://www.mcs.anl.gov/publication/supporting-global-arrays-pgas-model-using-mpi-one-sided-communication
https://github.com/jeffhammond/oshmpi
https://github.com/jeffhammond/oshmpi/blob/master/docs/iwosh-paper.pdf?raw=true
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture34.pdf
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture35.pdf


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Optimization work on threaded MPI

• P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur. 2010. Fine-Grained Multithreading 
Support for Hybrid Threaded MPI Programming. Int. J. High Perform. Comput. Appl. 24 (Feb. 
2010), 49–57. 

• D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski, and R. Thakur. 
2010. Minimizing MPI Resource Contention in Multithreaded Multicore Environments. In 
Proceedings of the 2010 IEEE International Conference on Cluster Computing (CLUSTER ’10). 
IEEE Computer Society, Washington, DC, USA, 1–8. 

• G. Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and R. Thakur. 2010. 
Enabling Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. In 
Proceedings of the 17th European MPI Users’ Group Meeting Conference on Recent Advances in 
the Message Passing Interface (EuroMPI’10). Springer-Verlag, Berlin, Heidelberg, 11–20. 

• A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. 2015. MPI+Threads: runtime contention and 
remedies. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of 
Parallel Programming. ACM, 239–248. 

• K. Vaidyanathan, D. Kalamkar, K. Pamnany, J. Hammond, P. Balaji, D. Das, J. Park, and B. Joo.  
SC15. Improving concurrency and asynchrony in multithreaded MPI applications using software 
offloading. http://dx.doi.org/10.1145/2807591.2807602

https://software.intel.com/en-us/articles/optimization-notice#opt-en


© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and 
brands may be claimed as the property of others. 
For more complete information about compiler optimizations, see our Optimization Notice.

Legal Disclaimer & Optimization Notice 

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain 
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more 
information regarding the specific instruction sets covered by this notice. 
Notice revision #20110804

52

• Performance results are based on testing as of 05.11.2018 and may not reflect all publicly available security updates. See configuration disclosure for details. 
No product can be absolutely secure. 

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those 
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with other products.  For more complete information visit www.intel.com/benchmarks.  

• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL 
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation 
or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks



