
Point to Point: Exercise 1

p processes participate in a computation; they are logically ordered as a ring.
Process Pi, (with i ∈ [0, . . . , p− 1]), owns a local data buffer vi containing n integers.
In order to make progress, Pi needs to compute

vnext
i := f(vnow

i−1) + f(vnow
i)− vnow

i+1.

The function f : Rn → Rn is expensive and does not overwrite its argument.
The buffers vnow

i and vnext
i are distinct.

Write a program that performs one step of the computation (from vnow
i to vnext

i), aiming to
minimize the execution time. Add short comments explaining the ideas.

Point to Point: Exercise 2

Three processes participate in a computation:
p0, p1, and p2 own the square matrices A, B, and C, respectively.
All matrices are of size n× n.
Each process has enough memory space to store 4 matrices.
The functions f and g are sequential and expensive; their execution takes much longer
than the time necessary to add two matrices; g is more expensive than f . The function
f overwrites its input; g doesn’t.
Process p0 has to compute X := f(A) +B + C.
Process p1 has to compute Y := A+ g(B)− C.
Process p2 has to compute Z := f(A) + g(C).
Write pseudocode for p0, p1, and p2, mimicking MPI’s constructs (avoid ambiguity). For
example, if clear, you can use Ssend(Buf, 2); in place of MPI_Ssend(Buf, size,
type, 2, tag, comm);

Minimize the execution time. Explain your decisions.

| 2

int f(double *M, int n);
int g(double *M, int n, double *Out);

int main(int argc, char *argv[]){
int i, me, nProcs, size;
double time;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &nProcs);

srand48((me+1) * (unsigned)time((time_t *)NULL));
size = // something; nothing to do here

// -- your pseudocode --

// initializations

MPI_Barrier(MPI_COMM_WORLD);
time = MPI_Wtime();

// -- your pseudocode --

// use a separate sheet

MPI_Barrier(MPI_COMM_WORLD);
time = MPI_Wtime() - time;

MPI_Finalize();
free(Sol);
return 0;

}

| 3

