»/

Just-in-time Compilation (JIT)

Seminar: Automation, Compilers, and CodeGeneration

Chair: High Perf Automatic Computing
N UNIVERSITY
DabeerKhan

.
Outline
Overview
Static Compilation
Virtual machines
Traditional Approaches
JIT
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages& Drawbacks
Applications
Exploring JIT &java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

Compiler and Interpreter

Basic conceptual view of both techniques, remember they are not mutually exclusive.

Source
program

Source
program Compiler

Interpreter
Input parameters

Platform
Output
A Performs actions described by high level program. Target Program
A Generate machine code andhen walk a parse tree for execution

OR
A Generateand executeintermediate software-defined instructions.
A Perform some conversionwork every time a statement or function is executed

Output

A Producemachine code directly executable by computethardware.
A Generates a stangalone machine codeprogram.
A Can makealmost all conversionsfrom source tothe machine levelat once.

Which one is better ?

A Compilation
A Interpretation
A Hybrid

nnnnnnnnnnn

Source
code

Platform

Compiler

Intermediate
Representation

Platform

Interpreter

e

——

Hybrid Compilation/Interpretation

—

J\

— Phase 1

— Phase 2

Translate from high level language to
machine code.

All bindings aredone at compile time.

Linking is done during the creation of an
executable

Linker resolvesthe referencedsymbols.

Robust, better security, before hand
optimization, reduced start-up cost

| Compatibility concerns, Lessopportunity
for performance improvement, dynamic
traits exploitation, infeasible speculative
optimization

Source
code

Static
library
object code

Binary Executable

Compiler

Assembler

Linker

/X/

/ Ahead of Time Compilation (AOT)

High level language
OR
Intermediate language

Native machine code /
System dependent binary

O0CAOFELI Ol O Al I PEI AOET T AAZAZAI OA
AGAAOOEIT T 86

- Trade offs:
Memory
Starting time

- Portability
- Optimizations

.
Outline
Overview
Static Compilation
Virtual machines
Traditional Approaches
I
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages& Drawbacks
Applications
Exploring JIT &java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

Defining JIT

O* A®-Ome (JIT) compilation , also known asdynamic translation
IS compilation done during execution of a programat run time rather
than prior O AGAAOOET 1 6

https://en.wikipedia.org/wiki/Just-in-time_compilation

JIT: A combination of approaches

JIT compiler represents a hybrid approach.
O3PAAA T £ Ai Il PETI AA AT AAo AT A O&I AGEAE
Combining two approaches brings pros and cons of both techniques.

AOT Combining
two

approaches
Interpretation yields

A Selectivelycompile the most frequently executing methods to native code
during execution.

A Conceptual view of JIT _
Intermediate AOT

code compilation

Dynamic
Compilation

Machine
code

Translate continuously.
Perform caching of compiled code.
Minimizes lag on future execution of samecodeduring a given run.

me

Overview
Static Compilation
Virtual machines
Traditional Approaches
JIT
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages & Drawbacks
Applications
Exploring JIT &java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

/_\ i
Conceptual Idea

Compiler

ObjectFile.obj

> 1001016A7

|1A9E001017 |

6. Display (2);

https://www.youtube.com/watch?v=8y0L9QT7U74

5. Display(A);
6. Display (z);

ObjectFile.obj

1BCO'AD676

11001016A7

https://www.youtube.com/watch?v=8y0L9QT7U74

https://www.youtube.com/watch?v=8y0L9QT7U74

LOADER |

01009F110101 COMPUTER vV

https://www.youtube.com/watch?v=8y0L9QT7U74
https://www.youtube.com/watch?v=8y0L9QT7U74

ﬁ : e
= Technical Steps

We can divide JIT into distinct phases mainly:
Machine code creation at runtime .
Machine code execution at runtime.

Machine codecreation

Intermediate code ‘ Machine code at runtime

This step is similar to what every compilerdoes with slight difference.
Create machine code at program run time.

Use building blocks for keeping code in memory for executionlater.
Easier to write

Machine codeexecution (involved roughly three main steps):
Allocate a readable, writable and executable chunk of memory on the heap.
Copy the machine code implementingintermediate code into this chunk.

Execute code from this chunk by casting it to a function pointer and calling through
it.

Example: (for details, please visitink)

// BAllocates RWX memory of given size and returns a pointer to it. On failure,

// prints out the error and returns HULL. long add4(long num) {
void* alloc executable memory(size t size) { return num + 4;
void* ptr = mmap(@, size, 1
PROT_READ | PROT WRITE | PROT_EXEC, 2 i

MAP PRIVATE | MAP_ANONYMOUS, -1, 8);
if (ptr == (woid*)-1) {
perror{"mmap"),
return MULL;

¥
return ptr;
} const size t SIZE = 1824; Z1
typedef long (*JittedFunc)({long);
void emit code into memory{unsigned char® m) { // Bllocates RWX memory directly.
unsigned char code[] = { void run_from rwx() {
Bx48, ©x89, exfs, J/ mov %rdi, %rax void* m = alloc_executable memory(SIZE);
Bx48, Bx83, BxcA, oxad, J/ add %4, ¥rax emit code into _memory(m);
Bxc3 /i oret
+s littedFunc func = m;
memcpy(m, code, sizeof(code)); :3 int result = func{2);
t printf("result = ¥d\n", result);

http://eli.thegreenplace.net/2013/11/05/how-to-jit-an-introduction

Advantages and Drawbacks

Faster execution. iﬁ

Easier handling oflate bound data types.

Enforce security guarantees.

Can be optimized to targeted CPU and operating system
Portable byte code.

Can use profile information to perform optimizations.
Can perform other many different runtime optimizations.

/

,l

Startup delay.
Limited AOT optimizations becauseof time.
Compiler should be packaged inside virtual machine.

Can not perform complex optimizations which are possible
with static compilation.

Maintenance and debugging can be a headache.
Security concerns

y

“Outlin

Overview
Static Compilation
Virtual machines
Traditional Approaches
JIT
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages& Drawbacks
Applications
Exploring JIT &java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

»

' Applications
Many different companies/organizations have adopted JIT in there tools, some of
renown are:

Oracle Java
Thedustin-4 EI A j *)4q AT I PEI AO EO A Al ibiilATO
that improves the performance of Java applications at run time

Microsoft .NET Framework

The JIT compiler is part of the Common Language Runtime (CLR). The CLR
manages the execution of all .NETapplications.

JITin web browsers

Trace Monkey is a trace based JIT compiler used by Mozilla Firefox browser to run
JavaScript programs

LLVM
intro

me

Overview
Static Compilation
Virtual machines
Traditional Approaches
JIT
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages& Drawbacks
Applications
Exploring JIT & java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

Compilation In java

Conceptual view of code compilation in java.

] Java compiler

A Java source code is compiled by java compiler
resulting in JVM readable java byte code.
JIT placed inside JVM
A JVM performs following two main steps: [<o
A Compiles byte codeat runtime into
A machine readable instructions

A Executecompiled machine readable code
Operating System (OS)

Hardware

E—— _—
Virtual Machine

Different kind of virtual machines provide different functions.

Some of the important goals of VM to consider:

Portability.
Bridge the gap between compilers andnterpreters.

A virtual machine need at least following three basic components:

Interpreter
Runtime Supporting System
Collection of libraries

Some of the major concerns: I
Efficiency
- Ol OEPI A 6-60 Al 1 AOOOAT AU EOOOAS
Compatibility with host for malware protection.

JVM comprises following main
features:

Runtime

Mainly handles class loading , byte code
verification and other required functions.

JIT

Profiling, compilation plans,
optimizations

Garbage Collection

Java Virtual Machine

Java Interpreter

Justin-Time
compiler

Runtime compilation

Operating System (OS)

/ JITin JVM

Improves the performance of Java programs by compilindoyte codeinto native machine
code at runtime.

JIT compiler is by default enabled, however it gets activatedwhen a Java method is
called.

Performs on runtime: Method code ‘ Machine code
\ J
|

JVM having the machine code does need to interpret it,
results in improving processor time and memory usage

JIT compilation threshold helps to take action.

JIT recompilation threshold helps to make optimization decisions.

/ ‘A

WL ¢ @duived@Profiling

Collect data during execution:
Executed functions
Executed paths
Branches
Parameter values

/

Collecting data at right time:
Early or late phase
Continue or intermittent way

Collecting data by:
Sampling
Program instrumentation
Using hardware performance measures

Use collected data for:
Optimizations

~ Runtime Optimizations bwaIT

During the compilation performed by JIT, it performs following
main optimization steps:

- Inlining

- Local optimizations

- Control flow optimizations

- Global optimizations

- Native code generation

Inlining

O 2 A b lafurctod call site with the body of the called £O01 AOET 1 6

A Treesof smaller methods are"inlined ", into the treesof their callers.

Before After
int addAll(int max) { int addAll(int max) {
int accum = 0; int accum = 0;
for (int 1 = 0; 1 < max; i++) { for (int 1 = 0; i < max; i++) {
accum = add(accum, i); \ accum = accum + i;
}
return accum; return accum;
} }

int add(int a, int b) { return a + b; }

https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Inline_expansion
http://www.slideshare.net/ZeroTurnaround/vladimir-ivanovjvmjitcompilationoverview-24613146
http://www.slideshare.net/ZeroTurnaround/vladimir-ivanovjvmjitcompilationoverview-24613146

/' AN
Cont..

Optimizations performed in this phase are:
Trivial Inlining
Inlining short, simple functions can save both time and space

Call graphinlining
Create a call graph and evaluate important parts by traversing.

Tail recursion elimination
Similar to tail -call elimination with added constraint i.e. calling itself.

Virtual call guard optimizations
Perform by devirtualization

What about ?

o

Local Optimizations

O) i pOoil 6A Oi Ai1 bl OOET 1

Mainly includes:

Local data flow analyses andptimizations
Information collection about the data flow values acros$asicblocks.

Compute data flow equations and optimize such as:
Ambiguous or duplicate definitions
Remove redundant expressions

Register usageptimization

3EI DIl EAEAAQdom$ O | £ * AOAT
VarargsCollectionFactoryMethod

yis

Al

Control flow optimizations

@nalyzethe flow of control inside a code section and rearrangeode paths to
improve the efficiencyo

/

Mainly includes:
Code reordering
Loop optimizations

Inversion

Reduction
Versioning and specialization

Switch analysis
Dead code elimination

~ Global optimizations

O0AOA&EI Oif T POEI EUAOEIT T O

Mainly includes:
Global data flow analyses andptimizations
Optimizing garbage collection and memory allocation
Partial redundancy elimination
Optimizing synchronizations

s ~

= Native Code Generatioﬁ

Performing optimization during native code generation depends upon the
underlying architecture, generally it performs:

Translation of method trees into machine code.
Perform minor optimizations as required.

.
Outline
Overview
Static Compilation
Virtual machines
Traditional Approaches
JIT
Defining JIT
JIT: A Combination of two traditional approaches
Working Mechanism
Conceptual Idea
Technical steps
Advantages& Drawbacks
Applications
Exploring JIT &java
Compilation in java
VM & JVM
JIT in JVM
Runtime optimizations by JIT
Startup Delay and Possible Optimizations
JavaHotSpot

Startup Delay by JIT

Time taken by JIT to load and compile the byte code cause delay in preliminary
ADAAOOEI 18 4EEO EI EOEAI AAIl AU EO EIT T x

For having better generated code, JIT performs more optimizations which also
increase startup delay.

Increased Optimizations () Better Code Generation

Increased Optimizations (Qf Startup delay

Increased startup delay can also be because of HOound operations

/ e —
HotSpot
@ombines interpretation, profiling, and dynamic AT | BPET AOET 1 o

Initially it runs as an interpreter and only compiles the "hot"code

Y)

Most frequently executed code
Performs profiling to identify frequently execute code sections.

Time is saved by not compiling the infrequent code.
Profiling data help to improve decision making for optimizations.
Apply adaptive optimization technology, includes:

A HotSpot Detection

A Method Inlining
A Dynamic Deoptimization

Cont..

HotSpot comeswith two compilers:

The client compiler
A Reduceapplication startup time.
A Reducememory footprint .
A Lesstime for compilation

The servercompiler
A Intended for long-running serverapplications.
A Maximize peakoperating speed
A Apply complex optimizations.

/ . o o
HotSpotOptimizations

HotSpot include number of complex and advancedoptimizations, some of them
are mentioned below:

Deepinlining :
Method inlining combined with global analysis and dynamicdeoptimization

Fastinstanceof/ checkcast
Accelerating the dynamic type tests

Rangecheck elimination:
Surety about the index bound to remove index bound check.

Loop unrolling:
Enablesfaster loop execution

Feedbackdirected optimizations :

