
Seminar: Automation, Compilers, and Code-Generation

Chair: High Performance and Automatic Computing

RWTH AACHEN UNIVERSITY

Safdar Dabeer Khan

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Compiler and Interpreter
Basic conceptual view of both techniques, remember they are not mutually exclusive.

Interpreter

Source
program

Compiler

Input parameters

Output

Source
program

Platform

Target Program

Output

ÅProduce machine code directly executable by computer hardware.
ÅGenerates a stand-alone machine code program.
ÅCan make almost all conversions from source to the machine level at once.

ÅPerforms actions described by high level program.
ÅGenerate machine code and then walk a parse tree for execution

OR
ÅGenerate and execute intermediate software-defined instructions.
ÅPerform some conversion work every time a statement or function is executed

Hybrid Compilation/Interpretation

Intermediate
Representation

Source
code

Platform

Compiler Phase 1

Platform

Interpreter
Phase 2

Which one is better ?

ÅCompilation
Å Interpretation
ÅHybrid

Static Compilation

Source
code

· Translate from high level language to
machine code.

· All bindings are done at compile time.

· Linking is done during the creation of an
executable.

· Linker resolves the referenced symbols.

· Robust, better security, before hand
optimization, reduced start-up cost

· Compatibility concerns, Less opportunity
for performance improvement, dynamic
traits exploitation, infeasible speculative
optimization

Static
library

object code

Binary Executable

Compiler

Assembler

Linker

Ahead of Time Compilation (AOT)

Ȱ0ÅÒÆÏÒÍÓ ÃÏÍÐÉÌÁÔÉÏÎ ÂÅÆÏÒÅ ÅØÅÃÕÔÉÏÎ ÒÁÔÈÅÒ ÔÈÁÎ ÄÕÒÉÎÇ
ÅØÅÃÕÔÉÏÎȢȱ

· Trade offs:

· Memory

· Starting time

· Portability

· Optimizations

Compiler
High level language

Intermediate language

OR

Native machine code /
System dependent binary

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Defining JIT

Ȱ*ÕÓÔ-In -Time (JIT) compilation , also known as dynamic translation ,
is compilation done during execution of a program at run time rather

than prior ÔÏ ÅØÅÃÕÔÉÏÎȱ [*]

https://en.wikipedia.org/wiki/Just-in-time_compilation

JIT: A combination of approaches
· JIT compiler represents a hybrid approach.

·Ȱ3ÐÅÅÄ ÏÆ ÃÏÍÐÉÌÅÄ ÃÏÄÅȱ ÁÎÄ Ȱ&ÌÅØÉÂÉÌÉÔÙ ÏÆ)ÎÔÅÒÐÒÅÔÁÔÉÏÎȱ

· Combining two approaches brings pros and cons of both techniques.

Å Selectively compile the most frequently executing methods to native code
during execution.

AOT

Interpretation

Combining
two

approaches
yields

JIT

Cont.
Å Conceptual view of JIT

· Translate continuously.

· Perform caching of compiled code.

· Minimizes lag on future execution of same code during a given run.

AOT
compilation

Intermediate
code

Byte
code

Dynamic
Compilation

Machine
code

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Conceptual Idea
· Compiler

[*]

https://www.youtube.com/watch?v=8y0L9QT7U74

Cont..
· Interpreter

[*]

https://www.youtube.com/watch?v=8y0L9QT7U74

Cont.
· JIT

[*]

https://www.youtube.com/watch?v=8y0L9QT7U74

Cont.
· JIT

[*]

[1]

https://www.youtube.com/watch?v=8y0L9QT7U74
https://www.youtube.com/watch?v=8y0L9QT7U74

Technical Steps

·We can divide JIT into distinct phases mainly:

· Machine code creation at runtime .

· Machine code execution at runtime.

·Machine code creation

· This step is similar to what every compiler does with slight difference.

· Create machine code at program run time.

· Use building blocks for keeping code in memory for execution later.

· Easier to write

Intermediate code Machine code at runtime

·Machine code execution (involved roughly three main steps):

· Allocate a readable, writable and executable chunk of memory on the heap.

· Copy the machine code implementing intermediate code into this chunk.

· Execute code from this chunk by casting it to a function pointer and calling through
it .

Å Example: (for details, please visit link)

1
 2

3

4

http://eli.thegreenplace.net/2013/11/05/how-to-jit-an-introduction

Advantages and Drawbacks

Å Faster execution.

Å Easier handling of late bound data types.

Å Enforce security guarantees.

Å Can be optimized to targeted CPU and operating system

Å Portable byte code.

Å Can use profile information to perform optimizations.

Å Can perform other many different runtime optimizations.

Å Startup delay.

Å Limited AOT optimizations because of time.

Å Compiler should be packaged inside virtual machine.

Å Can not perform complex optimizations which are possible
with static compilation.

Å Maintenance and debugging can be a headache.

Å Security concerns

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Applications
Many different companies/organizations have adopted JIT in there tools, some of
renown are:

· Oracle Java
· The Just-In-4ÉÍÅ ɉ*)4Ɋ ÃÏÍÐÉÌÅÒ ÉÓ Á ÃÏÍÐÏÎÅÎÔ ÏÆ ÔÈÅ *ÁÖÁΐ 2ÕÎÔÉÍÅ %ÎÖÉÒÏÎÍÅÎÔ

that improves the performance of Java applications at run time.

·Microsoft .NET Framework
· The JIT compiler is part of the Common Language Runtime (CLR). The CLR

manages the execution of all .NET applications.

· JIT in web browsers
· Trace Monkey is a trace based JIT compiler used by Mozilla Firefox browser to run

JavaScript programs

· LLVM
· intro

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Compilation in java
Conceptual view of code compilation in java.

Java compiler Java source
code

JVM

Java compiler
Java byte code

Operating System (OS)

Hardware

JIT placed inside JVM

ÅJava source code is compiled by java compiler
resulting in JVM readable java byte code.

ÅJVM performs following two main steps:
ÅCompiles byte code at runtime into
Åmachine readable instructions

ÅExecute compiled machine readable code

Virtual Machine

· Different kind of virtual machines provide different functions.

· Some of the important goals of VM to consider:
· Portability.

· Bridge the gap between compilers and interpreters.

· A virtual machine need at least following three basic components:
· Interpreter

· Runtime Supporting System

· Collection of libraries

· Some of the major concerns:
· Efficiency

· -ÕÌÔÉÐÌÅ 6-ȭÓ ÃÏÎÃÕÒÒÅÎÃÙ ÉÓÓÕÅȢ

· Compatibility with host for malware protection.

JVM

· JVM comprises following main
features:

· Runtime
· Mainly handles class loading , byte code

verification and other required functions.

· JIT
· Profiling, compilation plans,

optimizations

· Garbage Collection
Runtime compilation

Java Virtual Machine

Just-in-Time
compiler

Java Interpreter

Native Machine code

Operating System (OS)

JIT in JVM
Improves the performance of Java programs by compiling byte code into native machine

code at run time.

Å JIT compiler is by default enabled , however it gets activated when a Java method is
called.

Å Performs on runtime:

Å JIT compilation threshold helps to take action.

Å JIT recompilation threshold helps to make optimization decisions.

Method code Machine code

JVM having the machine code does need to interpret it,
results in improving processor time and memory usage

WL¢ΩƛƴƎ requires Profiling
· Collect data during execution:

· Executed functions

· Executed paths

· Branches

· Parameter values

· Collecting data at right time:

· Early or late phase

· Continue or intermittent way

· Collecting data by:
· Sampling

· Program instrumentation

· Using hardware performance measures

· Use collected data for:
· Optimizations

Runtime Optimizations by JIT

·During the compilation performed by JIT, it performs following
main optimization steps:
· Inlining

· Local optimizations

· Control flow optimizations

· Global optimizations

· Native code generation

Inlining

Ȱ2ÅÐÌÁÃÅÓ a function call site with the body of the called ÆÕÎÃÔÉÏÎȱ[*]

Å Trees of smaller methods are "inlined ", into the trees of their callers.

[*]

[*]

https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Inline_expansion
http://www.slideshare.net/ZeroTurnaround/vladimir-ivanovjvmjitcompilationoverview-24613146
http://www.slideshare.net/ZeroTurnaround/vladimir-ivanovjvmjitcompilationoverview-24613146

Cont..
Optimizations performed in this phase are:

· Trivial Inlining

· Inlining short, simple functions can save both time and space

· Call graph inlining

· Create a call graph and evaluate important parts by traversing.

· Tail recursion elimination

· Similar to tail -call elimination with added constraint i.e. calling itself.

· Virtual call guard optimizations

· Perform by devirtualization

What about ?

Local Optimizations
Ȱ)ÍÐÒÏÖÅ ÓÍÁÌÌ ÐÏÒÔÉÏÎ ÏÆ ÃÏÄÅ ÁÔ Á ÔÉÍÅȱ

Mainly includes:

· Local data flow analyses and optimizations

· Information collection about the data flow values across basic blocks.

· Compute data flow equations and optimize such as:
· Ambiguous or duplicate definitions

· Remove redundant expressions

· Register usage optimization

·3ÉÍÐÌÉÆÉÃÁÔÉÏÎÓ ÏÆ *ÁÖÁΐ idioms

· VarargsCollectionFactoryMethod

Control flow optimizations
ȰAnalyze the flow of control inside a code section and rearrange code paths to

improve the efficiency.ȱ

Mainly includes:

· Code reordering

· Loop optimizations

· Inversion

· Reduction

· Versioning and specialization

· Switch analysis

· Dead code elimination

Global optimizations
Ȱ0ÅÒÆÏÒÍ ÏÐÔÉÍÉÚÁÔÉÏÎÓ ÏÎ ÅÎÔÉÒÅ ÍÅÔÈÏÄ ÁÔ ÏÎÃÅȱ

Mainly includes:

Å Global data flow analyses and optimizations

Å Optimizing garbage collection and memory allocation

Å Partial redundancy elimination

Å Optimizing synchronizations

Native Code Generation

Performing optimization during native code generation depends upon the
underlying architecture, generally it performs:

· Translation of method trees into machine code.

· Perform minor optimizations as required.

Outline
· Overview

· Static Compilation
· Virtual machines
· Traditional Approaches

· JIT
· Defining JIT
· JIT: A Combination of two traditional approaches

·Working Mechanism
· Conceptual Idea
· Technical steps
· Advantages & Drawbacks

· Applications
· Exploring JIT & java

· Compilation in java
· VM & JVM
· JIT in JVM
· Runtime optimizations by JIT

· Startup Delay and Possible Optimizations
· Java HotSpot

Startup Delay by JIT
· Time taken by JIT to load and compile the byte code cause delay in preliminary
ÅØÅÃÕÔÉÏÎȢ 4ÈÉÓ ÉÎÉÔÉÁÌ ÄÅÌÁÙ ÉÓ ËÎÏ×Î ÁÓ ȰÓÔÁÒÔÕÐ ÄÅÌÁÙȱ

· For having better generated code, JIT performs more optimizations which also
increase startup delay.

· Increased startup delay can also be because of IO-bound operations

Increased Optimizations Better Code Generation

Increased Optimizations Startup delay

HotSpot
ȰCombines interpretation, profiling, and dynamic ÃÏÍÐÉÌÁÔÉÏÎȱ

Å Initially it runs as an interpreter and only compiles the "hot" code

Å Performs profiling to identify frequently execute code sections.

Å Time is saved by not compiling the infrequent code.

Å Profiling data help to improve decision making for optimizations.

Å Apply adaptive optimization technology, includes:

Å HotSpot Detection

Å Method Inlining

Å Dynamic Deoptimization

Most frequently executed code

Cont..
HotSpot comes with two compilers:

Å The client compiler

Å Reduce application startup time.

Å Reduce memory footprint .

Å Less time for compilation

ÅThe server compiler
Å Intended for long-running server applications.

Å Maximize peak operating speed.

Å Apply complex optimizations .

HotSpot Optimizations
HotSpot include number of complex and advanced optimizations, some of them
are mentioned below:

· Deep inlining :
· Method inlining combined with global analysis and dynamic deoptimization

· Fast instanceof/checkcast
· Accelerating the dynamic type tests

· Range check elimination:
· Surety about the index bound to remove index bound check.

· Loop unrolling:
· Enables faster loop execution

· Feedback-directed optimizations :

