
1/24Shahrooz Afsharipour16/01/2014

Ruby in the context of
scientific computing

Shahrooz Afsharipour

16 January 2014

2/24Shahrooz Afsharipour16/01/2014

Overview

● Introduction

● Characteristics and Features

 Closures

● Ruby and Scientific Computing

 SciRuby

 Bioruby

● Conclusion

● References

3/24Shahrooz Afsharipour16/01/2014

Introduction

● Created by Yukihiro "Matz" Matsumoto

● First public release in 1995

● Specification published in 2010

● Was mostly popularized by Ruby on Rails (a web framework)

Google searches for "Ruby programming" according to Google Trends

4/24Shahrooz Afsharipour16/01/2014

Introduction

● Main objective: to make developers happy :)

““The biggest goal of Ruby is developer friendliness, and productivity of The biggest goal of Ruby is developer friendliness, and productivity of
application development and intuitive description of program behaviors take application development and intuitive description of program behaviors take
precedence over brevity of the language specification itself and ease of precedence over brevity of the language specification itself and ease of
implementation.” implementation.” - Specification document- Specification document

● RubyGems: package management platform for sharing Ruby programs and
libraries

gem install myGem

5/24Shahrooz Afsharipour16/01/2014

Implementations

● Many implementations: Ruby MRI (CRuby), YARV, JRuby, Rubinius,
IronRuby, Ruby .NET, etc.

● Ruby MRI: Matz's Ruby Interpreter, also known as CRuby

 Reference implementation

● YARV merged with MRI since 1.9

● This presentation's focus: Ruby MRI

 Many plugins and gems might not work with other implementations

6/24Shahrooz Afsharipour16/01/2014

Performance

● Interpreted, dynamically typed

● Perforamce in the same order of magnitude as Python and PHP

● ...and not as good as compiled, statically-typed languages (C/C++, Java, C#,
etc.)

7/24Shahrooz Afsharipour16/01/2014

Programming paradigms

● Supports multiple paradigms

 Procedural: Procedural-style code outside classes is in the
Object class scope

 Object Oriented: (Almost) everything is an object

● Even classes
● E.g., binary operators are just syntactic sugar for method

calls: 1 + 2 is the same as 1.+(2)

 Functional

● Closures
● Higher-order functions
● Implicit return

8/24Shahrooz Afsharipour16/01/2014

Classes and Modules

● Classes can be reopened and modified at any point

 The same can be done with instance objects

● No multiple inheritance, no Interfaces

● Mixins via Modules

module Constants
 PI = 3.1416
 E = 2.7183

 def pi_squared
 return PI ** 2
 end
end

class Calculator
 include Constants
end

class String
 def append_exclamation
 self + "!"
 end
end

9/24Shahrooz Afsharipour16/01/2014

Type system

● Dynamic and strong typing

 Duck typing (“if it walks like a duck an quacks like a duck...”)

 It is the object's methods and properties, not its class or
inheritance status, that determine semantics

words = ["This", "is", "a", "sentence"]

if words.respond_to?("join")

 words.join(" ") + "."

end

=> "This is a sentence."

10/24Shahrooz Afsharipour16/01/2014

Closures

● Associated with functional programming

● (Old) definition from Wikipedia:

““In computer science, a closure is a first-class function with free variables that In computer science, a closure is a first-class function with free variables that
are bound in the lexical environment.”are bound in the lexical environment.”

● Closures are functions that

 can be passed around like objects

 are bound to the scope where they were created

● Ruby makes heavy use of closures (via Blocks, Procs and Lambdas)

11/24Shahrooz Afsharipour16/01/2014

Blocks

● Blocks

 Enclosed with either {} or do/end

● Methods can be made to accept Blocks as parameters using the yield
keyword

fibonacci = [1, 1]

10.times do
 fibonacci << fibonacci[-2] + fibonacci[-1]
end

=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

def pass_arg_to_block(arg)
 yield arg
end

pass_arg_to_block(5) { |n| n * 10 }
=> 50

12/24Shahrooz Afsharipour16/01/2014

Blocks, Procs, Lambdas

● Blocks are not objects, e.g. can't get passed around

 Solution: Procs and Lambdas

● Lambdas are the same as Procs, but:

 more strict argument checking

 different handling of return calls

multiply_by_ten = Proc.new { |n| n * 10 }
OR = proc { |n| n * 10 }
OR = lambda { |n| n * 10 }

pass_arg_to_block(5, &multiply_by_ten)
=> 50

[1, 2, 3].map(&multiply_by_ten)
=> [10, 20, 30]

13/24Shahrooz Afsharipour16/01/2014

Threads

● Green threads in 1.8

● Native threads in 1.9

 Global Interpreter Lock: only one thread executed at a time

 No true concurrency

 Better integrity protection (e.g. many extensions are not thread safe)

 BUT: doesn't atuomatically stop you from writing thread-unsafe code!

● Other implementations deal with threads differently

14/24Shahrooz Afsharipour16/01/2014

Ruby and Scientific Computing

● Due to historical reasons, Python grew into a widely-used language in
scientific computing (SciPy/NumPy, matplotlib, etc.), while Ruby didn't

 Google's promotion of Python

 Ruby community being mainly focused on Rails

● ...but such a thing as “scientific Ruby” does exist:

 SciRuby

 BioRuby

15/24Shahrooz Afsharipour16/01/2014

SciRuby

● Collection of libraries for various scientific tasks

● First (Git) commit in 2011

● Might not be ready for mission critical tasks yet

““Word to the wise: These gems have been tested, but are not Word to the wise: These gems have been tested, but are not
battle-hardened. If you’re thinking of using NMatrix (or other SciRuby battle-hardened. If you’re thinking of using NMatrix (or other SciRuby

components) to write mission critical code, such as for a self-driving car or components) to write mission critical code, such as for a self-driving car or
controlling an ARKYD 100 satellite, you should expect to encounter a few controlling an ARKYD 100 satellite, you should expect to encounter a few

bugs — and be prepared for them.” bugs — and be prepared for them.” - sciruby.com- sciruby.com

16/24Shahrooz Afsharipour16/01/2014

SciRuby

● Visualization

 Rubyvis

 (Plotrb?)

● Statistics and probability

 Statsample

 Distribution

● Numeric

 Minimization

 Integration

 Nmatrix

17/24Shahrooz Afsharipour16/01/2014

Rubyvis Plotting

require 'rubyvis'

vis = Rubyvis::Panel.new do

 width 150

 height 150

 bar do

 data [1, 1.2, 1.7, 1.5, 0.7, 0.3]

 width 20

 height {|d| d * 80}

 bottom(0)

 left {index * 25}

 end

end

vis.render

outfile = open('rv-out.svg', 'w')

outfile.write (vis.to_svg)

outfile.close()

18/24Shahrooz Afsharipour16/01/2014

Rubyvis: More Plotting

19/24Shahrooz Afsharipour16/01/2014

Statsample

● A statistics suite for Ruby

● Sample code:

require 'statsample'

ss_analysis(Statsample::Graph::Boxplot) do

 n=30

 a=rnorm(n-1, 50, 10)

 b=rnorm(n, 30, 5)

 c=rnorm(n, 5, 1)

 a.push(2)

 boxplot(:vectors=>[a,b,c],
:width=>300, :height=>300, :groups=>
%w{first first second}, :minimum=>0)

end

Statsample::Analysis.run # Open svg file
on *nix application defined

20/24Shahrooz Afsharipour16/01/2014

Minimization and Integration

● Minimization

require 'minimization'

d = Minimization::Brent.new(-1000,
20000, proc {|x| x**2})

d.iterate

puts d.x_minimum

puts d.f_minimum

Output:

4.005934284325451e-31

1.604750949033406e-61

● Integration

require 'integration'

puts Integration.integrate(1, 2,
{:tolerance=>1e-10,:method=>:simpson})
{|x| x**2}

normal_pdf=lambda {|x|
(1/Math.sqrt(2*Math::PI))*Math.exp(-(x**2/
2))}

puts
Integration.integrate(Integration::MInfini
ty, 0, {:tolerance=>1e-10}, &normal_pdf)

puts Integration.integrate(0,
Integration::Infinity,
{:tolerance=>1e-10}, &normal_pdf)

Output:

2.333333333333333

0.5

0.5

21/24Shahrooz Afsharipour16/01/2014

BioRuby

● A project that aims to provide a set of tools for tasks in computationial biology and
bioinformatics (sequence analysis, pathway analysis, sequence alignment, etc.)

““Bioinformatics is an interdisciplinary field that develops and improves on methods Bioinformatics is an interdisciplinary field that develops and improves on methods
for storing, retrieving, organizing and analyzing biological data. A major activity in for storing, retrieving, organizing and analyzing biological data. A major activity in

bioinformatics is to develop software tools to generate useful biological bioinformatics is to develop software tools to generate useful biological
knowledge.” - Wikipediaknowledge.” - Wikipedia

● A major task in bioinformatics is analyzing character sequences. BioRuby helps
with this.

● Biogem: Tool that aids bioinformaticians in writing “plugins” and sharing them with
the rest of the BioRuby community

Image source: http://www.medicine.uiowa.edu

22/24Shahrooz Afsharipour16/01/2014

BioRuby: Example

bioruby> seq = Bio::Sequence::NA.new("atgcatgcaaaa")

==> "atgcatgcaaaa"

bioruby> seq.complement

==> "ttttgcatgcat"

bioruby> seq.subseq(3,8) # gets subsequence of positions 3 to 8 (starting from 1)

==> "gcatgc"

bioruby> seq.gc_percent

==> 33

bioruby> seq.composition

==> {"a"=>6, "c"=>2, "g"=>2, "t"=>2}

bioruby> seq.translate # each three nucleotides represent an amino acid

==> "MHAK"

bioruby> seq.translate.codes # (standard) amino acids have abbreviations

==> ["Met", "His", "Ala", "Lys"]

bioruby> seq.translate.names

==> ["methionine", "histidine", "alanine", "lysine"]

bioruby> seq.translate.molecular_weight

==> 485.605

bioruby> counts =
{'a'=>seq.count('a'),'c'=>seq.count('c'),'g'=>seq.count('g'),'t'=>seq.count('t')}

==> {"a"=>6, "c"=>2, "g"=>2, "t"=>2}

bioruby> randomseq = Bio::Sequence::NA.randomize(counts)

==> "aaacatgaagtc"

23/24Shahrooz Afsharipour16/01/2014

Conclusion

● Feature-rich, developer-friendly multi-paradigm language

● Powerful mixture of object-oriented and functional programming

● Scientific libraries available

● Lower performance but higher programmer productivity vs.
compiled/statically-typed languages

 Good for prototyping?

● Fun to use!

24/24Shahrooz Afsharipour16/01/2014

Refrences

● Official Ruby website

https://www.ruby-lang.org/en/about/

● Ruby documentation

http://ruby-doc.org/

● Computer Language Benchmarks Game

http://benchmarksgame.alioth.debian.org

● Closures and Higher-Order Functions

http://weblog.raganwald.com/2007/01/closures-and-higher-order-functions.html

● Closures – A Simple Explanation (Using Ruby)

http://www.skorks.com/2010/05/closures-a-simple-explanation-using-ruby/

● SciRuby

http://sciruby.com/

● BioRuby

http://bioruby.open-bio.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

