Scala - the scalable language

Daniel Ploetzer and Eric Heder

Seminar on scientific languages
AICES, RWTH Aachen University

19.12.2013



Table of contents

1. Motivation
@ What is scientific computing?
@ What do we want from a language?

2. Scala
@ Introduction
@ Functional programming
@ Object-oriented
o Features
@ Performance

3. Summary
@ Does Scala meet the requirements?
@ Is Scala usable for scientific computing?



Motivation

What is scientific computing?

transdisciplinary
@ mathematics
@ informatics

o field of application

use of computers to analyze and solve scientific problems
@ computer simulation
@ numerical computations
o data analysis

@ computational optimization (HPC)

— way to obtain knowledge apart from experiment



Motivation

What do we want from a language?

Must-haves
o fast and easy prototyping
@ high performance
@ low memory usage

@ support of

o parallel programming
e mathematical calculations/expressions
e graphic plotting

Nice-to-haves
@ native parallel programming support
@ portable
o free license

@ active community



Scala

Introduction

italian for stairway

FScala

scalable language

under BSD license
created by Martin Odersky
e german computer scientist
o professor in the programming reasearch group at
Swiss Federal Institute of Technology in Lausanne
o developer of the current version of javac
history in a nuthsell
2001: project started
e 2004: first version on the java plattform
e 2006: version 2.0
e 2011: launch of Typesafe Inc.
= commercial support, services and training for Scala
2013: latest version 2.10.3



Scala

Introduction

What is Scala?

@ programming language, which extends java
= any existing java library can be used

scalac scala

Scala source code - Java byte code - JVM

1 1
java + scala-compiler.jar java + scala-core jars

@ also usable as interactive shell

@ hybrid language:
e functional
o object-oriented



Scala

Functional programming

based on the lambda calculus — formal system in logic and cs from
the 1930s

everything is a function (esp. values are 0-ary functions)
results only depend on input parameters
no side effects

avoid reuse of variables



Scala

Functional programming

based on the lambda calculus — formal system in logic and cs from
the 1930s

everything is a function (esp. values are 0-ary functions)
results only depend on input parameters
no side effects

avoid reuse of variables

= treat functions like mathematical functions
eg.x1 = x + linsteadof x = x + 1



Scala

Functional programming

@ common way: code depends on how to do it

def sumOfEquals(xs: List[Int]): Int = {
var sum = 0O
for (x <- xs)
if (x%2 == 0)
sum += X
sum




Scala

Functional programming

@ common way: code depends on how to do it

def sumOfEquals(xs: List[Int]): Int = {
var sum = 0O
for (x <- xs8)
if (x%2 == 0)
sum += X
sum

e functional way: code depends on what to do

def sumOfEquals(xs: List[Int]) = xs filter{_%2 == 0} sum




Scala

Functional programming features in Scala

o first-class and higher-order — functions as parameter and return value



Scala

Functional programming features in Scala

o first-class and higher-order — functions as parameter and return value

@ currying

def addInts(x: Int, y: Int, z: Int) = x + y + z // uncurried
def addInts(x: Int)(y: Int)(z: Int) = x +y + z // curried




Scala

Functional programming features in Scala

o first-class and higher-order — functions as parameter and return value
@ currying

def addInts(x: Int, y: Int, z: Int) = x + y + z // uncurried
def addInts(x: Int)(y: Int)(z: Int) = x +y + z // curried

@ lazy evaluation

var a = 2

lazy val b = 8 * a

a=3

println(b) // Evaluates to 24 instead of 16




Scala

Functional programming features in Scala

o first-class and higher-order — functions as parameter and return value

@ currying

def addInts(x: Int, y: Int, z: Int) = x + y + z // uncurried
def addInts(x: Int)(y: Int)(z: Int) = x +y + z // curried

@ lazy evaluation

var a = 2

lazy val b = 8 * a

a=3

println(b) // Evaluates to 24 instead of 16

@ tail recursion — last command is recursion call



Scala

Functional programming features in Scala

first-class and higher-order — functions as parameter and return value
@ currying

def addInts(x: Int, y: Int, z: Int) = x + y + z // uncurried
def addInts(x: Int)(y: Int)(z: Int) = x +y + z // curried

@ lazy evaluation

var a = 2

lazy val b = 8 * a

a=3

println(b) // Evaluates to 24 instead of 16

@ tail recursion — last command is recursion call

@ pattern matching
— likewise switch command in java



Scala

Object-oriented

pure object-oriented language: all values are objects

10/23



Scala

Object-oriented

pure object-oriented language: all values are objects

scala.AnyVal

(
1
scala.Double "
1 scala.ScalaObject
/ .
(other value types)
scala.Float
scala.Int Scala classes

(java.lang.Object)

scala.AnyRef

Java classes

10/23



Scala

Object-oriented

pure object-oriented language: all values are objects

scala.AnyVal

(
1
scala.Double "
1 scala.ScalaObject
/ .
(other value types)
scala.Float
scala.Int Scala classes

= functions are objects

(java.lang.Object)

scala.AnyRef

Java classes

10/23



Scala

Object-oriented

pure object-oriented language: all values are objects

scala.AnyRef

scala.AnyVal . \
(java.lang.Object)

d
]
scala.Double "
1 scala.ScalaObject
/ ' Java classes
(other value types)
scala.Float
scala.Int Scala classes

= functions are objects
=- way to implement function pointers: val fp = myFunc

10/23



Scala

Object-oriented

pure object-oriented language: all values are objects

scala.AnyRef

scala.AnyVal . \
(java.lang.Object)

d
]
scala.Double "
1 scala.ScalaObject
/ ' Java classes
(other value types)
scala.Float
scala.Int Scala classes

= functions are objects
=- way to implement function pointers: val fp = myFunc
= Unified Types (demo)

10/23



Scala

Object-oriented

objects are instances of classes (and traits)

class mySum(a: Int, b: Int) extends Compare {
val c = a +b

def isGreater(i: Any) : Boolean = c > i.asInstanceOf [Int]

Listing: parameterized constructor arguments

11/23




Scala

Object-oriented

objects are instances of classes (and traits)

class mySum(a: Int, b: Int) extends Compare {
val c = a +b

def isGreater(i: Any) : Boolean = c > i.asInstanceOf [Int]

Listing: parameterized constructor arguments

trait Compare {
def isGreater(obj: Any) : Boolean

def isNotGreater(obj: Any) : Boolean = !isGreater(obj)

Listing: partially implemented trait

11/23




Scala

Object-oriented

objects are instances of classes (and traits)

class mySum(a: Int, b: Int) extends Compare {
val c = a +b

def isGreater(i: Any) : Boolean = c > i.asInstanceOf [Int]

Listing: parameterized constructor arguments

trait Compare {
def isGreater(obj: Any) : Boolean
def isNotGreater(obj: Any) : Boolean = !isGreater(obj)

Listing: partially implemented trait

= traits combine advantages of Java's interfaces and abstract classes

11/23




Scala

Object-oriented — Natively supported design patterns

e.g. Singleton through object definition

object Presentation {
val maxDuration = 40

def remainingTime(time: Int): Int= { maxDuration - time }

3

12/23



Scala

Object-oriented — Natively supported design patterns

e.g. Singleton through object definition

object Presentation {
val maxDuration = 40

def remainingTime(time: Int): Int= { maxDuration - time }

3

class Presentation {
var time = 0O

def remainingTime(): Int= { Presentation.remainingTime(time) }

}

Listing: companion object/class

12/23




Scala

Object-oriented — Natively supported design patterns

e.g. Singleton through object definition

object Presentation {
val maxDuration = 40

def remainingTime(time: Int): Int= { maxDuration - time }

3

class Presentation {
var time = 0O

def remainingTime(): Int= { Presentation.remainingTime(time) }

}

Listing: companion object/class

@ elements in object can be thought of as static

@ elements in class are dynamically instantiated

12 /23




Scala

Features

@ x method y is syntactic sugar for x.method (y)
= e.g. x < y stands for x.<(y)

13/23



Scala

Features

@ x method y is syntactic sugar for x.method (y)
= e.g. x < y stands for x.<(y)

@ scala-core is full of little helpers, e.g.

> List[Int] (1,2,4,5) .mkString("[[", "--", "1]1")
> [[1--2--4--5]]

13/23



Scala

Features

@ x method y is syntactic sugar for x.method (y)
= e.g. x < y stands for x.<(y)

@ scala-core is full of little helpers, e.g.

> List[Int] (1,2,4,5) .mkString("[[", "--", "1]1")
> [[1--2--4--5]]

choosen features:
@ parameter lists
@ for comprehensions
@ parallel programming

@ type enrichment

13/23



Scala

Features — Parameter lists

o default parameter

def addInts(x: Int = 5, y: Int

1, z:

Int=2) =x +y +z

14/23



Scala

Features — Parameter lists

o default parameter

def addInts(x: Int =5, y: Int =1, z: Int=2) =x +y + 2

@ named parameters

> addInts(y = 2, z

1, x = 5)}

14/23



Scala

Features — Parameter lists

o default parameter

def addInts(x: Int

5, y: Int =1, z: Int=2) =x +y + z

@ named parameters

1, x = 5)}

> addInts(y = 2, z

@ open ended parameter lists

def openEndParamList(vals: Int*) = vals.foreach(println)

14 /23



Scala

Features — For comprehensions

@ Martin Odersky: Scala’s for expression is a Swiss army knife of
Iteration.

extreme powerful iteration tool = more than simple loops

iterate over objects

e.g. loop with filter

for {
i<-1+to6
j<-1to6
k <-1to 3
if (A% 2==0)
if (7 % 2 '= 0} println(i + " "+ j + " " + k)

15/23



Scala

Features — Type enrichment

@ extend existing libraries — scalable language

object MyIntegerExtensions {
implicit class IntPredicates(i: Int) {
def isGreaterThanZero = i > 0O

}

> import MyIntegerExtensions._
> 3.isGreaterThanZero




Scala

Features — Parallel programming

@ recall: possibility to use java libraries

= usability of established OpenMP and MPI implementations
(e.g. JaMP and mpiJava)

17/23



Scala

Features — Parallel programming

@ recall: possibility to use java libraries
= usability of established OpenMP and MPI implementations
(e.g. JaMP and mpiJava)
@ own implementation: actors (from Erlang)
o thread instance with a mailbox = communication via messages

no shared but private memory
behavior depends on message: send message, create new actors, change

own behavior
until version 2.10.0 part of the core = now: Akka framework

17/23



Scala

Performance

benchmark: 64 bit, quadcore,
ubuntu os
messuring units:

o time

@ memory usage

e code length
compare Scala with Java,
Python, Fortran, C++

benchmark programms are
common problems of maths and
computer science

k-nucleotide
regex—dna
fannkuch-redux
pidigits
spectral-norm
mandelbrot
reverse-complement
n-body

fasta
fasta-redux
binary-trees

18/23



Scala

Performance

Time

Scala + Java 7

Memory Code

Scala used

=
&

1/10
1/30
14100
17300

141000 Tine

Time

I ==

Memory Code
04 Dec 2013 ugda n

Scala + Fortran Intel

Memary Code

Scala used
=
@

1/10
1/30
14100
17300
141000

Time

=

Memary Code
04 Dec 2013 ugda n

Scala used

1/10
1/30
14100
17300
171000

Scala used

1/3
1/10
1/30
14100
17300

171000

Time

Time

Time

Time

Scala + C++ g+

Hemory Code

Hemory Code

Scala # Python 3

Hemory Code

T

04 Dec 2013 ugda n

Hemory Code

04 Dec 2013 ugda n

19/23




Summary

Does Scala meet the requirements? — Pro

Must-haves

v/ fast and easy prototyping
— interactive shell, native design patterns, helper constructs, etc.
e support of
v’ parallel programming
v/ mathematical calculations/expressions
v' graphic plotting
— all java libraries can be used

20/23



Summary

Does Scala meet the requirements? — Pro

Must-haves

v/ fast and easy prototyping
— interactive shell, native design patterns, helper constructs, etc.
e support of
v’ parallel programming
v/ mathematical calculations/expressions
v' graphic plotting
— all java libraries can be used

Nice-to-haves
v’ portable — runs on JVM
v free license — open source (BSD)
v/ active community — growing / nearly daily update of the doc

20/23



Summary

Does Scala meet the requirements? — Pro

Must-haves
v/ fast and easy prototyping

— interactive shell, native design patterns, helper constructs, etc.

e support of
v’ parallel programming
v/ mathematical calculations/expressions
v' graphic plotting
— all java libraries can be used

Nice-to-haves
v’ portable — runs on JVM
v free license — open source (BSD)
v/ active community — growing / nearly daily update of the doc

Other aspects
e hybrid paradigm: functional + pure object-oriented

20/23



Summary

Does Scala meet the requirements? — Contra

Must-haves
x high performance — JVM + Scala overhead

X low memory usage (but at least lower than in Java)

21/23



Summary

Does Scala meet the requirements? — Contra

Must-haves
x high performance — JVM + Scala overhead

X low memory usage (but at least lower than in Java)

Nice-to-haves

X native parallel programming support

21/23



Summary

Does Scala meet the requirements? — Contra

Must-haves
x high performance — JVM + Scala overhead

X low memory usage (but at least lower than in Java)

Nice-to-haves

X native parallel programming support

Other aspects

eclipse + Scala = extreme slow (well-known problem)

very slow compiler

e quite steep learning curve = a language for professionals

possibility to write extreme unreadable code

21/23



Summary

Is Scala usable for scientific computing?

Must-haves
v’ fast and easy prototyping
X high performance

% low memory usage

e support of
v’ parallel programming
v/ mathematical calculations/expressions
v’ graphic plotting

Nice-to-haves
X native parallel programming support
v portable
v’ free license
v/ active community

= Result: Usability of Scala depends on weighting of the requirements

22/23



Sources

http://www.scala-lang.org/
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scalatutorial.de/
http://benchmarksgame.alioth.debian.org/
http://pavelfatin.com /design-patterns-in-scala/

http://gleichmann.wordpress.com/2010/11/08/functional-scala-
functions-as-objects-as-functions/

23 /23



	Motivation
	What is scientific computing?
	What do we want from a language?

	Scala
	Introduction
	Functional programming
	Object-oriented
	Features
	Performance

	Summary
	Does Scala meet the requirements?
	Is Scala usable for scientific computing?


