
Music Mood Classification: 
From a Music Piece to a 
Computed Mood

Music Mood Classification: From a Music Piece to a Computed MoodM. Bukowski

Seminar SS15: Topics in Computer Music

High Performance and Automatic Computing
RWTH Aachen University
Germany

1

29.06.2015

Supervisor: Prof. Paolo Bientinesi

?



Music Mood Classification: From a Music Piece to a Computed MoodM. Bukowski 2

Overview
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Motivation – Game Development   

Suitable music
to a specific situation …

?

… but too much to handle manually! 
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State of the Art – Music Mood Classification

Mood
Annotation

Feature 
Extraction

Classifier
Training

Feature 
Extraction

Automatic
Prediction

Mood labels

Features

Classifier

Training 
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State of the Art – Emotion Models

 Active topic in psychology research [1]

 Categorical vs. Dimensional

 Problems
 No standards
 Oversimplification / Ambiguity
 Distinction

Hevner’s adjective checklist [2]

Circumplex Model [3]

Group 1
satisfying
quiet
…

Group 6
happy
cheerful
…

Group 3
dreamy
sentimental
…

…
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State of the Art – Music Features

 "Any classification system is only as good as the features that it 
receives." [4]

Characterization of audio features [5]
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State of the Art – Ground Truth

 Problems
 Emotional perception (subjectivity) 
 Emotion annotation (labor-intensive, time consuming)
 Different mood models and (small) datasets

 How is it done?
 Experts

 Social Tagging

 Annotation Games 
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State of the Art – Supervised Machine Learning

 General Problem:
 Classifier needed to predict labels for unseen data 
 Mapping from feature space to output mood labels
 Training with ground truth data

 Most popular classifier: 
 Support Vector Machine (SVM) 

Support Vector Machines: Principle [6]
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State of the Art – Different Types of Labeling

Multi-
class

labeling

Single-
class

labeling

Variety of approaches!

Single-
modal

labeling Multi-
modal

labeling
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Exemplary Approach – Idea

 "Exploiting Online Music Tags for Music Emotion Classification" [7]

Two-layer structure

Genre grouping

Music mood 
classification

Same genre

Same performance technique

Same moods

Multi-
class

labeling

Multi-
modal 

labeling

bridge semantic gap
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Exemplary Approach – Methods: System Overview

System diagram [7]
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Exemplary Approach – Methods: Ground Truth & Features
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Exemplary Approach – Methods: Sampling and Classification

EasyEnsemble (EE)

SVM 
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Exemplary Approach – Results & Review

 Genre-specific characteristics of songs (similarity)

 Improvement of the average F-score from 0.23 to 0.36

Accuracy

Data sampling 

Music features

Mood tag propagation 

Genre specificity

 One exemplary 'successful' approach with lack of comparability
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Conclusion

 Need for computing moods from music pieces 

 Variety of solutions

 Best systems use a combination of features and information from 
multiple domains 

 Open issues regarding its multidisciplinary nature

 Research field is quite young

Great potential and basis for further research!
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Appendix – Outlook

 Personalized systems with individual profiling

 Consider

 Applications



M. Bukowski

Appendix – Music Mood Classification (Several Parts)

Music 
Features

Emotion
Models

Ground
Truth

Prepro-
cessing

Machine
Learning

Single-/ 
Multiclass
Labeling

Single-
/Multi-
modal 

Labeling

Semantic
Gap

Open IssuesMultidisciplinary
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Appendix – Hevner‘s Emotion Model

Hevner’s adjective checklist [2]
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Appendix – MIREX Mood Cluster

[8]
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Appendix – Ground Truth: AllMusic.com

183 mood classes
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Appendix – Before Extraction: Preprocessing

22.05 kHz

Mono channel 

Normalized to same sound level

16 bit precision

Convert data

20-30s segment as representative
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Appendix – Exemplary Approach: Results

 Genre-specific characteristic of songs (similarity)

 Improvement of the average F-score

Classification Result for the
Five-Class MIREX Emotion 
Taxonomy [7]

Experimental Result for 
Classifying 183 Emotion 
Classes [7]


