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algorithmic music composition

Mozart’s dice game

”Anleitung zum Componieren von Walzern so viele man will
vermittelst zweier Würfel, ohne etwas von der Musik oder
Composition zu verstehen”

=> 45,949,729,863,572,161 different yet similar waltzes

Source: https://www.youtube.com/watch?v=fK2MCXpDWB4
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algorithmic music composition

1955 Hiller, Isaacson: First computer-generated composition

1991 Gibson, Byrne: Musical Composition Using Genetic Algorithms
And Neural Networks

2011 Donnelly, Sheppard: Evolving Four-Part Harmony Using Genetic
Algorithms
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music composition as search problem



music composition as search problem

Goal:

∙ Compose music without or with minimal human guidance

Approach:

∙ Search the set of all possible compositions

∙ Return one which sounds good

Problems:

∙ How to represent music?

∙ Search space is very big – how to search efficiently?

∙ How to evaluate if something sounds good?
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music representation

How can we represent music?

∙ Audio files

∙ Flat structure

∙ Hierarchical structure

6



music representation

Source: http://www.angelfire.com/art2/speech-audio-seperat/
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music representation

Source: http://www.well.com/user/bryan/last.gif
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music representation

Source: http://graphics.stanford.edu/ bjohanso/papers/gp98/johanson98gpmusic.pdf
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efficient searching

How can we search efficiently?

∙ Genetic algorithms
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genetic algorithms

Initialize first
generation

Fitness
evaluation

Select fittest
members

Mutation and
crossover

Converged?
No

Yes

Example: Maximize function f : Rn 7→ R

∙ Initialization: Select x1, . . . xk ∈ Rn at
random

∙ Fitness of x: f(x)

∙ Mutation: Shift by random ε ∈ Rn

∙ Crossover of x and y: Choose value
from line-segment between x and y

11



genetic algorithms

Initialize first
generation

Fitness
evaluation

Select fittest
members

Mutation and
crossover

Converged?
No

Yes

Example: Maximize function f : Rn 7→ R

∙ Initialization: Select x1, . . . xk ∈ Rn at
random

∙ Fitness of x: f(x)

∙ Mutation: Shift by random ε ∈ Rn

∙ Crossover of x and y: Choose value
from line-segment between x and y

11



music evaluation

How can we evaluate music?

∙ Human based

∙ Rule based

∙ Machine learning based
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music evaluation
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music evaluation

Source: https://en.wikipedia.org/wiki/Johann_Joseph_Fux
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music evaluation

Source: http://conferences.telecom-bretagne.eu/fps2012/program/slides/07.pdf
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evolving four-part harmony …



evolving four-part harmony using genetic algorithms

Patrick Donnelly, John Sheppard
Evolving Four-Part Harmony Using Genetic Algorithms
Applications of Evolutionary Computation, 2011, pp 273-282

Used techniques:

∙ Flat music representation
∙ Genetic algorithms
∙ Rule based Fitness
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music representation

Music representation:

∙ Four parallel parts
∙ Each part: List of (pitch, duration) tuples
∙ In C-major
∙ Total length not fixed

Example:

part 1 : { ( 60 , 1 /4 ) , ( 6 2 , 1 / 4 ) ,
( 64 , 1 / 4 ) , ( 6 2 , 1/4 ) }

part 2 : { ( 48 , 1 / 2 ) , ( 5 2 , 1/2 ) }

part 3 : { ( 5 2 , 1 / 2 ) , ( 5 5 , 1/2 ) }

part 4 : { ( 5 5 , 1 / 4 ) , ( 5 7 , 1 / 4 ) ,
( 5 9 , 1/2 ) }
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genetic algorithms

Genetic Algorithms
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initialization

Initialize first generation with C-major chords
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mutation

Mutation: Apply one of these operations to a random part

Repeat Note:

Shift Random Note:

Alter Length:

Total: 11 operations
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crossover

Crossover: Cut and glue two elements together

+ =
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rule based fitness

Rule Based Fitness
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rule based fitness

What does good music need?

∙ Melody (Should be catchy)
∙ Harmony (Melodies should interact nicely)
∙ Rhythm (Emphasize meter)
∙ Structure (Intro, outro, reoccurring themes, ...)
∙ Timbre/Intonation

⇒ Music theory provides tools to enforce these constraints
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rules

∙ Leap Height: Two consecutive notes should not have an interval
larger than a 9th

∙ Voice Crossing: An upper part should always play higher than a
lower part

∙ Opening/Closing Chord: The piece should start and end with a
C-major chord

∙ Intervals: Pure and dissonant intervals should be avoided

∙ Total: 15 rules
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fitness function

fitness(rulei) = ni−vi
ni

total fitness =
∑

i (ωi · fitness(rulei))

∙ ni = Number of places where rule i could be violated
∙ vi = Number of places where rule i actually is violated
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example

fitness(rulei) = ni−vi
ni

∙ ni = Number of places where rule i could be violated
∙ vi = Number of places where rule i actually is violated

Leap Height:
∙ ni = number of leaps = 10
∙ vi = number of large leaps = 1
∙ fitness(Leap Hight) = 9

10

Voice Crossing:
∙ ni = num. of parallel notes = 4
∙ vi = number of crossings = 2
∙ fitness(Voice Crossing) = 1

2
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rule based fitness

Pro:

∙ Strong music-theoretical foundation
∙ Works well in practice

Contra:

∙ Humans need to define the rules for each genre (Cannot be
automated)

∙ Some genres are hard to express by rules
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summary

We discussed:

∙ Genetic algorithms
∙ Rule based fitness functions

Using these tools it is possible to generate interesting music without
human interaction.

29



sources

Papers:

∙ Patrick Donnelly, John Sheppard
Evolving Four-Part Harmony Using Genetic Algorithms
Applications of Evolutionary Computation, 2011, pp 273-282

Images:

∙ https://en.wikipedia.org/wiki/Johann_Joseph_Fux
∙ http://conferences.telecom-
bretagne.eu/fps2012/program/slides/07.pdf

∙ http://www.angelfire.com/art2/speech-audio-seperat/
∙ http://www.well.com/user/bryan/last.gif
∙ http://graphics.stanford.edu/ bjohanso/paper-
s/gp98/johanson98gpmusic.pdf

∙ https://www.youtube.com/watch?v=fK2MCXpDWB4
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end
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