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I 1998: First MP3 players available
I 1999: Napster, mp3.com go online
I Commercial and private music collections explode

History -

MP3 revolution
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I 2001: Tzanetakis and Cook build foundation by publishing first paper
I from then on: methods evolve from previous ones, always trying to

improve performance
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First steps
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I Tzanetakis, Cook: "Musical Genre Classification of Audio Signals"
I Correa, Costa, Saito: "Tracking the Beat: Classification of Music

Genres and Synthesis of Rhythms"
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State of the Art
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I Timbral Texture Features (19 dim.)
I Rhythmic Content Features (6 dim.)
I Pitch Content Features (5 dim.)

Methods - Tzanetakis & Cook

Features Overview
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I based on short time Fourier transform (STFT)
I Analysis Window (23ms) vs. Texture Window (1s)

[1]

Methods - Tzanetakis & Cook

Timbral Texture Features I
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I calculate four features from STFT output and use their mean and
variance for classification

I e.g. Spectral Flux:

Ft =

N∑
n=1

(Nt[n]−Nt−1[n])
2

I additional features based on Mel-frequency cepstral coefficients
(MFCCs)

Methods - Tzanetakis & Cook

Timbral Texture Features II
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I Discrete Wavelet Transform (DWT) to analyze signal
I autocorrelation function recognizes strong beats (example)
I map peaks into Beat Histogram

Methods - Tzanetakis & Cook

Rhythmic Content Features
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[3]
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Beat Histogram
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I Pitch Histogram: like Beat Histogram (0.5-1.5s) but with shorter time
frame (2-50ms)

Methods - Tzanetakis & Cook

Pitch Content Features
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I 59% accuracy with 10 different genres
I 77% among classical genres
I 61% among jazz genres

[3]
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Results
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I Songs given as MIDI files
I Use directed graphs to describe song

Methods - Correa, Costa & Saito

Tracking the Beat
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I Weighted directed graphs with note lengths as vertices
I Weights defined by frequency of note sequence

[2]
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Digraphs
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I Build digraph for each song: 18 · 18 = 324 dim.
I Additional features from digraph: 15 dim.
I Use PCA to obtain 52 dim. feature vector

Methods - Correa, Costa & Saito

Features
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I 85.72% accuracy with 4 different genres (blues, bossa-nova , reggae
and rock)

Methods - Correa, Costa & Saito

Results
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I College students found correct genre (out of 10) with 70% accuracy
after 3 seconds [3]

I Machines are on par
I Human experts still better if there are many genres
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Prediction by humans
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I step away from speech recognition features (e.g. MFCCs)
I fuzzy classification (e.g. 90% Rock, 10% Blues)
I larger genre sets, higher accuracy
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Kilian Merkelbach | June 22, 2015 25/26



Wikimedia Commons.
Short time fourier transform, 2006.

Debora C Correa, Luciano da F Costa, and Jose H Saito.
Tracking the beat: Classification of music genres and synthesis of
rhythms.

G. Tzanetakis and P. Cook.
Musical genre classification of audio signals.
Speech and Audio Processing, IEEE Transactions on,
10(5):293–302, Jul 2002.

Conclusion -

References

Kilian Merkelbach | June 22, 2015 26/26


	Intro
	History
	Methods
	Tzanetakis & Cook
	Correa, Costa & Saito

	Conclusion

