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Introduction

The seemingly mystical ability of music to evoke
feelings and images has fascinated man since
times immemorial. The idea that the harmony of
sounds as expressed in music might capture some
essential property of the universe is at least as
old as Greek philosophy, being expressed in the
thoughts of Plato, Ptolemy, Pythagoras and oth-
ers. [10] [5] In more recent times, the theory of
Chaos has cast light on the mathematical prin-
ciples underlying many processes in nature, such
as the evolution of weather in the atmosphere
and the diffusion of substances in fluids, and its
mathematical cousin, the theory of Fractal Ge-
ometry, has illuminated us on how such seem-
ingly random processes generate the complexity
that surrounds us. [8]

Chaos, for the purposes of this report, describes
the output, under certain conditions which will
be discussed further on, of nonlinear dynamical
systems. (Although it has been demonstrated
that it is possible to obtain chaotic outputs even
when dealing with linear systems, such possibil-
ities are outside the scope of this report) The
possibility of using such chaotic processes for the
generation of music holds both artistic and philo-
sophical interest: By the very nature of chaotic
processes, they generate outputs which are, in
a sense, “eternally new”. This can be intu-
itively understood by watching the evolution of
the ever-changing shape of a flame or a cloud,
both generated by natural chaotic processes. Us-
ing the outputs of chaotic systems for automated
composition allows for the generation of music
which exhibits endless variation within the lim-
its of the scales utilized. On the philosophical

side, given that chaos is a fundamental corner-
stone of many natural processes, using chaos to
generate music allows us to embed qualities of
nature within music, in a way realizing the ideas
of ancient philosophers regarding the possibility
of expressing the harmony of nature through mu-
sic. It allows us to produce the musical equiva-
lents of the aforementioned shapes of clouds or
flames.

We will describe a method by which musical
phrases can be extracted from dynamical sys-
tems, allowing us to use chaotic systems as
music-composing algorithms. For this purpose,
we will discuss the philosophical and historical
background behind the idea of representing na-
ture through music, followed by an informal dis-
cussion of the theory of dynamical systems and
chaos and a brief presentation of the use of chaos
theory in algorithmic music composition. We
aim to show how the use of chaos in music com-
position can lead to musical phrases that have
potentially endless variation, while forming com-
plex patterns and motifs, and embodying certain
“natural” qualities which could not be obtained
through other methods of algorithmic composi-
tion.

Music and Nature

A recurring concept along the history of mankind
is the idea of “Musica Universalis” - or, trans-
lated, the “Music of the Universe”. It was con-
jectured by many early philosophers that there
was a harmony to the universe analogous to
the harmony of music.[12] While such a concept
would today be considered clearly unscientific,
the idea that we might be able to endow music
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with properties of nature - or, in other terms, to
produce the aural equivalent of a natural phe-
nomenon, seems plausible: If we have a math-
ematical model of some natural process and a
method by which this model might be used to
generate musical events, it would become possi-
ble to generate music which is, in a manner de-
fined by the method, or algorithm, by which the
mathematical model’s output is converted into
music, an equivalent of the natural phenomenon
in question.

To capture some fundamental property of nature
through music is not a novel concept. The idea
that the harmony of nature might be captured
musically was explored extensively by Greek
philosophers and revisited many times along the
course of history. This was, for instance, a cor-
nerstone of the Greek school of Pythagoreanism,
whose belief that all that exists in the universe
could be explained in terms of ratios of small in-
tegers led to the development of a musical scale
where all intervals were based on the ratio 3/2,
the so-called “Pythagorean tuning”. [1]

However, attempts prior to the discovery of
chaos theory were insufficient to truly capture
natural phenomenons and shapes in music, as
there was not a mathematical framework pow-
erful enough to model the irregularity and com-
plexity of most natural phenomena - specifically,
until recent times, musicians were primarily con-
cerned with regularity and order, in a way some-
what analogous to Euclidean geometry and to
the Pythagoreans’ preoccupation with ratios of
integers. The Canadian composer Barry Truax
says on this matter: “although we cannot say
that the music of J.S. Bach is great because
it is the aural equivalent of Cartesian geometry
(...) we can hardly deny that it arises from the
same Zeigeist or whatever one chooses to call
the nexus of intellectual, cultural and aesthetic
currents that influence an artist”. [11]

It is not possible to express the forms and dy-
namics of nature through regularity, as these
are, indeed, defined by irregularity - as said
by Polish-born mathematician Benoit Mandel-
brot, “Clouds are not spheres, mountains are not

cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight
line”. Mandelbrot himself described a theory of
geometrical objects which were equally “rough”
and complex at all scales, calling these objects
“fractals” (from latin fractus, “broken”), due to
their irregular nature.

Mandelbrot’s fractal geometry is capable of
reproducing the complexity found in natural
forms, from the infinitely complex shape of a
cloud to a leaf - and it is intimately tied to chaos,
as shall be further explored in the next section.

A Brief Definition of Chaos

As explorations of the applications of chaos to
music will compose the remaining sections of this
report, it is adequate here to give a slightly more
formal definition of the term chaos. This will not
be an in-depth explanation, as our objective here
is simply to give the reader an intuitive under-
standing of chaos sufficient for them to compre-
hend the rest of this report. The reader is re-
ferred to an introductory-level textbook on dy-
namical systems in the case they wish to obtain
a detailed understanding of chaotic systems.

Dynamical systems

A dynamical system is a mathematical formalism
describing the evolution of some system in time.
A nonlinear dynamical system may be modeled
as a system of equations operating on Rn for
some n ∈ N+, which is iterated such that the so-
lutions calculated from one iteration are fed back
into the equations such that they become the in-
put values for the next iteration. The current
state after a particular iteration is then given by
the output of that iteration. Notably, this formu-
lation can be used to express both discrete-time
systems or maps (notated using systems of dif-
ference equations) and continuous-time systems
or flows (expressed with systems of differential
equations).

A sequence of values generated in this iterative
manner is called an orbit. A particular orbit of
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a dynamical system represents the behavior of
the system for the particular set of initial con-
ditions represented by the values which initiate
it. As the set of initial conditions is equal to
Rn, the number of possible orbits of a particu-
lar dynamical system is infinite. [2] An orbit is
called periodic if after some number n of states
it starts repeating previously-visited states, and
aperiodic if it is not periodic.

Dynamical systems which model processes in
which energy is dissipated to the surrouding en-
vironment also exhibit the important property of
being dissipative. This means that the system’s
phase space - this is, the subset of Rn containing
all possible states - shrinks with time, eventually
leading to the formation of an attractor after a
transient phase. An attractor is a set of states to-
ward which the system tends to evolve regardless
of the starting state. More formally, an attractor
is a set of states such that:

• If the state of the system is within the at-
tractor, all states that follow it are also
within the attractor.

• There exists a neighborhood of the attractor
such that, if a state is within this neighbor-
hood, it will be within the attractor some
number of iterations later.

• There is no subset of the attractor that has
the two properties above.

Due to the iterative nature of dynamical systems,
under certain conditions which will be explored
in the next section, the attractor set of a given
system might have a shape that is self-similar
and therefore fractal.

Chaotic systems

A chaotic dynamical system is a dynamical sys-
tem that exhibits chaos in some region of its
phase space. For the purposes of this report, we
are interested only in dynamical systems that ex-
hibit chaos on their attractor, as these systems
will generate non-repeating orbits, allowing us to

extract musical phrases with “infinite” variation,
only limited by the musical scales we choose to
use.

A system exhibits chaos if it satisfies the follow-
ing conditions:

• Sensitivity to Initial Conditions

Sensitivity to initial conditions means that
every point within the chaotic region of the
system’s phase space is arbitrarily closely
approximated by points with significantly
different trajectories. More formally, this
means that, for two points in phase space
that are arbitrarily close, with initial sepa-
ration δ0, their separation after an interval
t is as follows: |δt| ≈ |eλtδ0|
The exponent λ is called the Lyapunov ex-
ponent of the system. A positive Lyapunov
exponent is an indicator of chaotic behavior.

• Topological Mixing

Topological mixing means that the system
evolves over time so that any part of the
chaotic region of phase space will eventu-
ally overlap all of that chaotic region. In our
case, any region of the attractor will eventu-
ally overlap the entire attractor. This mean-
ing of “mixing” corresponds to the intuitive
meaning of the word, and mixing dyes is an
example of a chaotic system.

• Dense Periodic Orbits

For a system to have dense periodic orbits
means that every point in its phase space
is approximated arbitrarily closely by peri-
odic orbits. This is important because it
means that, even if the system seems to
be on a periodic orbit, it only takes an in-
finitesimally small perturbation to disturb
it - which, combined with sensitivity to ini-
tial conditions means that we can never be
sure we are on a periodic orbit, as the sys-
tem might start evolving unpredictably at
any moment.

The three properties above, combined, mean
that it is essentially impossible to predict how
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a chaotic system might evolve - Even though a
chaotic system is described by fully determin-
istic rules. In fact, the perturbations required
to change drastically the behavior of a chaotic
system are so small that chaos was originally
discovered due to floating-point roundoff caus-
ing tremendous differences in the output of a
weather model. [6]

Attractor Types

Under non-chaotic conditions, an attractor
might be a single point [cf. figure 1 on page 7]
(corresponding to a periodic orbit of length 1),
or a set of points on some closed loop [cf. figure 2
on page 7] (corresponding to a periodic orbit of
length > 1). However, chaotic systems have at-
tractors with complex fractal shapes, which re-
semble in many ways natural shapes. [cf. figure 3
on page 7] Despite the fact that we cannot pre-
dict the orbit starting at any specific point, it is
the fact that the orbit will remain confined to
this attractor and the fractal form of the attrac-
tor itself which confer the “natural” character we
are seeking to the generated music.

These chaotic, fractal-shaped attractors are
called Strange attractors, and it is through them
that we find our aforementioned link between
the theories of chaos and of fractal geometry.
From the shapes of strange attractors it is visi-
ble that unpredictable systems might indeed lead
to great order. Despite us being unable to pre-
dict the trajectory of any given point upon the
attractor, knowing that the state remains con-
fined to this complex, natural-seeming shape al-
lows us to come to an intuitive understanding
of how chaotic processes generate regular, how-
ever ever-changing patterns. It is now simple to
understand how music generated by chaotic or-
bits diverges from that generated by non-chaotic
orbits. [cf. figure 4 on page 7]

Music and Chaos

Mapping Chaos to Music

The general technique employed to extract mu-
sic from the output of chaotic systems has re-
mained roughly the same throughout the his-
tory of the use of chaos for compositions: The
state vector ~xn is mapped to some musical prop-
erty according to a composer-defined mapping.
Analogously, an orbit can be mapped to a mu-
sical phrase of arbitrary length Early works fo-
cused mainly on one-dimensional systems, with
the mapping being generally pitch-focused - the
state value would be mapped to some note on a
composer-chosen scale. [9] [4]

Examples of music properties that might be
mapped from outputs of the chaotic system are:

• Note pitch

• Note duration

• Instrument dynamics (attack time, sustain,
release time...)

• Rhythm

• Instrumentation

The exact properties modulated depend only
on the composer’s choices. Likewise, the ex-
act mapping used to transform the outputs of
the chaotic system into musical properties de-
pends only on the composer. When mapping the
system to pitches (the most commonly explored
technique), it is common for the composer to se-
lect a scale to work on and then define a map-
ping from the phase space of the system into that
scale.

Bidlack [2] pioneered the technique of map-
ping multi-dimensional state vectors in order
to chaotically influence more than one musical
property - for instance, a two-dimensional map’s
first dimension might be mapped to pitch, while
its second is mapped to note length.
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Brief History of Chaotic Composition

We can cite as a few important pioneers of com-
position using chaos Jeff Pressing, Michael Go-
gins, and Rick Bidlack.

Pressing’s work was one of the earliest to employ
chaos in music generation. He focused on explo-
rations of orbits that were on the border between
periodic and chaotic behavior, generating musi-
cal phrases that went back and forth between
quasi-periodic and chaotic. [9]

Gogins, in turn, innovated by using so called “It-
erated Function Systems”, where instead of a
single function being applied to the state of the
system at each iteration, a function is randomly
chosen from a set of several functions with prede-
fined probabilities. This allows one to represent
a great variety of fractals in a simple way. [4]

Finally, Bidlack explored mappings of both con-
servative and dissipative systems, besides be-
ing one of the first composers to attempt ex-
plorations of higher-dimensional maps, as pre-
viously described. [2]

Future Developments

Small-Scale Chaos

It has been proposed by DiScipio [3] and Truax
[11] that “large-scale” applications of chaos to
music which construct the song structure itself
from the chaotic system do not make musical
sense. Truax states: “From a more philosophi-
cal or aesthetic point of view, it is not clear than
an arbitrary mapping of a non-linear function
is inherently more musical than, for instance, a
random or stochastic function. The musicality
may reside in the musical knowledge of the map-
per more than in the source function.” [11]

They propose, in opposition, that chaos should
be employed to sound synthesis. Specifically,
DiScipio proposes the application of chaotic
techniques to granular synthesis, a technique
of sound synthesis where sounds are composed
from many “sound grains” being played at dif-

ferent speeds and frequencies. Employing chaos
in granular synthesis allows for unpredictable re-
formulation of these grains, generating endlessly
variable sounds. In 2013, an iOS app called
“Strange Attractor”, based on work by John
Mackenzie [7] has been released, which expands
on the idea of chaotic sound synthesis.

Hybrid Techniques

There has been next to no exploration of the
possibilities of combining chaotic composition
with other algorithmic generation techniques -
despite the assertion by many scientists and com-
posers who have researched chaotic composition
that perhaps chaotic composition might be bet-
ter seen as a technique to generate “raw materi-
als” of a certain musical character. [2] It might
be fruitful to use chaos as a “generator” of sorts
of musical phrases to be combined by more dis-
cerning approaches to musical composition, for
instance methods based on neural networks.

Conclusion

We have shown that chaotic systems are a power-
ful method for the generation of musical phrases
- artistically, they are interesting due to the pos-
sibility of generating a pattern that is simulta-
neously regular and near-infinitely variated. We
have also explored the philosophical background
behind the interest in capturing natural phenom-
ena through music, and shown that chaos allows
us to endow the generated music with a “natu-
ral” quality, or to produce the aural equivalent
of natural phenomena.

We have presented and discussed the most
prominent method of converting a chaotic pro-
cess into music. We have also discussed the pos-
sibility of using chaos in the synthesis of sounds,
and of combining chaos as an element in more
complex algorithmical composition procedures.
These are fields which have been woefully under-
explored, despite the great potential of chaos.
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Appendix 1: Figures

Figure 1: A point attractor.

Figure 2: A cycle attractor.

Figure 3: A strange attractor.

Figure 4: Scores of music generated from attrac-
tors. From top to bottom: Music generated from
a periodic orbit; Music generated from a small
number of chaotic orbits; Music generated from
a large number of chaotic orbits.
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