From Azimuth's cocktail party to accident prevention Binaural Sound Localization

Christoph Quinten

christoph.quinten@rwth-aachen.de AICES RWTH Aachen University

Aachen, 22.06.2016

Outline

- 2 Physical hearing cues
- Cocktail Party Processing
- 4 Human safety and survival system

Christoph Quinten

• remarkable how we hear and separate sound

- remarkable how we hear and separate sound
- cocktail party processing becomes more relevant

- remarkable how we hear and separate sound
- cocktail party processing becomes more relevant
- understand the physical cues

- remarkable how we hear and separate sound
- cocktail party processing becomes more relevant
- understand the physical cues
- human safety and survival system
 - prevent traffic accidents

• Lord Rayleigh's duplex theory (1876)

- binaural and spectral cues
- single source localization

• Lord Rayleigh's duplex theory (1876)

- binaural and spectral cues
- single source localization

• Proposed warning system to optimize siren localization (2011)

- in-cabin warning system
- UK emergency services

• Lord Rayleigh's duplex theory (1876)

- binaural and spectral cues
- single source localization
- Proposed warning system to optimize siren localization (2011)
 - in-cabin warning system
 - UK emergency services
- Uniform linear microphone array by Carter and Abraham (1980)

Introduction

2 Physical hearing cues

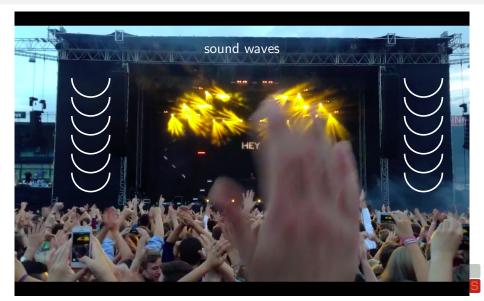
- Binaural cues
- Spectral cues
- Spatial Localization

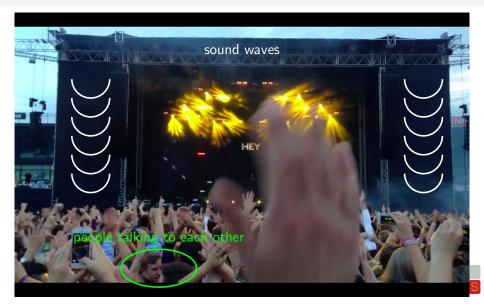
3 Cocktail Party Processing

4 Human safety and survival system

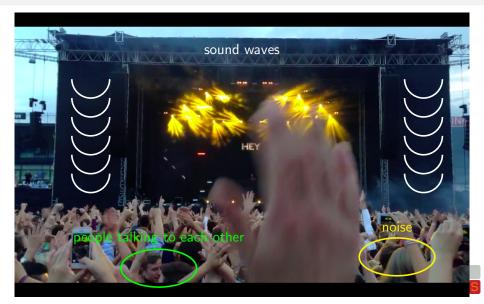
5 Conclusions

https://www.youtube.com/watch?v=b0lrGXF2Y3w


AVICII live @ HockeyPark Mönchengladbach



Christoph Quinten



Christoph Quinten

Christoph Quinten

Lord Rayleigh's duplex theory

Duplex Theory [5]

Lord Rayleigh's duplex theory

- sound arrives earlier at the ear closer to the source
- this sound has higher intensity than at the other ear
- only for simple single sound sources in free field

Interaural Differences

- **ITD** = Interaural Time Difference
- **ILD** = Interaural Level Difference (aka IID = Intensity Difference)
- **IPD** = Interaural Phase Difference

Interaural Differences

- **ITD** = Interaural Time Difference
- **ILD** = Interaural Level Difference (aka IID = Intensity Difference)
- **IPD** = Interaural Phase Difference

ITD

- it takes longer for the sound to arrive at the farer ear
- maximum is about $600 \mu s$
- depends on the speed of sound, geometry of head and ears
- not effective at high frequencies

Interaural Differences

- **ITD** = Interaural Time Difference
- **ILD** = Interaural Level Difference (aka IID = Intensity Difference)
- **IPD** = Interaural Phase Difference

ILD

- shadowing effect of the head as consequence of absorption and reflection
- maximum above approximately 1.5kHz
- may not exhibit a relationship to azimuth
- not effective at low frequencies

Interaural Differences

- **ITD** = Interaural Time Difference
- **ILD** = Interaural Level Difference (aka IID = Intensity Difference)
- **IPD** = Interaural Phase Difference

IPD

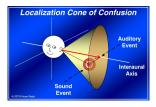
- depends on the frequency and the ITD
- underlies localization performance with low frequency sounds
- intensity differences responsible for performance

• ITD and ILD cannot uniquely locate sound

- ITD and ILD cannot uniquely locate sound
- sound sources in the median plane have no interaural differences

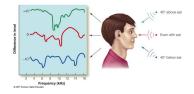
- ITD and ILD cannot uniquely locate sound
- sound sources in the median plane have no interaural differences
- differences specify a cone of directions

- ITD and ILD cannot uniquely locate sound
- sound sources in the median plane have no interaural differences
- differences specify a cone of directions
- similar differences (front from back or up from down)



Cone Of Confusion [6]

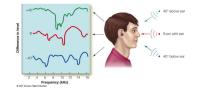
Christoph Quinten



Cone Of Confusion [6]

- sound localization along a cone of confusion
- higher frequencies appear higher in elevation
- static sound sources spectral cues stay fixed over duration of the sound
- outside of the free field cues evolve as echoes and reverberation

Spatial Localization

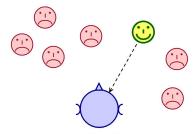


HRTF [8]

Spatial Localization

- higher complexity of locating moving sounds
- Head related transfer function (HRTF): frequency response as function of azimuth and elevation
- Precedence effect: sound is reflected from various surfaces before reaching the ears
- Azimuth: head and ear related coordinate system

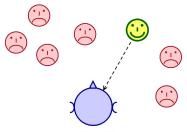
HRTF [8]



Introduction

- 2 Physical hearing cues
- 3 Cocktail Party Processing
 - 4 Human safety and survival system
 - 5 Conclusions

Cocktail Party Processing (CPP)


Cocktail-Party-Effekt: Herausfiltern einer Schallquelle bei Anwesenheit mehrere Schallquellen

CPP example [10]

Cocktail Party Processing (CPP)

- phenomenon of selective attention
- separate single voice on a cocktail party
- other example: someone calls your name \rightarrow focus on this talk

Cocktail-Party-Effekt: Herausfiltern einer Schallquelle bei Anwesenheit mehrere Schallquellen

CPP example [10]

Introduction

2 Physical hearing cues

3 Cocktail Party Processing

- Human safety and survival system
 - Siren Localization
 - First Proposal In-Cabin Warning System
 - Second Proposal Uniform Microphone Arrays

Conclusions

4

Human safety and survival system

- in everdyday life the hearing of noise is in focus
- humans must be able to locate sound sources very fast

Human safety and survival system

- in everdyday life the hearing of noise is in focus
- humans must be able to locate sound sources very fast
- enhanced road and car safety is strongly required
- approaching vehicles can be estimated from an analysis of sound sources

Human safety and survival system

- in everdyday life the hearing of noise is in focus
- humans must be able to locate sound sources very fast
- enhanced road and car safety is strongly required
- approaching vehicles can be estimated from an analysis of sound sources
- prevent traffic accidents
- saving humans (civilians, lifesaver and victims) life

https://www.youtube.com/watch?v=ubwmKF7-80g

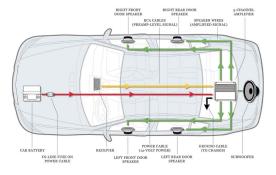
Einsatzfahrt RTW

Christoph Quinten

• sound = first warning of events

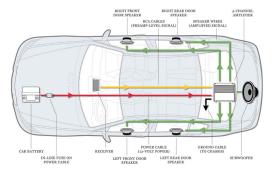
- sound = first warning of events
- sirens can cause confusion, disorientation, possible danger

- sound = first warning of events
- sirens can cause confusion, disorientation, possible danger
- todays cars improved sound system masks alerts


- sound = first warning of events
- sirens can cause confusion, disorientation, possible danger
- todays cars improved sound system masks alerts
- either the driver don't hear the siren or the siren is not strong enough to be recognized in the noisy environment

- sound = first warning of events
- sirens can cause confusion, disorientation, possible danger
- todays cars improved sound system masks alerts
- either the driver don't hear the siren or the siren is not strong enough to be recognized in the noisy environment
- when siren is heard, looking around trying to determine the direction

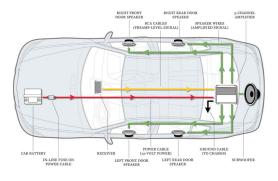
First Proposal - In-Cabin Warning System

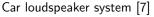

Car loudspeaker system [7]

Sound Localization

First Proposal - In-Cabin Warning System

minimize/eliminate spatial ambiguity inherent in existing sirens
 patterns contain broadest audible frequency and expand them




Car loudspeaker system [7]

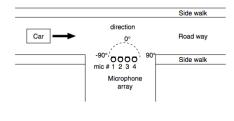
First Proposal - In-Cabin Warning System

Image: minimize/eliminate spatial ambiguity inherent in existing sirens

- patterns contain broadest audible frequency and expand them
- educe problems with environmental noise
 - in-cabin auditory as visual warning system
 - relay a warning sound in the same direction as the EV

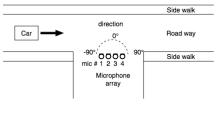
• recent systems detect driver's status like drowsiness

- recent systems detect driver's status like drowsiness
- outer information collected by systems like camera, radar, etc.


- recent systems detect driver's status like drowsiness
- outer information collected by systems like camera, radar, etc.
- environmental sound contains much information

- recent systems detect driver's status like drowsiness
- outer information collected by systems like camera, radar, etc.
- environmental sound contains much information
- use microphone array to record sounds of arriving vehicles

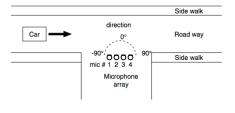
Sound recording


environment [4]

Sound recording

Temperature	15.9 °C
Road condition	Dry
Subject	4 cars
Measurement	5 times
Speed	20, 40, 60 km/h
Weather	Fair
Frequency response	20 - 20kHz
Sampling frequency	44.1kHz

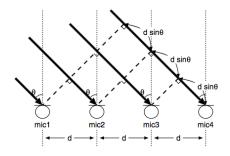
recording conditions [4]



environment [4]

Sound recording

Temperature	15.9 °C
Road condition	Dry
Subject	4 cars
Measurement	5 times
Speed	20, 40, 60 km/h
Weather	Fair
Frequency response	20 - 20kHz
Sampling frequency	44.1kHz


recording conditions [4]

environment [4]

- sounds captured and sampled at 44.1kHz
- vehicle sounds split into
 - frictional sound (between road and tires)
 - engine sound

Sound Localization

microphone array [4]

- d[m] element spacing
- $\theta[rad]$ direction of sound wave
- $dsin\theta$ propagation distance
- time delay[s] $\tau_S = dsin\theta/c$

$$\phi_{ij}(\tau) = \int_{t_s-T}^{t_s+T} x_i(t) x_j(t+\tau) \,\mathrm{d}t$$

$$\phi_{ij}(\tau) = \int_{t_S-T}^{t_S+T} x_i(t) x_j(t+\tau) \,\mathrm{d}t$$

- $x_i(t), x_j(t)$: input signals recorded at *i*th and *j*th microphone
- cross-correlation $\phi_{ij}(\tau)$ at time t_S with τ delay
- *T* length of the window that satisfies *T* > 2*d*/*c*

$$\phi_{ij}(\tau) = \int_{t_S-T}^{t_S+T} x_i(t) x_j(t+\tau) \,\mathrm{d}t$$

- $x_i(t), x_j(t)$: input signals recorded at *i*th and *j*th microphone
- cross-correlation $\phi_{ij}(\tau)$ at time t_S with τ delay
- *T* length of the window that satisfies *T* > 2*d*/*c*

$$\phi_{ij}(\tau) = \int_{-f_c}^{f_c} e^{j2\pi f\tau} \,\mathrm{d}f = 2f_c \frac{\sin 2\pi f_c \tau}{2\pi f_c \tau}$$

$$\phi_{ij}(\tau) = \int_{t_S-T}^{t_S+T} x_i(t) x_j(t+\tau) \,\mathrm{d}t$$

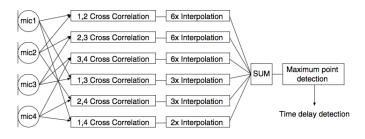
- $x_i(t), x_j(t)$: input signals recorded at *i*th and *j*th microphone
- cross-correlation $\phi_{ij}(\tau)$ at time t_S with τ delay
- *T* length of the window that satisfies *T* > 2*d*/*c*

$$\phi_{ij}(\tau) = \int_{-f_c}^{f_c} e^{j2\pi f\tau} \,\mathrm{d}f = 2f_c \frac{\sin 2\pi f_c \tau}{2\pi f_c \tau}$$

- accuracy depends on the bandwith of the input signal
- $\phi(\tau)$ has a clear peak when f_c is significantly large

• time delay is computed using pairs of microphones

- time delay is computed using pairs of microphones
- m-microphone array: $\phi_C(\tau) = \sum_{i=0}^{m-1} \phi_{i,i+1}(\tau)$


- time delay is computed using pairs of microphones
- m-microphone array: $\phi_C(\tau) = \sum_{i=0}^{m-1} \phi_{i,i+1}(\tau)$
- conventional method: $\phi_C(\tau) = \phi_{12}(\tau) + \phi_{23}(\tau) + \phi_{34}(\tau)$

- time delay is computed using pairs of microphones
- m-microphone array: $\phi_C(\tau) = \sum_{i=0}^{m-1} \phi_{i,i+1}(\tau)$
- conventional method: $\phi_C(\tau) = \phi_{12}(\tau) + \phi_{23}(\tau) + \phi_{34}(\tau)$
- normalize differences with cubic spline interpolation \rightarrow produce the sum of ϕ_{ij} by offsetting the time differences

- time delay is computed using pairs of microphones
- m-microphone array: $\phi_C(\tau) = \sum_{i=0}^{m-1} \phi_{i,i+1}(\tau)$
- conventional method: $\phi_C(\tau) = \phi_{12}(\tau) + \phi_{23}(\tau) + \phi_{34}(\tau)$
- normalize differences with cubic spline interpolation \rightarrow produce the sum of ϕ_{ij} by offsetting the time differences



procedure flow [4]

Introduction

- 2 Physical hearing cues
- 3 Cocktail Party Processing
- 4 Human safety and survival system

• several cues in human listening

- several cues in human listening
- ability to locate sound is remarkable

- several cues in human listening
- ability to locate sound is remarkable
- cocktail party processing: focus on a talk when someone calls your name

- several cues in human listening
- ability to locate sound is remarkable
- cocktail party processing: focus on a talk when someone calls your name
- two systems/methods how drivers can be warned still earlier

- several cues in human listening
- ability to locate sound is remarkable
- cocktail party processing: focus on a talk when someone calls your name
- two systems/methods how drivers can be warned still earlier
 ⇒ prevent more accidents and save more lifes
 - \Rightarrow prevent more accidents and save more lifes

Questions

Thanks for your attention!

Christoph Quinten

Sound Localization

25.05.2016 27 / 27

References

[1] D. Wang, G. Brown - *Binaural Sound Localization*, 2005, chapter 5 from *Computational Auditory Scene Analysis*

[2] G. Stecker, F. Gallun - Binaural Hearing, Sound Localization, and Spatial Hearing, 2012, chapter 14, pp. 383-433

[3] D. Moore, S. Boslem, V. Charissis - Optimisation of Sound Localization for Emergency Vehicle Sirens through a Prototype Audio System, 2011, Article

[4] K. Kodera, A. Itai, H. Yasukawa - *Sound Localization of Approaching Vehicles Using Uniform Microphone Array*, 2007, Conference Paper pp. 1054-1058

[5] Lord Rayleigh's duplex theory - http://www.diracdelta.co.uk/science/source/d/u/ duplex%20theory%20of%20localization/source.html#.V1f0amOxaRt

[6] Cone of confusion - http://hearinghealthmatters.org/waynesworld/2015/ localization-more-important-than-word-recognition/

References

[7] Car audio system http://images2.crutchfieldonline.com/ImageBank/v20151215083500/ImageHandler/ scale/978/978/ca/learningcenter/car/amp_install_guide/system-diagram.jpg

[8] Head related transfer function -

http://images.google.de/imgres?imgurl=http%3A%2F%2Ftheheadphonelist. theheadphonelist.netdna-cdn.com%2Fwp-content%2Fuploads%2F2013%2F10%2FHRTF.jpg% 253F8a4320&imgrefurl=http%3A%2F%2Ftheheadphonelist.com%2Fbrain-localize-sounds% 2Fhrtf%2F&h=443&w=900&tbnid=TggfBfv16ptBYM%3A&docid=XbqbN5Gn3nKIWM&ei= CI5aV4WCNMOTaYCWoNAE&tbm=isch&client=safari&iact=rc&uact=3&dur=1194&page=1& start=0&ndsp=17&ved=0ahUKEwiFppqOmJ3NAhXDSRoKHQALCEoQMwgqKAYwBg&bih=562&biw=1280

[9] Azimuth coordinate system https://en.wikipedia.org/wiki/Azimuth#/media/File:Azimuth-Altitude_schematic.svg

[10] Cocktail party processing http://www.cocktail-party-processor.de/intro/index.html

