
Music Genre Classification:  
Semi-supervised Learning with Fuzzy and Hard Clustering

Presentation for Computer Music Seminar SS2016 
Supervised by Prof. Paolo Bientinesi 
RWTH Aachen University 

Tina Raissi, 29 June 2016

1



• Growth of  musical collections in internet and the 
necessity of  automatic processing  

• Huge amount of  unlabeled data time consuming 
process of  manual classification 

• No reliable boundaries between clusters

2

Introduction to the problem:  
Why semi-supervised?



• Growth of  musical collections in internet and the 
necessity of  automatic processing  

• Huge amount of  unlabeled data time consuming 
process of  manual classification 

• No reliable boundaries between clusters
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Introduction to the problem:  
Why semi-supervised?

What if  we learn from both  
labeled and unlabeled data?
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Semi-supervised Learning

Given: Labeled training data L = {xi, yi}li=1 and unlabeled data U = {xi}u
i=l+1  

Goal: Learning a classifier  f : X → Y

Supervised Unsupervised

Semi- 
Supervised

unlabeled labeled
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Key Concept

• Linking between the distribution of  unlabeled data P(x)  and 
the target label.  

• Cluster assumption : local and global consistency 
• Transductive or Inductive?

Semi-supervised Learning



• Split in two stages:  

1. Feature extraction: content-based extraction of  Musical 
Surface, Rhythmic content and Pitch content features 

2. Multi-class classification: binary classifiers extended to 
multi-class and collection of  binary problems 
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Classification process



• Increasing  the accuracy of  classification phase by an 
adequate organization of  features. 

• Common method: Vector of  features 

Multi-view: According to extraction method, physical 
definition and classification method the features are divided in 
subsets.
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Dealing with Features
Feature Extraction

✧��Problem: loss of  original physical meaning 

✦ Solution: multi-view features



1. Short time: Frames, with relative signal assumed to be 
statically stationary and independent from others.  

  ✧��Problem: referred to speech recognition 

2. Long-time: Integration of  several frames in a pre-fixed 
time window using statistic measures. 

3. Beat: Transforming audio signal to human-recognizable 
terms such as mood and emotion. 
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Poria et al.’s Feature Extraction

Example of  a Beat Histogram 



Different Features for different 
classification results
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Feature Extraction

Multi-view features in Xu et al. 

P-dimensional numerical vectors in Poria et al. 



Short-time and Long-time Features 
compared
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Feature Extraction
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1 to 1 mapping problem with music
Multi-class classification

• 2 step reduction: 

1. Reducing number of  features to those that better represents the dataset 

2. Defining a small number of  classes (classifier design) 

• Crispness/Uncertainty 

Crisp ➪ deterministic yes/no: you must know the structure and parameters and 
have a precise description of  overall system and process 

Uncertain ➪ probabilistic uncertainty (stochastic process) or fuzziness. 

• Fuzziness: related to semantic meaning and imprecision due to 
lack of  information
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Sherlock saw the man with binoculars
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What is a Fuzzy set?
Multi-class classification

membership function 



𝛆 = 0.01
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Fuzzy Clustering
Poria et al.’s  Method
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Mapping clusters to genre labels

Poria et al.’s  Method

1. For each data point you decide the cluster (centroid) to 
which it belongs by: 

2. For each centroid you decide the target label by majority 
vote. 

✧��Problem: You may have an empty value / tie
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Final crisp decision for target label

Poria et al.’s  Method

• With m = 1 no further process 

• With m = 10 you have max uncertainty 

• Acceptable values for m are 2 and 3 

Descending Sort 

Pick first m 
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Final crisp decision:  
A single label for each data point

Poria et al.’s  Method

1. Train n classifiers using 10 + p features (adding membership 
values) and relative m labels. 

2. Use the appropriate classifier for choosing the label for every 
data point 

3. The highest accuracy is obtained by clustering algorithm in 
Support Vector Machine framework. 
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Evaluation

Poria et al.’s  Method

• Table I: Fuzzy clustering with different values of  m using 
support vector machine  for training the classifier 

• Table II: other classifiers not using fuzzy clustering phase
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Review of  available semi-supervised 
methods (2005-2013)
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