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Introduction

Motivation:

• sound localization plays an important role for mobile robots

• binaural localization systems are common in nature

Reference: Biologically Inspired Binaural Sound Source

Localization and Tracking for Mobile Robots, Calmes 2009

• uses barn owl as biological example

• implements system using artificial barn owl ruff

• also uses statistical tracking and visual sensor aids
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Barn Owl as Biological Example



Barn Owl

Tyto Alba by Peter Trimming,

Creative Commons 2.0

• one of natures most precise

example of sound localization

• can hunt only by hearing

• special structure of head makes

110 degree hearing possible

• asymmetric ears to distinguish

the elevation of sounds

• first research on acoustic

hunting was performed by

Roger S. Payne in 1971
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Neural Audio Processing



Neural Network Basics (Biological)

• neurons:

• create a charge

• release the charge when triggered/excited

• stronger impulse - higher frequency of charges

• synapses:

• transfer charges from one neuron to another

• can increase or reduce the excitation of the target node

• exhibitory connections:

• connections increasing the excitation

• inhibitory connections

• connections decreasing the excitation
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Neural Network Basics (Technical)

• first attempt of mathematical description by McCulloch and

Pitts in 1943

• linear combination of weighted inputs

⇒ equivalent of synapses

• apply activation function on the combination

⇒ equivalent of neurons

y = f (w1x1 + w2x2 + ...+ wnxn)

• activation function e.g. sigmoid function

f (x) = 1
1+e−x
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Jeffress Model

• presented by Lloyd A. Jeffress in 1948

• implemented as delay-line algorithm by Liu et. al in 2000

• a model for the ITD part of the brain

• uses I neurons with delayed inputs from left and right ear for

each timestep n

• includes delay lines to match phase shifts

• phase shift is computed for each frequency band (m) by using

fast fourier transformation

• the azimuth spectrum is divided into I parts
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Jeffress Model Structure

Dual Line structure (Calmes, 2009)
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Jeffress Model Notation

• for each node, the signal is delayed by:

τi = ITDmax
2 sin

(
i

I−1π −
π
2

)
• to shift a signal in the frequency domain, the complex vector

is rotated:

X
(i)
L,n(m) = XL,n(m)e−j2πfmτi

• the azimuth sector is selected by the minimal distance of the

complex values:

in(m) = arg mini [∆X
(i)
n (m)]
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Jeffress Model Diagram

3D coincidence map (Calmes, 2009)
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Spence & Pearson

• a model for the ILD part of the brain

(Spence & Pearson, 1989)

• simulates different parts of the barn owl brain

• NA - frequency filtered signal intensity

(nucleus angularis)

• VLVp - sigmoidal shaping of the intensity

(nucleus ventralis lemnisci lateralis, pars anterior)

• ICc - peaked response curves determining the ILD sector

(central nucleus of the inferior colliculus)

• parameters tuned in a way to achieve similar results as the

barn owl
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Spence & Pearson - Nodes

• each neural node has a predefined activation function

• equal for every node

• values determined by research on the barn owl

• voltage v and activity a determined by inputs g :

v =
ge · ve + gi · vi + gl · vl

ge + gi + gl

with e = excitatory, i = inhibitory and l = leakage

a =
1

1 + e ln(s)·(v−vt)

with s determining the steepness of the sigmoidal slope
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Spence & Pearson - Structure

NA

VLVp

ICc

L R
neural network structure of the

implemented Spence & Pearson

model

• +w icc
j ,k = 1

σ·
√
2·π ·e

−(k−j)2

2·σ2

if j − σ ≤ k ≤ j + σ

• −w icc
j ,k = k−j

σ

if j < k ≤ j + σ

• −w vlvp
k = 1− k

|VLVp|

• +w vlvp
k = 1

maxinput
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Spence & Pearson - Parameters

• setting ve = 0, vi = −90, vl = −65 and gl = 1

• achieves similar peak responses as the internal brain structure

of the barn owl

• activation function parameters may be randomized

• most active ICc node determines the sound direction
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Sound Localization Setup

• combine Dual-Line/Jeffress model with Spence & Pearson

model

• select most active nodes from both models

• assign nodes to sectors regarding azimuth and elevation by

testing

ITD/ILD contour lines of simple two-microphone setup

(Calmes, 2009)
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Artifical Owl Ruff Localization

System



Artificial Owl Ruff

Aim:

• expand the azimuth spectrum above 90 degrees

• make the left ear more sensitive for higher elevated sounds

• make the right ear more sensitive for lower elevated sounds

• achieve frequency distortion with a custom HRTF

artificial owl ruff setups (Calmes, 2009) 14



ITD / ILD Analysis

ITD/ILD contour lines of artificial owl ruff setup

(Calmes, 2009)
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Effects of the Artificial Owl Ruff

• achieved to expand the azimuth range above 90 degree

• achieved to focus the ILD part on measuring elevation

• did not achieve to benefit from a custom HRTF...

• ...but:

• azimuth range further increased

• ILD sensitivity increased in regards to elevation

• possibly the improvement was too noisy to improve the

localization
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Effect of an Artificial Head to

Human Acoustic Perception



Demo

• binaural listening demonstration
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Conclusion



Conclusion

• biological inspired neural methods enhance sound localization
systems:

• ITD part: Jeffress model

• ILD part: Spence & Pearson model

• artificial microphone setups inspired by the barn owl enhance

sound localization

• artificial structures have an important effect on acoustic
perception

⇒ for localization systems as well as humans
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thank you for your attention!
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