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Introduction

Motivation:

e sound localization plays an important role for mobile robots

e binaural localization systems are common in nature

Reference: Biologically Inspired Binaural Sound Source
Localization and Tracking for Mobile Robots, Calmes 2009

e uses barn owl as biological example
e implements system using artificial barn owl ruff

e also uses statistical tracking and visual sensor aids



Barn Owl as Biological Example



e one of natures most precise
example of sound localization

e can hunt only by hearing

e special structure of head makes
110 degree hearing possible

e asymmetric ears to distinguish
the elevation of sounds

e first research on acoustic

hunting was performed by

Tyto Alba by Peter Trimming, Roger S. Pavne in 1971
ger S. Payne in
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Neural Audio Processing



Neural Network Basics (Biological)

® neurons:

e create a charge

e release the charge when triggered/excited

e stronger impulse - higher frequency of charges
e synapses:

e transfer charges from one neuron to another

e can increase or reduce the excitation of the target node
e exhibitory connections:

e connections increasing the excitation
e inhibitory connections

e connections decreasing the excitation



Neural Network Basics (Technical)

e first attempt of mathematical description by McCulloch and
Pitts in 1943
e linear combination of weighted inputs
= equivalent of synapses
e apply activation function on the combination

= equivalent of neurons

y = f(waxy + woxp + ... + Wpxy)

e activation function e.g. sigmoid function




Jeffress Model

e presented by Lloyd A. Jeffress in 1948
e implemented as delay-line algorithm by Liu et. al in 2000
e a model for the ITD part of the brain

e uses | neurons with delayed inputs from left and right ear for

each timestep n
e includes delay lines to match phase shifts

e phase shift is computed for each frequency band (m) by using
fast fourier transformation

e the azimuth spectrum is divided into / parts



Jeffress Model Structure

Dual Line structure (Calmes, 2009)



Jeffress Model Notation

e for each node, the signal is delayed by:

. __ |ITDmax i s
= Mo s (i 5)

e to shift a signal in the frequency domain, the complex vector
is rotated:

X{(m) = X n(m)e 3270

e the azimuth sector is selected by the minimal distance of the
complex values:

in(m) = arg min,-[AX,Si)(m)]




Jeffress Model Diagram

3D coincidence map (Calmes, 2009)



Spence & Pearson

e a model for the ILD part of the brain
(Spence & Pearson, 1989)
e simulates different parts of the barn owl brain
e NA - frequency filtered signal intensity
(nucleus angularis)
e VLVp - sigmoidal shaping of the intensity
(nucleus ventralis lemnisci lateralis, pars anterior)
e |Cc - peaked response curves determining the ILD sector

(central nucleus of the inferior colliculus)

e parameters tuned in a way to achieve similar results as the

barn owl



Spence & Pearson - Nodes

e each neural node has a predefined activation function

e equal for every node
e values determined by research on the barn owl

e voltage v and activity a determined by inputs g:

ge Vet &i-Vitg Vv
ge T+ 8i T8

with e = excitatory, i = inhibitory and / = leakage

B 1
a= 14 eln(s)-(v—wt)

with s determining the steepness of the sigmoidal slope
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Spence & Pearson - Structure
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implemented Spence & Pearson
model
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Spence & Pearson - Parameters

e setting ve =0, v = —90, vy = —65 and g, =1

e achieves similar peak responses as the internal brain structure
of the barn owl

e activation function parameters may be randomized

e most active |Cc node determines the sound direction
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Sound Localization Setup

e combine Dual-Line/Jeffress model with Spence & Pearson
model

e select most active nodes from both models

e assign nodes to sectors regarding azimuth and elevation by

testing
maximum bei azi: 105 ele: 6 value:0.17195 maximum bei azi: 111 ele: -39 value:6.5357
minimum bei azi: -101 ele: -50 value:-0.21153 minimum bei azi: -107 ele: -40 value:-7.0961
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< 5 I : (
S S N : A
T 0 © 0°
3 3 NI A\
< L 4 d A
Q): g :
. R b I O
%o -90°
-180° -180° -90° 0° 90° 180°

azimuth azimuth

ITD/ILD contour lines of simple two-microphone setup

(Calmes, 2009) s



Artifical Owl Ruff Localization
System




Artificial Owl Ruff

Aim:

e expand the azimuth spectrum above 90 degrees

e make the left ear more sensitive for higher elevated sounds
e make the right ear more sensitive for lower elevated sounds
e achieve frequency distortion with a custom HRTF

b

artificial owl ruff setups (Calmes, 2009) 14



ITD / ILD Analysis

maximum bei azi: 101 ele: 45 value:0.28214 maximum bei azi: 9 ele: 29 value:12.0839
minimum bei azi: ~120 ele: 60 value:-0.28 minimum bei azi: -2 ele: -39 value:~14.4048
ITD(correlation) inms _stepsize: 0.05 ILDindB stepsize: 2

elevation
elevation

azimuth azimuth
maximum bei azi: 143 ele: 47 value:0.30245 maximum bei azi: 2 ele: 24 value:9.599
minimum bei azi: ~123 ele: 49 value:-0.30249 minimum bei azi: -9 ele: -40 value:-12.352
ITD(correlation) inms stepsize: 0.05 ILDindB stepsize: 2
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ITD/ILD contour lines of artificial owl ruff setup

(Calmes, 2009) T



Effects of the Artificial Owl Ruff

achieved to expand the azimuth range above 90 degree

achieved to focus the ILD part on measuring elevation

did not achieve to benefit from a custom HRTF...

e ... but:

e azimuth range further increased
e |LD sensitivity increased in regards to elevation

possibly the improvement was too noisy to improve the

localization
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Effect of an Artificial Head to
Human Acoustic Perception




e binaural listening demonstration

17



Conclusion




Conclusion

e biological inspired neural methods enhance sound localization
systems:
e |TD part: Jeffress model
e ILD part: Spence & Pearson model
e artificial microphone setups inspired by the barn owl enhance
sound localization
e artificial structures have an important effect on acoustic
perception

= for localization systems as well as humans

18



thank you for your attention!
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