A Short Introduction to Audio Fingerprinting

Simon Froitzheim

RWTH Aachen University

simon.froitzheim@rwth-aachen.de

June 28th, 2017

Conclusive Remarks

Overview

- Audio Fingerprinting Basics
- 2 An Algorithmic Overview

3 Shazam

- Overview
- Technical Details

4 Conclusive Remarks

- Synopsis
- References

Conclusive Remarks

Audio Fingerprinting Basics

Simon Froitzheim (RWTH Aachen)

Audio Fingerprinting

June 28th, 2017 3 / 26

Conclusive Remarks

Central Issue

• Given: An unlabeled piece of audio in any format

Central Issue

- Given: An unlabeled piece of audio in any format
- Goal: To encode the given audio piece in a so-called "fingerprint"

Central Issue

- Given: An unlabeled piece of audio in any format
- Goal: To encode the given audio piece in a so-called "fingerprint"

Why is this useful?

Conclusive Remarks

Applications for Audio Fingerprinting

• Content-based audio identification (CBID)

Simon Froitzheim (RWTH Aachen)

Conclusive Remarks

Applications for Audio Fingerprinting

• Content-based audio identification (CBID)

• Content-based integrity verification

Conclusive Remarks

Applications for Audio Fingerprinting

• Content-based audio identification (CBID)

- Content-based integrity verification
- Watermarking support

Applications for Audio Fingerprinting

• Content-based audio identification (CBID)

- Content-based integrity verification
- Watermarking support

All of this implies storage, indexing and comparison of fingerprints!

Content-based Audio Identification

Goal: To identify audio tracks solely based on the track itself (without any given metadata)

Content-based Audio Identification

Goal: To identify audio tracks solely based on the track itself (without any given metadata)

This can be achieved by:

Conclusive Remarks

Content-based Audio Identification

Goal: To identify audio tracks solely based on the track itself (without any given metadata)

This can be achieved by:

• Computing a fingerprint for every known audio piece

Conclusive Remarks

Content-based Audio Identification

Goal: To identify audio tracks solely based on the track itself (without any given metadata)

This can be achieved by:

- Computing a fingerprint for every known audio piece
- Storing each fingerprint in a database

Conclusive Remarks

Content-based Audio Identification (continued)

When confronted with an unknown audio excerpt:

Conclusive Remarks

Content-based Audio Identification (continued)

When confronted with an unknown audio excerpt:

• Compute the corresponding fingerprint

Conclusive Remarks

Content-based Audio Identification (continued)

When confronted with an unknown audio excerpt:

- Compute the corresponding fingerprint
- Match it against the database

Conclusive Remarks

Content-based Audio Identification (continued)

When confronted with an unknown audio excerpt:

- Compute the corresponding fingerprint
- Match it against the database
- Identify music piece based on the matching

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

Discrimination power

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness
 - Cropping

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness
 - Cropping
 - Distortions

Conclusive Remarks

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness
 - Cropping
 - Distortions
- Compactness

Conclusive Remarks

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness
 - Cropping
 - Distortions
- Compactness
- Computational simplicity

Requirements for Audio Fingerprinting Techniques [Cano, 2002]

- Discrimination power
- Robustness
 - Cropping
 - Distortions
- Compactness
- Computational simplicity

The usual trade-off between reliability and efficiency is present here!

An Algorithmic Overview

Simon Froitzheim (RWTH Aachen)

Audio Fingerprinting

June 28th, 2017 9 / 26

Conclusive Remarks

Audio Fingerprinting - A Modern Research Field

• Various procedures were developed since the very late 20th century

Audio Fingerprinting - A Modern Research Field

- Various procedures were developed since the very late 20th century
- Most use the same general framework

Audio Fingerprinting - A Modern Research Field

- Various procedures were developed since the very late 20th century
- Most use the same general framework
- Of high commercial interest for music companies

Audio Fingerprinting - A Modern Research Field

- Various procedures were developed since the very late 20th century
- Most use the same general framework
- Of high commercial interest for music companies
- Especially relevant for mobile devices

State-of-the-Art

• The Philps technique [Haitsma, 2002]

State-of-the-Art

- The Philps technique [Haitsma, 2002]
- Shazam [Wang, 2003]

State-of-the-Art

- The Philps technique [Haitsma, 2002]
- Shazam [Wang, 2003]
- Google waveprint [Baluja, 2007]

State-of-the-Art

- The Philps technique [Haitsma, 2002]
- Shazam [Wang, 2003]
- Google waveprint [Baluja, 2007]
- MASK [Anguera, 2012]

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Application Details	5		

• Free mobile app that recognizes music, TV and media based on short audio snippets recorded with your phone
Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Application Details	5		

- Free mobile app that recognizes music, TV and media based on short audio snippets recorded with your phone
- Features special camera interaction for interactive experiences and additional content

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Application Detai	ls		

- Free mobile app that recognizes music, TV and media based on short audio snippets recorded with your phone
- Features special camera interaction for interactive experiences and additional content
- Possible connections to Google, Snapchat, Facebook, Spotify,...

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Application Deta	ils		

- Free mobile app that recognizes music, TV and media based on short audio snippets recorded with your phone
- Features special camera interaction for interactive experiences and additional content
- Possible connections to Google, Snapchat, Facebook, Spotify,...
- Encourages music purchases

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Demonstration			

Let's see Shazam in action!

Conclusive Remarks

Overview

How Does it Work? - An Overview

The main steps of Shazam are:

• Spectogram computation

Conclusive Remarks

Overview

How Does it Work? - An Overview

- Spectogram computation
- Constellation map construction

Conclusive Remarks

Overview

How Does it Work? - An Overview

- Spectogram computation
- Constellation map construction
- Combinatorial hashing

Conclusive Remarks

Overview

How Does it Work? - An Overview

- Spectogram computation
- Constellation map construction
- Combinatorial hashing
- Database searching

Conclusive Remarks

Overview

How Does it Work? - An Overview

- Spectogram computation
- Constellation map construction
- Combinatorial hashing
- Database searching
- Scoring of possible matches

Technical Details

Overview

Spectograms

э

• • • • • • • •

Overview

Spectograms

• Visually represent the signal strength (energy) of a signal over time at various frequencies

Overviev

Spectograms

- Visually represent the signal strength (energy) of a signal over time at various frequencies
- Can also be used for sound waves

Overview

From Spectograms to Constellation Maps

Conclusive Remarks

Overview

From Spectograms to Constellation Maps

• Shazam chooses high energy candidate peaks with respect to density

Overview

From Spectograms to Constellation Maps

• Shazam chooses high energy candidate peaks with respect to density

• Why high amplitudes? Robustness!

Overview

From Spectograms to Constellation Maps

Shazam chooses high energy candidate peaks with respect to density

- Why high amplitudes? Robustness!
- Results in a constellation map

Conclusive Remarks Technical Details

Overview

Combinatorial Hashing

Simon Froitzheim (RWTH Aachen)

Overviev

Combinatorial Hashing

• Anchor points and target zones are determined

Overview

Combinatorial Hashing

- Anchor points and target zones are determined
- Pairwise hashing between anchor and points in the zone

Overview

Combinatorial Hashing

- Anchor points and target zones are determined
- Pairwise hashing between anchor and points in the zone
- Two frequency components plus the time difference form one hash

Conclusive Remarks

Overview

Why is Hashing Necessary?

• **Problem**: Constellation maps are very sparse which results in long matching times

Overview

Why is Hashing Necessary?

- **Problem**: Constellation maps are very sparse which results in long matching times
- Hashing enables the usage of 64-Bit structs (32 bits hash, 32 bits time offset and track ID)

Overview

Why is Hashing Necessary?

- **Problem**: Constellation maps are very sparse which results in long matching times
- Hashing enables the usage of 64-Bit structs (32 bits hash, 32 bits time offset and track ID)
- Limited number of points in every target zone to limit combinatorial explosion

Overview

Why is Hashing Necessary?

- **Problem**: Constellation maps are very sparse which results in long matching times
- Hashing enables the usage of 64-Bit structs (32 bits hash, 32 bits time offset and track ID)
- Limited number of points in every target zone to limit combinatorial explosion
- Overall trade: 10 times more disk space for 10000 times faster matching

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
Searching and Sco	ring		

• Matching of all sample hashes with database hashes

- Matching of all sample hashes with database hashes
- Association of time pairs for every matching hash (both offset times)

- Matching of all sample hashes with database hashes
- Association of time pairs for every matching hash (both offset times)
- Distribution of time pairs into bins according to track ID

Technical Details

Overview

Searching and Scoring

- Matching of all sample hashes with database hashes
- Association of time pairs for every matching hash (both offset times)
- Distribution of time pairs into bins according to track ID
- Construction of a scatterplot of association between sample and database files

Technical Details

Overview

Searching and Scoring

- Matching of all sample hashes with database hashes
- Association of time pairs for every matching hash (both offset times)
- Distribution of time pairs into bins according to track ID
- Construction of a scatterplot of association between sample and database files
- Detection of point clusters that form a diagonal line

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Overview			Technical Details
A Successful Ma	atch		

Audio	Finger	printing	Basics

An Algorithmic Overview

Shazam

Conclusive Remarks

References

Synopsis

Conclusive Remarks

Simon Froitzheim (RWTH Aachen)

Audio Fingerprinting

June 28th, 2017 22 / 26

3

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Synopsis			References

• Audio fingerprinting aims for the construction of a compact, discriminative, robust and efficient encoding of audio data

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Synopsis			References

- Audio fingerprinting aims for the construction of a compact, discriminative, robust and efficient encoding of audio data
- Works on very small song snippets reliably

Audio Fingerprinting Basics	An Algorithmic Overview	Shazam	Conclusive Remarks
Synopsis			References

- Audio fingerprinting aims for the construction of a compact, discriminative, robust and efficient encoding of audio data
- Works on very small song snippets reliably
- Shazam as an exemplary algorithm is based on constellation maps and uses combinatorial hashing for speedup

Synopsis

References

J. Haitsma and T. Kalker (2002)

A Highly Robust Audio Fingerprinting System Journal of New Music Research 32 (2), 211 – 221

E.Batlle, P. Cano, J. Haitsma and T. Kalker(2002)

A Review of Algorithms for Audio Fingerprinting

IEEE Workshop on Multimedia Signal Processing 2002

A. Wang (2003)

An Industrial-Strength Audio Search Algorithm

Proc. of the 4th International Conference on Music Information Retrieval

S.Baluja and M. Covell (2007)

Audio Fingerprinting: Combining Computer Vision & Data Stream Processing Acoustics, Speech and Signal Processing

Shazan

Conclusive Remarks

Synopsis

References - continued

X. Anguera, A. Garzon and T. Adamek (2012) MASK: Robust Local Features for Audio Fingerprinting IEEE International Conference on Multimedia and Expo

All graphics in this presentation are taken from [Wang, 2003].
References

Synopsis

Thank you for listening