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Introduction

As defined within the Acoustical Society of
America (ASA) Standard Term Database, tim-
bre is ”that multidimensional attribute of audi-
tory sensation which enables a listener to judge
that two non-identical sounds, similarly pre-
sented and having the same loudness, pitch, spa-
tial location, and duration, are dissimilar”[1].
Alternatively, the Cambridge dictionary gives an
easier to understand definition: ”[Timbre is] a
quality of sound that makes voices or musical in-
struments sound different from each other” [2].
For the term ”timbre identification”, this means
we are striving to computationally identify dif-
ferent timbres by preselecting certain features,
e.g. instruments or musicians (as done so in [3]),
in order to clearly distinguish one preselected
parameter from the other. This is a machine
learning problem, used amongst others for genre
categorization, automatic score creation or track
separation.

History

The foundations of timbre identification lie in the
late 1970s, when John Grey from Stanford Uni-
versity started initial investigations on the task
of musical instrument identification [4]. In 1999,
Marques and Moreno, Cambridge Research Lab-
oratory, used Support Vector Machines (SVMs)
to reach an 70% accuracy for classification of
eight different musical instruments [5]. Just one
year later, Fujinaga and MacMillan trained an
k-Nearest Neighbor (k-NN) system to reach an
accuracy of 68% on a much larger data set of
23 different instruments at John Hopkins Uni-

versity, Baltimore [6]. In later years, those two
systems became the most prominent for musical
instrument classification and were developed fur-
ther to reach higher accuracies. Essid, Richard
and David were able to get results of 87% accu-
racy with SVMs at Paris-Saclay in 2006 [7], while
Kaminskyj and Czaszejko at Monash University,
Melbourne, even reached accuracy scores as high
as 93% on instrument classification using a k-NN
system [8].

Classification of Musical Timbre
Using Bayesian Networks

Having started my literature search from Guo
et al. [3], in this report I want to present the
paper ”Classification of Musical Timbre Using
Bayesian Networks” by Patrick J. Donnelly
and John W. Sheppard, published in 2014
[9]. It introduces a concept that was unto
then quite unknown within the field of musical
instrument classification: Bayesian networks.
Using a data set that not only covers a wide
range of different instruments but is also openly
available, Donnelly compares already commonly
used methods, namely the support vector
machine algorithm and the k-nearest neighbor
algorithm, with a set of different Bayesian
network models which he proposes within the
course of his paper. Later on, he conducts a
couple of different experiments, determining the
classification accuracy on instruments. Donnelly
is able to show that, using Bayesian networks,
his classifications show promising results, with
some outperforming the older approaches. As
the paper only explores monophonic single in-
strument classification, the task of identification
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and classification of polyphonic data remains
unapproached by Donnelly. [10] suggests though
that the author is further continuing with his
research on musical instrument classification us-
ing timbre segmentation and Bayesian networks.

Algorithms

The different classifiers, that Donnelly and Shep-
pard compare with each other, are based on three
different concepts, that I want to introduce here:

k-Nearest Neighbor

The k-Nearest Neighbor algorithm, or short k-
NN algorithm, will classify a previously unknown
example with the most common class found
amongst the example’s nearest neighbors. The
nearest neighbor is evaluated with a distance
metric, most common here is the Euclidean dis-
tance

D(u,v) =

√√√√ n∑
i=1

(ui − vi)2,

where u and v are n-dimensional feature vectors.
For the classification of musical instruments, the
k-NN algorithm proceeds as follows: First, each
sample in the test set is compared to a subset
of examples from the training set using the dis-
tance metric. It is then assigned with the most
common class label among its k nearest neigh-
bors.

Support Vector Machine

The support vector machine (SVM) algorithm is
a discriminant-based method for classification or
regression. It constructs a hyperplane in high di-
mensional space that represents the largest mar-
gin separating two classes of data. In multiclass
problems, the SVM algorithm produces ”one-
versus-all” binary classifiers that try to separate
each class from all other possible classes. If the
kernel function of the feature vector is the fea-
ture vector itself, the support vector machine

will take the form of a linear classifier. Oth-
erwise, if the kernel is a non-linear function, the
features are projected into higher-order space.
Thus, the algorithm can fit the maximum mar-
gin hyperplane in the transformed feature space
which again allows for clear separation of differ-
ent classes.

Bayesian Networks

Bayesian networks are probabilistic graph mod-
els composed of random variables that are rep-
resented as nodes, and their conditional depen-
dencies, represented as directed edges. The joint
probability of multiple represented variables is
the product of the individual probabilities of
each variable, conditioned on the node’s parent
variables. The Bayesian classifier is then defined
as:

classify(f) = argmax
c∈C

P (c)
∏
f∈f

P (f |parent(f)),

where P (c) is the prior probability of class c
and P (f |parent(f)) the conditional probability
of feature f given the values of the variable’s
parents. The Bayesian classifier finds the class
label with the highest probability of explaining
the values of the feature vector.

Feature Extraction

For comparing the different algorithms, two dif-
ferent data sets are used: the EastWest data set
[11] (see Figure 1) and the Iowa data set [12]
(see Figure 2). The Iowa data set was created by
the Electronic Music Studios at the University of
Iowa in 2013 and modified to get individual files
with each containing a single note, thereby cre-
ating a data set containing 4,521 samples over a
total of 25 musical instruments. On the contrary,
the EastWest data set was specifically created for
the task, covering 1000 audio examples for each
of the 24 recorded instruments. Within the au-
dio files, you can hear an instrument sustaining a
single note for 1s. Each file is 2s long to include
the attack and the decay of the note. In order
to be able to mathematically express the

2



Figure 1: EastWest Data Set of Instruments

different recorded notes in the way that the for-
merly introduced algorithms will be able to han-
dle them, the audio files are transformed to small
vectors of relevant numeric features. As has re-
cently come to attention, the choice of those rel-
evant features heavily influences the outcome of
the chosen learning algorithms used for classifi-
cation [13]. Using fast Fourier transform over
20 100ms-slots, the amplitude is then obtained
as a function of frequencies. These frequencies
are then grouped into ten exponentially increas-
ing windows on a range from 0 to 22,050Hz with
each window having twice the size of the previ-
ous one. Afterwards, for each frequency window
the peak amplitude is extracted as feature.

Bayesian Network Models

After having introduced the concept of Bayesian
networks earlier, let’s now take a look at the pre-
cise Bayesian classifiers used for the comparison:

• The naive Bayes (NB) classifier assumes,
that all evidence nodes are conditionally in-
dependent of each other given the class:

P (c|f) = P (c) ·
∏
f∈f

P (f |c)

It is chosen here as a baseline Bayesian
model.

Figure 2: Iowa Data Set of Instruments

• In the following abbreviated as BN-F, the
next model takes frequency dependencies
into account. Each frequency feature is as-
sumed to be conditionally dependent on the
previous frequency feature within a single
time window:

P (c|f) =P (c) ·
20∏
i=1

P (f i
1|c)

·
( 20∏

i=1

10∏
j=2

P (f i
1|f i

j−1, c)

)

• The third model, called BN-T, considers
time dependencies, containing conditional
dependencies in the time domain but not
in the frequency domain:

P (c|f) =P (c) ·
10∏
j=1

P (f1
j |c)

·
( 20∏

i=2

10∏
j=1

P (f i
j |f i−1

j , c)

)

• The last model to be introduced both con-
siders frequency and time dependencies and
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shall be called BN-FT:

P (c|f) =P (c) · P (f1
1 |c)

·
20∏
i=2

P (f i
1|f i−1

1 , c)

·
10∏
i=2

P (f1
j |f1

j−1, c)

·
( 20∏

i=2

10∏
j=2

P (f i
j |f i−1

j , f i
j−1, c)

)

Experiments

There were four experiments conducted to com-
pare the different models with each other:

1. Instrument and family identification,

2. Instrument Identification within Family,

3. Classification Accuracy by Data Set Size,
and

4. Repetition of Experiments 1 and 2 with
Iowa Data Set.

Results

The results of Experiment 1 can be seen in Fig-
ure 3 (Accuracy), Figure 4 (Statistical Signifi-
cance) and Figure 5 (confusion Matrices). One
can clearly see, that all the Bayesian network
models (with the excemption of the naive Bayes
classifier) outperformed the k-NN and SVM al-
gorithms on instrument classification. FOr the
sake of the difference in linear and non-linear
kernels in SVM algorithms, both a SVM with
a linear kernel (SVM-L) and one with a poly-
nomial kernel (SVM-Q) are used for comparing.
The Bayesian models perform worse on family
identification though. There seems to be an in-
creased confusion between brass and woodwind
instruments, compared to string or percussion
instruments. SVMs, k-NN and naive Bayes have
a higher confusion between strings and either
brass or woodwind, though.

In Figure 7b, the classification accuracy in Ex-
periment 2 is shown. All Bayesian classifiers
(again except naive Bayes) reach more than 99%
accuracy for all families but woodwinds. Nearly
all algorithms achieve the highest accuracies for
percussion instruments.
Experiment 3 was conducted as to be able to bet-
ter understand the influence of the data set size
n the performance of the different models. Vary-
ing the size from 100 to 1,000 samples in incre-
ments of 100 for each instrument, the Bayesian
models interestingly reach the highest accuracies
for a set size of 500 to 800. More predictable,
SVMs and k-NN constantly improve with an in-
creasing number of samples. Also of note is,
that Bayesian models were able to achieve much
higher accuracies with far fewer examples than
either SVMs or k-NN could.
As the classifiers were both trained and tested on
the EastWest data set, one last Experiment was
conducted to test their performance on the yet
unknown Iowa data set. Although it is a signifi-
cantly smaller data set, the results are consistent
with the previous ones considering the same data
size. The results of Experiment 4 (Accuracy, sta-
tistical significance and confusion matrices) are
shown in Figures 7a, 6 and 7c.

Conclusion

Within this report, I have first given an intro-
duction to timbre identification. After a short
excursion into the history of the matter, I have
presented the most prominent algorithms in this
field and given a short overview about the topic
of feature extraction. Afterwards, I described
four different Bayesian classifiers which were
then used to compare the success of Bayesian
networks versus k-NN and SVM algorithms with
the result that they (apart from the naive Bayes
classifier) fared quite well, in particular when
taking both time and frequency dependencies
into account.
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Appendix

Figure 3: Classification Accuracy in Experiment
1



Figure 4: Statistical Significance from Experiment 1

Figure 5: Confusion Matrices for Experiment 1



(a) Classification Accuracy in Experiment
4

(b) Classification Accuracy in Experiment
2

(c) Confusion Matrices for Experiment 4

Figure 7: Pictures of animals

Figure 6: Statistical Significance from Experiment 4


