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A B S T R A C T

Inelastic charge transport is of paramount importance for simulating
quantum transport in mesoscopic systems with the focus on novel nano-
transistor concepts [7, 8] or quantum photovoltaic devices [1, 2]. The
Non-Equilibirum Green’s Functions (NEGF) framework is an advanced
simulation approach that allows for treatment of transport phenomena
and out-of-equilibrium transport. The NEGF formalism was introduced by
Schwinger and co-workers [26], Kadano� and Baym [14], and Keldysh [15]
and provides a quantum-statistical mechanics picture of many-body systems
far from equilibrium. The NEGF simulation is computationally very intense,
due to the non-local, spectral energy and momentum dependencies of the
Green’s functions and the nested self-consistent loops. The model includes
open boundary conditions that couple the device to an out-of-equilibrium
environment where electrons move due to externally applied voltages.
The computational intensity requires a massively parallel implementation
to exploit the available resources of a state-of-the-art supercomputer. Four
di�erent level of parallelism are o�ered within the NEGF algorithm. The
�rst level parallelism is trivial, since no dependencies are present. The next
two levels are parallelized with data distribution across the nodes employ-
ing the Message Passing Interface (MPI). The last level is parallelized on
the nodes level utilizing domain decomposition. Consequently the presented
parallelization approach is hybrid and emphasizes the advantages of the two
di�erent worlds: distributed and shared memory paradigm.
The presented parallelization approach is scaling on up to 458,752 cores on
JUQUEEN and sets the foundation for unprecedented simulations of large
systems, e.g. the simulation of a complete realistic device.
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1
I N T R O D U C T I O N

The proper treatment of inelastic quantum charge transport in mesoscopic
devices is one of the most challenging problems in modern nanostructures.
Several models exist to compute electronic transport, cf. table 1. Large macro-
scopic systems are well described via the Boltzmann equation. This approach
is only valid under the assumptions, that scattering processes are localized
and instantaneous, only weak scattering occurs, and only slow events com-
pared to the free mean time between collisions are of interest [10].
In contrast to macroscopic systems, the technological development over the
last decades rapidly evolved towards smaller nanodevices. This allows to
produce devices with characteristic dimensions that are smaller than the
mean free path. One of the most well known example is the semiconduc-
tor industry: state-of-the-art lithography allows to manufacture chips with
14 nm process technology. In 2017 chips with 10 nm process technology
are expected. Therefore the assumptions for the Blotzmann equation are no
longer ful�lled, which makes this method invalid. Due to these small dis-
tances quantum e�ects like quantization or con�nement become important.
The devices on this length scale are called nanodevices or mesoscopic de-
vices. The latter term indicates that these structures are large compared to
the microscopic scale but small compared to the macroscopic scale on which
the Boltzmann model is valid.

Model Limitations

Boltzmann transport equations,
classical Monte Carlo

only accurate up to classical limits

Density functional theory Least accurate
Quantum Monte Carlo classical features + quantum corrections
Wigner Function,
Density Matrix

Accurate to up to single particle descrip-
tion

Green’s functions methods Most accurate, but computationally com-
plex

Direct solution of the n-body
Schrdinger equation

Accurate, but can be solved only for small
number of particles

q
u
a
n
t
u
m

s
e
m

i-
c
la

s
s
ic

a
l

Approximate

Exact Difficult

Easy, Fast

Table 1: Hierarchy of Transport Models.

The Non-Equilibirum Green’s Functions (NEGF) formalism is an advanced
simulation approach for treatment of transport phenomena and out-of-
equilibrium transport. The NEGF formalism was introduced by Schwinger
and co-workers [26], Kadano� and Baym [14], and Keldysh [15] and pro-
vides a quantum-statistical mechanics picture of many-body systems far
from equilibrium. The NEGF simulation is computationally very intense,
because it includes open boundary conditions that couple the device to an
out-of-equilibrium environment where electrons move due to externally
applied voltages.
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2 introduction

1.1 goals of this work

As described before the non-equilibrium Green’s function (NEGF) method
is the most accurate but also most computationally complex and costly ap-
proach to simulate nanodevices. The goal of this thesis is to develop a dis-
tributed parallelization approach for NEGF method. This will allow to reduce
the wall clock time and sets the foundation for unprecedented simulation of
larger system.
As an example we calculate characteristic properties of a nin-diode for a bal-
listic case and with inelastic scattering. These properties are the potential,
the charge density, the I-V characteristics and the spectral current distribu-
tion. We will also investigate the nin-diode with a high barrier.

1.2 outline of the thesis

In chapter 2 we will describe the NEGF method in general, the partitioning
of the system, the Hamiltonian, and the related physical quantities. The fol-
lowing chapter 3 will deal with the discretization and the description of the
NEGF algorithm. The di�erent implementations and parallelization are dis-
cussed in chapter 4. This includes a �rst implementation in Matlab to under-
stand the algorithm, an OpenMP parallelization, a distributed parallelization
with the Message Passing Interface and a hybrid implementation which com-
bines the Message Passing Interface (MPI) implementation with an OpenMP
parallelization on the node level. Chapter 5 provides a brief description of
the soft- and hardware that has been used and presents the results from the
parallelization as well as physical results. The last chapter 6 gives a conclu-
sion and highlights how this work can be used in the future as well as which
further steps to improve the NEGF implementation.

1.3 related work

The NEGF formalism has found widespread application in the �elds of quan-
tum optical devices based on high-density electron-hole plasmas such as
solid state lasers [13], but also in the �eld of quantum transport in meso-
scopic systems with the technological focus on novel nano-transistor con-
cepts [7, 8]. More recently, the approach has been extended to optoelec-
tronic applications at the interface between quantum optics and quantum
transport, such as quantum cascade lasers [18, 22], LED’s [31] and quantum
photovoltaic devices [1, 2].
There are two other NEGF implementations that are also parallelized. Omen
[25], developed by Mathieu Luiser, and Nemo5 [32], developed at Purdue. For
ballistic simulations Omen is scaling on up to 221,400 cores with 20 bias
points on a Cray-XT5 machine [25]. Since the bias points can be parallelized
trivially this is equivalent to scaling on 11,000 cores for 1 bias points. For
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inelastic electron-phonon scattering Omen is scaling on up to 170,400 cores
again for 20 bias points (= 8520 cores for 1 bias point).





2
T H E N O N E Q U I L I B R I U M G R E E N ’ S F U N C T I O N S M E T H O D

In this chapter the physical description of the system is speci�ed. We intro-
duce the Hamiltonian, the Green’s function approach, and the concept of
self-energies to setup the fundamental basis for the NEGF computation.

2.1 introduction

We want to describe steady-state electronic transport in a quasi 1-dimensional
system of mesoscopic dimensions under the constraint of inelastic scatter-
ing with phonons. This requires the usage of quantum transport theory
that goes beyond the ballistic regime. The con�guration variables of our
system are the vertical coordinate z, the transverse momentum k‖, which
corresponds to the Fourier transform of (x, y) and the energy E. The unper-
turbed system describes free electrons in a solid, and the electron-phonon
interaction is treated as a perturbation. Thus the physical system that we
consider includes electrons, phonons and doping. Doping is the addition of
impurities which changes the electronic properties of the semiconductor.
The Born-Oppenheimer approximation, the assumption that the motion of
atomic nuclei and electrons in a molecule can be separated has been used.
The tight-binding model is used to describe the valence electrons.

2.2 partitioning of the system

Di�erent aspects need to be considered for the theoretical description of
transport phenomena. Therefore the system is partitioned into three fun-
damental contributions: The �rst part is the non-interaction system, that
describes the system’s kinetic energy and the potential energy associated
with the interacting of the valence electrons with the ion cores, which is de-
scribed by the Hamiltonian H0 (see section 2.3). The second aspect concerns
the open boundary conditions of the system, i.e. the coupling of the system
to the contacts. The third part are the interactions within the system. In the
following we will describe the electron-phonon interaction.

2.3 hamiltonian

In quantum mechanics the physical quantities like energy, position, and
momentum are observables which correspond to the eigenvalues of the
corresponding operators. In the case of the total energy E of an quantum-
mechanical system, the associated operator is the Hamiltonian operator Ĥ,

5



6 the noneqilibrium green’s functions method

and the corresponding eigenvalue problem amounts solving the associated
time-independent Schrödinger equation:

Ĥ|ψ〉 = E|ψ〉. (1)

In Dirac notation the state of the system is described by the “ket” vector
|ψ〉 ∈ H (Hilbert space), and by de�nition it is normalized against the “bra”
vector (dual space toH) 〈ψ|ψ〉 = 1.
The full Hamiltonian can be partitioned into the diagonal contribution of
the non-interacting system and the interaction:

H = H0 + HI (2)

In general, the Hamiltonian will describe all relevant degrees of freedom of
a system (electronic, vibrational, optical, etc.) and their mutual interactions.
Here, H0 is restricted to the electronic system, and only the electron-phonon
interaction term Hel-ph is included in HI, because it is the only interaction be-
ing considered in this work and relevant to the physical phenomena we want
to study. Using a simple single band e�ective mass approximation for mobile
electrons in semiconductors, the Hamiltonian of non-interacting electrons
in 1D can be written as follows

H0 = − h̄2

2
∇r

(
1

m?(r)
∇r

)
+ U(r), (3)

where m? denotes the e�ective mass of the electron, the spatial vector r =

(x, y, z), and ∆r = ∇2
r is the Laplace operator with respect to the spatial

component r and U(r) = U(z) is the e�ective potential of mobile electrons
in the solid along z.
The matrix elements of this e�ective-mass Hamiltonian correspond to the
matrix elements of the single-band tight-binding Hamiltonian [21].
The extension to a quasi-1D system with isotropy in the transverse plane
results in a dependence on transverse quasi-momentum k = (kx, ky):

H0(k) = −
h̄2

2
∇z

(
1

m?(z)
∇z

)
+ εk + U(z) (4)

= − h̄2

2
∇z

(
1

m?(z)
∇z

)
+

h̄2k2

2m?
+ U(z) (5)

2.4 green’s functions

Green’s functions are an important tool in theoretical physics. In mathemat-
ics, Green’s functions are used to solve inhomogeneous di�erential equa-
tions. In many-body theory a Green’s function describes the quantum statis-
tical ensemble average of a pair of �eld operators (creation and annihilation
operators).
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The Green’s functions are useful for solution of perturbation theory prob-
lems [6, 11]. For an illustration how the Hamiltonian and the Green’s func-
tion are related, let’s considering the time-independent Schrödinger equation

[H0(r) + V(r)]ψ = Eψ. (6)

In this case V is an perturbation of the system (not to be confused with the
potential U, mentioned above). In order to solve the Schrödinger equation
we de�ne the corresponding Green’s function by the di�erential equation

[E− H0(R)]G0(r, r′, E) = δ(r− r′). (7)

where the boundary condition, G0(r, r′, E) = G0(r′, r, E) is assumed. It
is straight forward to identify the operator [E − H0(r)] as the inverse of
G0(r, r′, E). Thus we can write:

G−1
0 (r, r′, E) = E− H0(r), (8)

or

G−1
0 (r, r′, E)G0(r, r′, E) = δ(r− r′). (9)

Inserting this equation into the Schrödinger equation yields

[G−1
0 (r, r′, E)−V(r)]ψ = 0. (10)

The integral equation

ψ(r) = ψ0(r) +
∫

dr′ G0(r, r′, E)V(r′)ψ(r′), (11)

solves equation 10. This can be shown by inserting eq. 11 into eq. 10

G−1
0 (r, r′, E)ψ0(r)

+
∫

dr′, G−1
0 (r, r′, E)G0(r, r′, E)V(r′)ψ(r′)−V(r)ψ(r) = 0.

(12)

Using eq. 9 yields to

G−1
0 (r, r′, E)ψ0(r)

+
∫

dr′δ(r− r′)V(r′)ψ(r′)−V(r)ψ(r) = 0
(13)

⇔G−1
0 (r, r′, E)ψ0(r) + V(r)ψ(r)−V(r)ψ(r) = 0 (14)

⇔G−1
0 (r, r′, E)ψ0(r) = 0 (15)

which corresponds to the initial Schrödinger equation. Thus the integral
equation 11 solves 10. We can now solve the integral equation 11 by iter-
ation. Up to �rst order in V the solution is:

ψ(r) = ψ0(r) +
∫

dr′ G0(r, r′, E)V(r′)ψ0(r′) +O(V2), (16)
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where ψ0 is an eigenstate to the non-interacting Hamiltonian H0 with
eigenenergy E.
We can also write the results eq. 11 in terms of the full Green’s function

ψ(r) = ψ0(r) +
∫

dr′G(r, r′, E)V(r′)ψ0(r′). (17)

For completeness we will note the general de�nition of the Green’s functions
as they are usually de�ned in the literature [6, 11]. The retarded Green’s
function is de�ned by

GR(x, t; x′, t′) = −iΘ(t− t′)
〈[

Ψ(x, t), Ψ†(x′, t′)
]
±

〉
. (18)

Conventionally the upper sign corresponds to the fermion case, whereas the
lower case is for bosons. [A, B]+ = {A, B} = AB + BA is the anticommu-
tator and [A, B]− = [A, B] = AB − BA is the ordinary commutator. Ψ†

is the �eld operator that creates a particle a position x and time t. The re-
tarded function is nonzero only for t > t′. We also de�ne the advanced
Green’s function which is nonzero only for t < t′:

GA(x, t; x′, t′) = +iΘ(t− t′)
〈[

Ψ(x, t), Ψ†(x′, t′)
]
±

〉
. (19)

it is convenient to de�ne also two more Green’s functions:

G>(x, t; x′, t′) = −i
〈[

Ψ(x, t), Ψ†(x′, t′)
]
±

〉
, (20)

G<(x, t; x′, t′) = −i(∓)
〈[

Ψ(x, t), Ψ†(x′, t′)
]
±

〉
. (21)

Thus we can rewrite the retarded and advanced Green’s function:

GR(x, t; x′, t′) = Θ(t− t′)
[
G>(x, t; x′, t′)− G<(x, t; x′, t′)

]
, (22)

GA(x, t; x′, t′) = Θ(t′ − t)
[
G<(x, t; x′, t′)− G>(x, t; x′, t′)

]
. (23)

The average 〈. . .〉 in the de�nitions of the Green’s functions is the quantum
statistical ensemble average.
We are interested in the stationary state, which means only the time di�er-
ence t− t′ is important. Thus, it is convenient to use the Green’s function
in energy representation rather than in time representation. To change the
representation we perform a Fourier transform

GR(r, r′, E) =
∫

G(r, r′, t) eiEt/h̄ dt. (24)

Since we are using a quasi-1D Hamiltonian with isotropy in the transverse
plane and a dependence on transverse quasi-momentum, the Green’s func-
tions that we are using in the following depend on the following arguments:

GR(r, r′, E) = GR(z, z′; k, E) (25)
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We can verify the following relation:

GR(z, z′; k, E) = GA(z, z′; k, E)∗ (26)

We can use the Keldysh equation [2, 8, 21, 27, 30] to obtain the lesser Green’s
function:

G<(z, z′; k, E) =
∫

dz1

∫
dz2 GR(z, z1; k, E)

Σ<(z1, z2; k, E)GA(z2, z′; k, E).
(27)

Because the set of Green’s functions is coupled, we can calculate the greater
Green’s function by

G>(z, z′; k, E) = GR(z, z′; k, E)− GA(z, z′; k, E) + G<(z, z′; k, E).
(28)

2.5 dyson eqation and self-energy

The Dyson equation de�nes the equation of motion of the electrons. It is
de�ned by (suppressing the arguments and summations)

GR = GR
0 + GR

0 ΣRGR (29)

where ΣR de�nes the retarded self-energy. GR
0 is the interaction-free re-

tarded Green’s function.
For describing transport phenomena it is important to include the exchange
of particles with the environment, i.e. the contact. That requires the creation
and annihilation of particles. The vacuum is not empty anymore, particles
can be created and annihilated. A heuristic explanation of the self-energies
is that it contains all possible interactions of virtual particles with other par-
ticles and the vacuum.
From equation 29 we get an expression for the full Green’s function:

⇔ (1− GR
0 ΣR)GR = GR

0 (30)

⇔ GR = GR
0

[
1− GR

0 ΣR
]−1

(31)

=
[
(GR

0 )
−1 − ΣR

]−1
. (32)

By inserting the (GR
0 )
−1 = E− H0, we get the following expression for the

Dyson equation:

GR(z, z′; k, E) =
[

E− H0(z, z′; k, E)− ΣR(z, z′; k, E)
]−1

(33)
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2.6 charge density

For given spin, the spectral electron density as expressed by the electron GF
components reads

n(z, E) = −i ∑
k

G<(z, z; k, E)/(2π). (34)

2.7 poisson eqation

Charge density and electrostatic potential are connected by the Poisson
equation:

∂z

(
ε(z)∂z

(
−U(z)

e

))
= e(n(z)− Nd(z)) (35)

ε denotes the static dielectric constant and Nd denotes the ionized dopant
concentration. This equation needs to be solved self-consistently. Thus, it
needs to be iterated according to the Dyson and Keldysh equations. At every
step of the self-consistent iteration, the potential is then updated with the a
simple Kerker mixing scheme:

Ui+1 = λUnew + (1− λ)Ui, (36)

where Unew is the new potential that was calculated by the Poisson equation.
Once the self-consistency loop has converged, the potential is compatible
with the charge density that depends in turn on the Green’s function.

2.8 spectral function and local density of states

The spectral function is de�ned by

A(k, z, E) = i
[

GR(z, z; k, E)− GA(z, z; k, E)
]

. (37)

The local density of states describes the spatially resolved density of states.
It’s de�ned by

LDOS(z, E) = ∑
k

LDOS(z, k, E) = − 1
π ∑

k
Im GR(z, z; k, E), (38)

where summation over spin was assumed in the last equality.
Since Im GR = i

2

(
GR − GA) we can rewrite the local density of states as

LDOS(z, E) =
1

2π ∑
k
A(k, z, E) (39)
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2.9 coupling to the contact

The coupling to the left and right contact is done via a self-energy:

ΣR
LR(k, E) =


−t exp (ikLa) . . . 0

...
...

0 . . . −t exp (ikRa)

 (40)

where t is the hopping parameter, de�ned in eq. 58, kL/R is the longitudinal
wave vector in the contact, and a is the lattice parameter.

2.10 electron-phonon scattering

The general form for the lesser/greater electron-phonon interaction self-
energy on the level of the �rst self-consistent Born approximation (SCBA)
and assuming free equilibrium phonons is given by [20, 21, 30]

Σ≷
z,z′(k, E) =

1
V ∑

q
|Uk−q|2

[
NLOG<

z,z′(q, E− h̄ω)

+ (NLO + 1)G<
z,z′(q, E + h̄ω)

]
.

(41)

For dispersionless polar optical phonons with a constant energy h̄ωLO the
interaction strength is given by [21, 30]

Uq =

√
e2h̄ωLO

2V

(
1

ε∞
− 1

ε0

)
q

q2 + q2
0

, (42)

where ε0 is the static dielectric constant, ε∞ is the high frequency dielectric
constant and q0 is the inverse Debye screening length. NLO is the phonon
occupation number, which corresponds to the Bose distribution:

NLO =
1

e
h̄ωLO

kT −1
. (43)

Thus, we can write the electron-phonon self-energy as

Σ≷
z,z′(k, E) =

e2 h̄ωLO

2V

(
1

ε∞
− 1

ε0

)
V

(2π)3

∫ qmax

0
q dq (44)∫ π/a

−π/a
dqz

∫ 2π

0
dφ eiqz(z−z′)

× q2
z + q2 + k2 + 2kq cos φ(

q2
z + q2 + k2 + q2

0 + 2kq cos φ
)2

×
[

NLOG≷(q, E± h̄ωLO)

+ (NLO + 1)G≶(q, E∓ h̄ωLO)
]

z,z′ .

This can be simpli�ed to:



12 the noneqilibrium green’s functions method

Σ≷(k, E) =
e2h̄ωLO

4π2

∫ qmax

0
dq qF(q, ∆z,z′ , k, q0)× (45)

×
(

NLO × G≷(q, E± h̄ωLO)

+ (NLO + 1)G≷(q, E∓ h̄ωLO)
)

where ∆z,z′ = |z− z′| and the function F is de�ned by

F(q, ∆ij, k, q0) =
∫ π/a

0
dq cos(qz∆z,z′) 1√
(q2

z + q2 + q2
0 + k2)2 − 4k2q2

−q2
0

q2
z + q2 + q2

0 + k2((
q2

z + q2 + q2
0 + k2

)2 − 4k2q2
)
 .

(46)

The function F doesn’t change during the self-consistency loop, thus we can
precompute this quantity and store it in memory.
The retarded self-energy is de�ned by [1, 19, 20, 22, 30]:

ΣR
z,z′(k, E) =

1
2

(
Σ>

z,z′(k, E)− Σ<
z,z′(k, E)

)
(47)

− iP
∫ dE′

2π

Σ<
z,z′(k, E′)− Σ>

z,z′(k, E)
E− E′

=i
∫ dE′

2π ∑
q,λ
|Uq,λ|2

(
DR

q,λGR(k− q, E− E′)

+ DR
q,λ(E′)G<(k− q, E− E′)

+ D<
q,λ(E′)GR(k− q, E− E′)

)
.

(48)

Here P denotes the Cauchy principal value.
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On the same level of approximation (SCBA with free equilibrium phonons),
the retarded self energy can be written as [1, 22, 30]

ΣR
z,z′(k, E) =

e2 h̄ωLO

2V

(
1

ε∞
− 1

ε0

)
V

(2π)3

∫ qmax

0
q dq (49)

×
∫ π/a

−π/a
dqz

∫ 2π

0
dφ eiqz(z−z′)

× q2
z + q2 + k2 + 2kq cos φ(

q2
z + q2 + k2 + q2

0 + 2kq cos φ
)2

×
[

NLOGR(q, E± h̄ωLO)

+ (NLO + 1)GR(q, E∓ h̄ωLO)

+
1
2

G<(q, E− h̄ωLO)−
1
2

G<(q, E + h̄ωLO)

+ iP
∫ dE

2π

(
G<(q, E− E′)

E′ − h̄ωLO
− G<(q, E− E′)

E′ + h̄ωLO

)]
z,z′

Conventionally, the principle value integral is neglected, thus

ΣR
z,z′(k, E) =

e2 h̄ωLO

2V

(
1

ε∞
− 1

ε0

)
V

(2π)3

∫ qmax

0
q dq (50)

×
∫ π/a

−π/a
dqz

∫ 2π

0
dφ eiqz(z−z′)

× q2
z + q2 + k2 + 2kq cos φ(

q2
z + q2 + k2 + q2

0 + 2kq cos φ
)2

×
[

NLOGR(q, E± h̄ωLO)

+ (NLO + 1)GR(q, E∓ h̄ωLO)

+
1
2

G<(q, E− h̄ωLO)−
1
2

G<(q, E + h̄ωLO)
]

z,z′





3
F R O M P H Y S I C S T O M AT H

In this chapter the mathematical interpretation of the physical equation is
discussed and the algorithm is presented. We will start with a translation of
the physical description presented in chapter 2 into a mathematical picture
and later into a computer understandable representation. The algorithm for
the ballistic case is presented as well as the inelastic case.

3.1 mathematical description

The physical description needs some mathematical extension to form a com-
plete picture. One of these objectives is the discretization that was brie�y
mentioned in chapter 2. Other important issues are the integration on a dis-
cretized grid, the inversion of the retarded Green’s function and the treat-
ment of the boundary conditions for the energy shift in the electron-phonon
self-energy.

3.1.1 Discretization

The physical equations given in chapter 2 assume an in�nite continuous
space. However computers usually work with �nite-precision arithmetic.
Thus we have to transform the continuous space into a �nite discrete grid.
Therefore we need to discretize and limit the spatial domain, the energy and
the momentum domain. The spatial domain is discretized by an equidistant
discrete lattice (cf. equation 52). In the input �le the lattice parameter a and
the number of points Np are speci�ed. By these two values the total size of
the system is speci�ed by:

zmax = a× N. (51)

Thus, the grid points on the equidistant grid are located at

z = iz × a (52)

where iz ∈ N0. One can approximate the derivative in the Hamiltonian by
�nite di�erences:

∇zψ(z)|z=(iz+
1
2 )×a =

ψiz+1 − ψiz

a
. (53)

15
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By repeating this step we can rewrite the Laplace operator as

∆zψ(z)|z=iz×a = ∆2
zψ(z)

∣∣
z=iz×a (54)

=
∇zψ(z)|z=(iz+

1
2 )×a − ∇zψ(z)|z=(iz− 1

2 )×a

a
(55)

=
ψiz+1 − 2ψiz + ψiz−1

a2 (56)

With these results, we can write the discretized Hamiltonian for a homoge-
neous system as a matrix:

H0 =



2t −t 0 0 0

−t 2t −t 0 0

0 −t 2t −t 0

0 0 −t 2t −t

0 0 0 −t 2t


(57)

where the hopping parameter t is de�ned as

t :=
h̄2

2m?a2 . (58)

In general the hopping parameter can also depend on the spatial coordinate.
The in�nite continuous energy domain is also represented as an equally
spaced �nite discrete lattice. Similar to the spatial domain, the energy grid
is de�ned by the spacing between two energy points and minimal and maxi-
mal energy. The energy window has to be chosen large enough manually to
�t the potential and the scattering. This is done by running the simulation
and then adjusting the energy grid. The mentioned action could also be au-
tomated by using a mesh re�nement or by using adaptive integration in the
energy space. This feature needs to be tackled in future work.
The momentum space is also discretized by another equally spaced �nite
discrete lattice. The minimum of the momentum is always zero, thus the
momentum grid is speci�ed by the maximum momentum and a spacing fac-
tor xk. The di�erence of two momentum values is then de�ned by

dK =
xKπ

a
(59)

where a is the spacing in the spatial domain. The equal spacing in the mo-
mentum domain corresponds to a quadratic spacing in the contribution to
the Hamiltonian:

εK =
K2h̄2

2m?
. (60)

This choice is reasonable since the contribution for smaller momentum is
higher and the contribution is decaying. The maximal Kmax value has to be
chosen carefully. A numerical experiment (see �gure 21) has shown that the
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maximal momentum value needs to be at least as large as the corresponding
energy maximum:

K2
maxh̄2

2m
≥ Emax (61)

The �gure of the spectral density pro�le for each momentum distribution
plotted against the energy is presented in chapter 5 (see �gure 21).

3.1.2 The explicit inversion

Explicit inversion is usually avoided. Normally it is replaced by solving a lin-
ear system. In the NEGF framework this is not possible. The retarded Green’s
function is the fundamental quantity that is used for the calculation of sev-
eral other quantities. Thus, it is required to explicitly compute the inverse of
the matrix. The retarded Green’s function ful�lls the following properties:
It is a complex symmetric matrix. To invert this matrix the factorization of
this matrix is �rst calculated using the Bunch-Kaufman diagonal pivoting
method. The form of this factorization is

A = L× D× LT. (62)

This function is implemented in LAPACK and it is called ZSYTRF [4]. This
implementation is the blocked version of the algorithm and it is calling Level
3 BLAS functions. This factorization can then be used to compute the in-
verse. For this step the LAPACK function ZSYTRI is used. By the utiliza-
tion of these two LAPACK functions the explicit inverse of the matrix is
calculated.

3.1.3 Momentum and Energy Integration

The physical de�nitions stated in Chapter 2 contain integrations. E.g. the
integration of the charge density:

n(zi) =
∫

n(zi, E)dE. (63)

This integration needs to be formulated on the discretized lattice. Di�erent
methods [28] exist for the integration on a equally spaced grid with xi =

x0 + ih where h denotes the spacing parameter. The easiest but also most
inaccurate method is a simple Riemann sum∫ x1

x0

f (x)dx = h f (x0) +O(h2 f ′). (64)

More advanced methods are the Trapezoidal rule,∫ x1

x0

f (x)dx = h
[

1
2

f (x0) +
1
2

f (x1)

]
+O(h3 f ′′) (65)
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or the Simpson’s rule,∫ x2

x0

f (x)dx = h
[

1
3

f (x0) +
4
3

f (x1) +
1
3

f (x2)

]
+O(h5 f (4)). (66)

There are also higher order rules, the �ve-point formula is called Bode’s rule.
The even higher order rules are not named after famous persons.
During the development of the distributed implementation the simple Rie-
mann sum has been used, mainly because of easier debugging. Due to the
fact that the di�erence between the methods is only a change in the prefac-
tors the others methods can also be used by a simple change in the source
code. This is highly recommended whenever physical results should be cal-
culated.

3.1.4 The boundary conditions of the self-energy

Within the integration of the self-energy we access the energy shifted by
h̄ω:

Σ≷(k, E) =
e2h̄ωLO

4π2

∫ qmax

0
dq qF(q, ∆ij, k, q0)× (67)(

NLO × G≷(q, E± h̄ωLO) + (NLO + 1)G≷(q, E∓ h̄ωLO)
)

However the energy grid that we are using is �nite. That means that at the
boundaries we would need to use Green’s functions for energies that we
haven’t calculated. Therefore we chose the energy values that are the closest
to the actual energy value:

Eshift = E± h̄ωLO (68)

Eshift =


0, if E ≤ 0

NE − 1, if E ≥ NE

Eshift, otherwise

(69)

3.2 the algorithm

3.2.1 Ballistic

The NEGF framework is based on Green’s functions. A Green’s function is
the operator that inverts the Hamilton operator. In the discretized descrip-
tion the Hamiltonian corresponds to a Np× Np matrix, where Np de�nes
the number of points in the spatial dimension. For every momentum point
the Hamiltonian varies due to a shift in energy. Thus the Dyson equation
corresponds to an explicit inversion of a matrix.
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For each bias point, the shift in the external potential, the potential is calcu-
lated by a self-consistent iteration. In the beginning the potential is initial-
ized by a guess, e.g.

U[z] = 0 ∀z. (70)

This loop iterates until the potential is converged, e.g. the convergence cri-
terion εU is reached. This criterion is compared to the in�nity norm of the
potential:

‖U‖∞ < εU . (71)

The Green’s function is calculated for every momentum and energy point.
The boundary self-energies Σ1 and Σ2 and the depending scattering rate
are initialized in the beginning of every energy and momentum step. The
retarded Green’s function can then be calculated by inverting the matrix:

GR =
(

E1−H(K)− ΣR
)−1

. (72)

The spatially momentum and energy resolved charge density can be calcu-
lated by using the exploiting of the Green’s function, the scattering rate and
the Fermi function. By integrating over the momentum and energy domain,
we get the spatially dependent charge density:

n(z, k, E) = Re(diag(GR × ( f1(k, E)× Γ1

+ f2(k, E)× Γ2)× GR))

(73)

n(k, z) =
∫

dE n(z, k, E) (74)

n(z) =
∫

dk
k

2π
n(z, k) (75)

With the charge density the Poisson equation

∂z

(
ε(z)∂z

(
−U(z)

e

))
= q(n(z)− Nd(z)) (76)

can be solved which then de�nes the new potential. With the new potential
the potential can be updated by using simple mixing (also known as Kerker
mixing):

Ui+1 = λUnew + (1− λ)Ui. (77)

The complete ballistic NEGF algorithm is summarized in algorithm 1.

3.2.2 Recursive Green’s Functions

For the ballistic case we do not have to calculate all the matrix elements of the
retarded Green’s function. For the calculation of the charge density n only
the diagonal and the �rst column of GR are needed (due to symmetry also
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Algorithm 1 NEGF algorithm for the ballistic case
1: procedure NEGF
2: for BIAS V do
3: guess U
4: while dU < εU do
5: for k do
6: for E do
7: Σ1(1, 1) = −t0 exp (i× acos(1− (E−U(1))/(2t0)))
8: Σ2(n, n) = −t0 exp (i× acos(1− (E−U(n))/(2t0)))
9: Γ1 = i× (Σ1 − Σ†

1)

10: Γ2 = i× (Σ2 − Σ†
2)

11: ΣR = Σ1 + Σ2

12: GR(k, E) =
[
E1− H(k)− ΣR]−1

13: GA(k, E) = (GR)†

14: A = diag(i× (GR − GA))

15: n(z, k, E) = Re(diag(GR × ( f1(k, E)× Γ1

+ f2(k, E)× Γ2)× GR))

16: n(k, z) =
∫

dE n(z, k, E)
17: end for
18: n(z) =

∫
dk k

2π n(z, k)
19: end for
20: Solve Poisson: ∂z(ε(z)∂zφ(z)) = e(n(z)− Nd(z))
21: Update Potential: Ui+1 = λUnew + (1− λ)Ui

22: Stop iteration if ‖U‖∞ < εU is ful�lled
23: end while
24: end for
25: end procedure



3.2 the algorithm 21

the right column is known). Where G denotes the exact Green’s function the
lower case g’s are needed the left- and right-injected density of states gl and
gr. We can thus recursively build the matrix [21]. In the �rst step the right-
injected density of states gr is calculated. We can start with the last element
and can then compute the related elements. In the second step the diagonal
can be calculated and the �rst column can be calculated. The equations are
given by:

gr
N,N = (E− HN,N − ΣN,N)

−1 (78)

gr
n,n =

(
E− Hn,n − Hn,n − Hn,n+1gr

n+1,n+1Hn+1,n
)−1 2 ≤ n ≤ N

(79)

G1,1 =
[
E− H1,1 − Σ1,1 − H1,2gr

2,2H2,1
]−1 (80)

Gn,n = gr
n,n + gR

n,nHn,n−1Gn−1,n−1Hn−1,ngr
n,n 2 ≤ n ≤ N (81)

Gn,1 = −gR
n,nHn,n−1Gn−1,1 2 ≤ n ≤ N (82)

The whole process can be visualized by

Step 1 Step 2
gRn GR

nn

GR
n1

Figure 1: An illustration of the recursive Green’s functions method.

By this approach the inversion of the matrix can be performed in O(n) in-
stead ofO(n3), where n is the number of matrix elements in one dimension,
which is equivalent to the number of spatial points Np.
The charge density can directly be calculated similar as in 3.2.1.

3.2.3 Inelastic

In inelastic case we also have electron-phonon scattering. This case is dif-
ferent from the ballistic case. Here another self-consistent loop is inside the
potential loop. The self-energy also has to be solved self-consistently. Thus
we have two nested self-consistent loops. The outer loop is the potential
loop. For each potential step the self-energy is solved self-consistently. We
start similar to the ballistic case by setting up the boundary self-energies Σ1

and Σ2 and the corresponding scattering rate. Again the retarded Green’s
function is solved by a matrix inversion. Then the lesser Green’s function
can be computed via the Keldysh equation whereas the greater Green func-
tion can be calculated by the completeness relation. The charge density can
be computed by the relation given in section 2.6, similar to the ballistic case.
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Also the integration of the momentum energy-resolved spatial charge den-
sity is performed in the same manner. Then the electron-phonon self energy
has to be computed. This function depends for one energy and momentum
point on all other Green’s functions in momentum space and on two other
energy points due to the shift ±h̄ωLO . Thus this equation is coupled to the
other Green’s functions. The electron-phonon self-energy is de�ned by an
integration over all momentum points. Once the self-energy is calculated
the in�nity norm of the di�erence between the old and the new self-energy
is computed. When the result is smaller than the convergence criterion the
self-energy is considered to be self-consistent and the iteration is stopped.
Finally the Possion equation is solved and the potential is updated, this part
is equivalent to the ballistic computation.
The algorithm is visualized in algorithm 2 (see page 23).

3.2.4 Flowchart

The �owchart of the complete NEGF simulation is visualized in �gure 2.

input parameters

initialize z, k,
E grid

initial potential U

Dyson
GR

0

Self-energy
ΣR,≷

Dyson + Keldysh
GR,≷

converged? charge density
n

Poisson
U

converged?

output n, U
spectral Current

y

y

n

n

Figure 2: Flowchart for the NEGF simulation. The inner self-consistency loop, visu-
alized in green, connects the Geen’s functions and the self energies, while
the outer loop, visualized in red, provides the update of the potential from
the solution of the Possion equation.
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Algorithm 2 NEGF algorithm for the Inelastic case
1: procedure NEGF
2: for BIAS V do
3: guess U
4: while dU < εU do
5: while dΣ < εΣ do
6: for k do
7: for E do
8: Σ1(1, 1) = −t0 exp (i× acos(1− (E−U(1))/(2t0)))
9: Σ2(n, n) = −t0 exp (i× acos(1− (E−U(n))/(2t0)))

10: Γ1 = i× (Σ1 − Σ†
1)

11: Γ2 = i× (Σ2 − Σ†
2)

12: Σin,1 = f1(k, E)× diag(Γ1)

13: Σin,2 = f2(k, E)× diag(Γ2)

14: Σout,1 = (1− f1(k, E))× diag(Γ1)

15: Σout,2 = (1− f2(k, E))× diag(Γ2)

16: Γp = Σin +Σout = Σin,1 +Σin,2 +Σout,1 +Σout,2

17: ΣR = Σ1 + Σ2 + Σphonon(k, E) + i/2 ×
diag(Γp)

18: GR(k, E) =
[
E1− H(k)− ΣR]−1

19: GA(k, E) = (GR)†

20: G<(k, E) = GR(Σ<
B + Σ<

ph)× GA

21: G>(k, E) = GR − GA − G>

22: A = diag(i× (GR − GA))

23: n(z, k, E) = Re(diag(GR × ( f1(k, E)× Γ1

+ f2(k, E)× Γ2)× GR))

24: end for
25: n(k, z) =

∫
dE n(z, k, E)

26: end for
27: n(z) =

∫
dk k

2π n(z, k)
28: for k do
29: for E do
30: Σ

>
<(k, E) = e2 h̄ωLO

4π2

∫ qmax
0 dq qF(q, ∆ij, k, q0)×[

NLO × G>/<(q, E± h̄ωLO + (NLO + 1)G>/<(q, E∓ h̄ωLO)
]

31: end for
32: end for
33: Stop iteration if ‖Σi+1

el-ph − Σi
el-ph‖∞ < εΣ

34: end while
35: Solve Poisson: ∂z(ε(z)∂zφ(z)) = e(n(z)− Nd(z))
36: Update Potential: Ui+1 = λUnew + (1− λ)Ui

37: Stop iteration if ‖U‖∞ < εU is ful�lled
38: Update Potential
39: end while
40: end for
41: end procedure
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This chapter presents the implementation and the parallelization. A Mat-
lab reference implementation has been realized to test the algorithm and
perform computations for comparison. For realistic simulations this imple-
mentation is particularly slow, due to the limitations in Matlab. The sim-
ulation was translated into C and linked to e�cient BLAS and LAPACK
calls and self-developed kernels for those operations where no e�cient im-
plementation existed. For testing issues this version was parallelized with
OpenMP. The data distribution leads to a distributed implementation em-
ploying Message Passing Interface (MPI). In the last step the distributed
version was parallelized on node-level side with OpenMP which yields to
an e�cient hybrid implementation for the NEGF framework.

4.1 the matlab version

In a �rst step a a Matlab reference version was implemented. The purpose of
this version was to understand and analyze the algorithm. However this im-
plementation was particular slow, since the NEGF algorithm contains huge
nested loops and the way Matlab works does not favour loops in general.
Especially the inelastic non-equilibrium case is the most compute intensive
computation in the work. The Matlab version took nearly a whole day to
compute this case on a very performed workstation. Therefore we take a
closer look on the parallelization approach in the following sections.

4.2 levels of parallelism

In this part the levels of parallelism within the non-equilibrium Green’s func-
tion algorithm are discussed. Four di�erent levels can be identi�ed. The out-
ermost level is the distribution of the bias points. This level is especially easy,
because no subpart depends on the outer calculation, i.e. the computations
at di�erent bias voltages are completely independent. The parallelization of
this level can therefore be done easily, e.g. by starting multiple jobs on a
supercomputer or by one job with multiple instances.
The next level is the momentum level. This level is not trivial because inte-
gration over the k-points, which is required for the evaluation of physical
quantities such as the charge density and of the self-energies for inelastic
scattering, does depend on all other k-values, making communication nec-
essary. The computation of the Green’s functions, on the other hand, is com-
pletely independed of the components at other k-values.

25
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The third level is the energy level. The dependencies between the di�erent
energies has its origin in the integration over the energy domain for the
evaluation of physical quantities as well as in the energy shift in the self-
energy computation.
The fourth and last level is the spatial domain decomposition. The data for
each momentum and energy point is a Np× Np matrix. The operation on
this level can be parallelized by using multithreadedBLAS orLAPACK func-
tions or by employing OpenMP directives.
The levels of parallelism are visualized in �gure 3.

NEGF

V1 V2 . . . VN

k1 . . . kN−1 kN

E1 E2 . . . EN

Bias-level

Momentum-level

Energy-level

Spatial domain
decomposition

Figure 3: The four levels of parallelism that can be applied to the NEGF formalism
are shown. These levels are i) bias points, ii) momentum points, iii) energy
points and iv) the spatial domain decomposition. Illustration adapted from
[25].

4.3 parallelization with openmp

In the parallelization with OpenMP the momentum points are distributed
across all available threads. The calculation of the Green’s functions has no
dependencies, thus it can be parallelized with a simple OpenMP statement:

#pragma omp parallel for
for( iK=0; iK<NK; iK++ )
{

...
}

The number of momentum points NK is split up between all thread, such
that each thread is working on NK,local. The parallelization works optimally
when the number of momentum points is an integer multiple of the number
of threads. The parallelization with OpenMP is shown in �gure 4.
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k0 . . .

k3

k4 . . .

k7

k8 . . .

k11

k12 . . .

k15

k16 . . .

k19

k20 . . .

k23

k24 . . .

k27

k28 . . .

k32

Figure 4: The distribution of 32 momentum points is shown on one node (red line)
with 2 sockets (green lines) and 4 threads (grey lines) each. Each thread is
working on NK,local = 4 local k-points. In this scenario the distribution is
optimal, since all momentum points can be distributed evenly.

4.4 parallelization with mpi

The NEGF simulation can be so computationally intensive that the calcu-
lation on one node takes a too long or the NEGF program requires more
memory than what is available on one single node. In both cases, simula-
tion software is needed which can utilize more than one node. This requires
distributed memory programming. The most convenient solution for this is
called Message Passing Interface (MPI). This is a standard that describes
how to exchange messages with other computers over Ethernet or In�ni-
band.
This explicit communication requires that the programmer explicitly de�nes
the send and receive statements whenever data is needed which is not stored
locally. This additional communication can be seen as overhead compared to
the serial/threaded version. This overhead should be avoided as much as pos-
sible because this is a drawback regarding the scaling of the distributed im-
plementation on multiple nodes. The obvious solution would be to avoid any
unnecessary communication, e.g. by reusing the received data. The other ap-
proach is to overlap computation and communication, in such a way the ad-
ditional cost of communication can be hidden. However this is only possible
when the computation is compute bound. The CPU and the network card are
sharing the same memory bandwidth. So when the computation is memory-
bound and the full memory bandwidth is in use, the overlap wouldn’t work
that well.

4.4.1 Distribution of the momentum and energy points

The NEGF architecture needs to be mapped to the architecture of a mod-
ern supercomputer. Most of the current high end supercomputers consist
of several nodes connected with a fast network. The network is most likely
arranged in a Fat tree or torus topology. These architectures prefer commu-
nication between nodes that are close to each other, such that the hop count
gets minimized.
From the levels of parallelism presented in section 4.2 the momentum and
energy levels are parallelized with MPI. These levels form a hierarchy in
which each node is performing the calculation of a subset of energy and
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a subset of momentum points. Integration over the energy or momentum
domain will require collective MPI communication.
The MPI standard provides a function to map a topology inside the program
to the node topology. These are called virtual topologies. One type of vir-
tual topologies are the Cartesian topologies. Each process is connected to
its neighbors in a virtual grid. The boundaries can be cyclic, which speci�es
whether the ends are connected or not. Each process can be identi�ed by
Cartesian coordinates. A reorder option allows the MPI implementation to
optimize the mapping from the virtual to the physical topology for better
performance.
In the NEGF framework we are using a 2D Cartesian communicator. The mo-
mentum points are distributed along the �rst dimension on the 2D grid. The
energy points are distributed along the second dimension. This distribution
is visualized in �gure 5.

K = 0, 1
E = 0, 1, 2

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 3, 4, 5

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 6, 7, 8

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

K = 0, 1
E = 9, 10, 11

K = 2, 3 K = 4, 5 K = 6, 7 K = 8, 9

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

E = 0, 1, 2

E = 3, 4, 5

E = 6, 7, 8

E = 9, 10, 11

Figure 5: Exemplary momentum and energy distribution of NK = 10 and NE = 12
on 20 nodes (black squares). In this example every node stores NK,local = 2
local momentum data points and NE,local = 3 local energy points.

Each node gets a subset of the number of momentum points NK and the
number of energy points NE. For illustrative purpose let us have a look at
an examples:

NK = 32 NE = 128 (83)
Nnodes = 32 (84)
⇒ D0 = 8 D1 = 4 (85)

⇒ NK,local = 4 NE,local = 32 (86)

The creation of the dimension D0 and D1 is done by the MPI library with
the function MPI_Dims_create. This function helps the user to select a
balanced distribution. For the 2-dimensional case one dimension can be pro-
vided by the user. Obviously the global number of points needs to be integer
dividable by the dimension size to ensure evenly distributed workload. A
check was implemented to �nd a balanced distribution as well as ful�ll the
mentioned constrain.
When the distribution of the dimension is determined, the communicator
for the MPI communication can be created. A 2D Cartesian Communicator



4.4 parallelization with mpi 29

is created without periodicity neither in momentum nor in energy direction
with MPI_Cart_create. Later a similar communicator with periodicity in
k-dimensions is created with the same assignment of corresponding Carte-
sian coordinates. This is needed for the self-energy integration. The reorder
option is enabled to optimize the mapping.
Each rank stores a subset of momentum NK,local and energy points NE,local.
The rank has a local view iE ∈ [0, NE,local] and iK ∈ [0, NK,local]. The global
momentum/energy value can be calculated with the help of the MPI library.
As mentioned above each rank in the Cartesian topology can be identi�ed
by Cartesian coordinates with the functionMPI_Cart_coords. The global
momentum/energy values can then be determined via

iK,global = iK,local + C0 ∗ NK,local (87)
iE,global = iE,local + C1 ∗ NE,local (88)

where C0/1 denotes the Cartesian coordinate of the rank in dimension 0 or
1, respectively.
In some cases only horizontal (across the momentum points) or vertical
(across the energy points) communication is needed, e.g. for the integration
of the charge density. If we consider the integration to be two steps, we have
one step for momentum integration n(z, E) =

∫
dk n(z, k, E) and thus only

horizontal communication. The second step in obtaining the charge carrier
density, we integrate over the energy domain: n(z) =

∫
dE n(z, E), here

only vertical communication appears. For one energy point the momentum
points are forming a subset of the whole set. Within the MPI framework we
can divide the Cartesian Communicator into communicators which contain
only a subset of nodes. This can be done with the MPI_Cart_sub func-
tion. With the remain argument can be speci�ed which dimension should
remain in the derived communicator. In the NEGF implementation we have
two subcommunicators, one for the momentum and one for the energy. Each
MPI rank has this two additional communicators, but they di�er on each MPI
rank. A illustration is shown in �gure 6.



30 implementation

k

E

Figure 6: The 2D Cartesian topology. 18 nodes are shown, illustrated by the black
squares. The 2-dimensional communicator is shown in red. The communi-
cators that contain all k-points for a certain energy point are visualized in
green. The communicator for all E-points for a speci�c momentum point
is shown in blue. These three di�erent communicators are used in the pro-
gram.

4.4.2 Distributed self-energy integration

The polar optical phonon self-energy is de�ned by:

Σ≷
ij (k, E) =

e2h̄ωLO

4π2

qmax

∑
0

∆q qF(q, ∆ij, k, q0)× (89)(
NLO × G≷

ij (q, E± h̄ωLO) + (NLO + 1)G≷
ij (q, E∓ h̄ωLO)

)
where we have written the integration as a Riemann summation where ∆q
denotes the spacing in the momentum grid for illustration.
Distributing the calculation induces the problem that the data that are
needed for the computation are not stored locally. This implies that com-
munication is needed in order to perform the calculation. In this case the
computation of Σ≷(ki, Ej) for one speci�c momentum points ki and one
speci�c energy point Ej depends on the Green’s functions for all other
momentum points and two other energy points:

Σ≷(ki, Ej) = f
(

G≷(k0, Ej ± h̄ω), G≷(k1, Ej ± h̄ω), . . . ,

G≷(kNK−1, Ej ± h̄ω)
) (90)

Some of these values are local but most of them are not local.
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The computation for the self-energy is done in two steps: First the commu-
nication for the energy is performed, then the communication for the mo-
mentum is executed.
For the communication it is obviously required to know which ranks com-
municate with each other. Whenever the needed energy points are outside
the local view, i.e. iE.local ± h̄ω /∈ [0, NE,local] data has to be communicated.
The node di�erence ndi�, which is de�ned by the Cartesian di�erence of the
two nodes that need to exchange data, can be calculated by the given values.
The corresponding rank number can be obtained by the function MPI_Cart
_shift (see [12]). This function returns a source and destination for the
shift. With the help of these results it can be determined whether the actual
rank needs to send and/or receive data. The data is sent via an nonblocking
sending command MPI_Isend. This allows to overlap communication and
computation. The receive is also done nonblocking. This allows to perform
the local update simultaneously to the communication.
For each momentum and energy point the local energy picture is created:

H≷(q, E) = NLO × G≷(q, E± h̄ωLO) + (NLO + 1)G≷(q, E∓ h̄ωLO).
(91)

This value is needed on all other nodes that take care of the same energy
point but a di�erent momentum point. Or to speak in the MPI picture: this
value H(q, E) needs to be communicated among the communicator in the
momentum direction (cf. �g 6). For each di�erent momentum value H con-
tributes to the self-energy with a di�erent prefactor:

Σ≷
ij (k, E) =

e2h̄ωLO

4π2

qmax

∑
0

∆q qF(q, ∆ij, k, q0)× H≷
ij (q, E). (92)

For the communication across the momentum dimension, every node in this
dimension has to communicate with all the other nodes. This is realized by
a loop over all nodes in this dimension. The sender and receiver are deter-
mined with MPI_Cart_shift. With this function we get a source and
destination for the communication. Each node sends the matrix to the
destination and receives the matrix from source. Since the global value of K
and Q has to be known in the prefactor in equation 92, we have to calculate
them. With the source value we can get the Cartesian coordinate with the
function MPI_Cart_coords. We can then calculate both global values via

iQ,global = iQ,local + C0,H ∗ NK,local (93)
iK,2,global = iK,local + C0 ∗ NK,local (94)

where C0,H is the �rst coordinate of the source from the communication and
C0 is the local �rst coordinate of the local point. Then the local update of
the self-energy with the global values is performed.
The integration is schematically depicted in �gure 7.
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Figure 7: A snapshot of the self-energy integration. The illustration shows the
global indices. The same distribution as in �gure 5 is assumed. Each node
is at the local step Klocal = 0 Elocal = 1. In the �rst step communication
across the energy dimension (shown in red) is performed to build the local
view of H(K, E). Due to the boundary condition there is no communica-
tion at the border. In this case the local values are taken, this is visualized
with the gray arrows. After the local view H(K, E) is built, this matrix is
communicated to all other nodes in the momentum level. This all-to-all
like communication is visualized in blue. This snapshot of the communi-
cation is the same for every local energy and momentum point.

The pseudo code for the self-energy integration is shown in algorithm 3.

Algorithm 3 Distributed Integration of the self-energy
1: procedure integration-self-energy
2: for iK=0; iK< NKloc; iK++ do
3: for iE=0; iE<NEloc; iE++ do
4: Compute node ndi� di�erence for communication
5: Get source and destination
6: Communicate for G(iK, iE + h̄ω) and G(iK, iE− h̄ω)

7: H(iK, iE) =
[
NLO × G(iK, iE − h̄ω) + (NLO + 1) ×

G(iK, iE + h̄ω)
]

8: Update local:
9: for iQ=0; iQ< NKloc; iQ++ do

10: Σ(iK, iE)+ = αF(iQ, ∆z,z′ , iK, q0)H(iK, iE)
11: end for
12: for k Dimension do
13: Send H and receive remote H
14: Update with remote data:
15: for iQ=0; iQ< NKloc; iQ++ do
16: Σ(iK, iE)+ = αF(iQ, ∆z,z′ , iK, q0)H(iK, iE)
17: end for
18: end for
19: end for
20: end for
21: end procedure
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4.5 hybrid parallelization with mpi and openmp

Previously we have shown how we can parallelize the NEGF algorithms
in two di�erent ways: a shared memory approach with OpenMP which
worked perfectly on one node was presented. The second approach is a dis-
tributed memory implementation that is using MPI for explicit communica-
tion between ranks. This explicit communication constitutes an overhead
within the execution. The generic goal in the development of e�cient pro-
grams is to avoid overhead as much as possible, since it decelerates the run-
time advantage from running the program on multiple resources, i.e. mul-
tiple nodes. A state-of-the-art supercomputer consists usually of di�erent
levels: On the node level we have one or multiple sockets that can communi-
cate with a very fast interconnect and basically share the same address space.
Thus the threaded approach works excellent on one full node, assuming that
we have enough workload to employ all available tasks. This threaded ap-
proach implies indirect communication, since the di�erent threads can read
and write to shared memory areas. On this level we would like to avoid
explicit communication. However, when we want to utilize more than one
node we necessarily need explicit communication. This �ndings lead natu-
rally to the intention to combine the strengths of both approaches: a combi-
nation of explicit and implicit communication, a combination of distributed
and shared memory, or in other words a combination of MPI and OpenMP.
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R E S U L T S

The hardware and software will be described in the beginning of this chapter.
I have used the RWTH Compute cluster, the JURECA and JUQUEEN. Then
I will present timing and scaling results for di�erent machines used. Subse-
quently I will present the physical results of the NIN diode for the ballistic
case and also for the inelastic case.

5.1 experimental environment

Whenever we are talking about timing, speedup or performance it is essen-
tial to specify the used hardware. This is important to make the results com-
parable and to allow reproducibility.

5.1.1 Hardware

An important part of the environment description is the used hardware. In
the following we discuss technical details of the di�erent machines.

5.1.1.1 RWTH Computer Cluster

The RWTH Computer Cluster is an inhomogeneous cluster with a lot of dif-
ferent hardware. I have only used the part with the Intel Haswell processors.
The detailed hardware speci�cations are listed in table 2. An illustration of
the con�guration is shown in �gure 8. The theoretical per node peak perfor-
mance is given by:

node performance in GFlops = cores× freq× �ops/cycle (95)

= 24× 2.5 GHz× 16
flops
cycle

(96)

= 960 GFlops. (97)

During the development of the distributed implementation a performance
problem was detected on these machines. Randomly the computers show
only half the expected performance in computer bound and memory bound
problems. This problem has not been �xed yet. Therefore no performance
results are presented for these machines.

5.1.1.2 JURECA

JURECA is quite similar to the AICES Haswell nodes. It is equipped with the
same processor and also has 960 Gflops theoretical peak performance per

35
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property value

CPU 2x Haswell E5-2680 v3
RAM 64 GB

CPU frequency 2,500 MHz

RAM frequency 2,133 MHz

number of cores 2

number of cores 6

number of threads 12

�ops/cycle 16

Level 1 cache size 12 x 64 KB Instruction
12 x 64 KB Data

Level 2 cache size 12 x 256 KB

Level 3 cache size 30 MB

Table 2: Speci�cations of the AICES Haswell nodes in the RWTH Computer Cluster.

Machine (64GB)

NUMANode P#0 (32GB)

Socket P#0

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#24

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

PU P#26

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

PU P#28

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

PU P#30

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#8

PU P#32

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#10

PU P#34

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#12

PU P#36

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#14

PU P#38

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#16

PU P#40

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#18

PU P#42

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#20

PU P#44

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#22

PU P#46

NUMANode P#1 (32GB)

Socket P#1

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

PU P#25

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#3

PU P#27

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#5

PU P#29

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#7

PU P#31

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#9

PU P#33

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#11

PU P#35

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#13

PU P#37

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#15

PU P#39

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#17

PU P#41

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#19

PU P#43

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#21

PU P#45

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#23

PU P#47

Figure 8: A graphical representation of the hardware speci�cations of the AICES
Haswell nodes.
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node. The standard node has 128 GB, but there are also a few nodes with
up to 1,024 GB. The important di�erence is the faster network regarding
bandwidth and latency. An EDR In�niBand is used in a non-blocking fat-tree
topology. A tabulated summary of the speci�cations of JURECA is presented
in tabular 3. A graphical illustration of the node con�guration is shown in
�gure 9.

5.1.1.3 JUQUEEN

The third machine used is JUQUEEN. It is one of the fastest supercomputer
in the world with a total theoretical peak performance of 5.9 Pflops [33].
The per node performance is given by:

node performance in GFlops = cores× freq× �ops/cycle (98)

= 16× 1.6 GHz× 8
flops
cycle

(99)

= 204.8 GFlops (100)

The big bene�t of JUQUEEN is network: the 5D-torus topology.



38 results

property value

CPU 2x Haswell E5-2680 v3
RAM 128 GB

CPU frequency 2,500 MHz

RAM frequency 2,133 MHz

number of cores 2

number of cores 6

number of threads 12

�ops/cycle 16

Level 1 cache size 12 x 64 KB Instruction
12 x 64 KB Data

Level 2 cache size 12 x 256 KB

Level 3 cache size 30 MB

Interconnect In�niBand EDR
Network topology non-blocking fat tree

Table 3: Speci�cations of the JURECA.

Machine (256GB)

NUMANode P#0 (128GB)

Socket P#0

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#24

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#25

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#26

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#27

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#28

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#29

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#6

PU P#30

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9
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Figure 9: A graphical representation of the hardware speci�cations of the JURECA
nodes.

Figure 10: A graphical representation of the hardware speci�cations of the
JUQUEEN nodes.
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property value

CPU IBM PowerPC A2
RAM 16 GB

CPU frequency 1,600 MHz

RAM frequency 1,333 MHz

number of cores 16

number of threads 64

�ops/cycle 8

Level 1 cache size 16 x 16 KB Instruction
16 x 16 KB Data

Level 2 cache size 32 MB

Interconnect custom
Network topology 5D Torus

Table 4: Speci�cations of JUQUEEN.

5.1.2 Software

The NEGF simulation software is written in C. Since the di�erent architec-
tures do not allow to use the same compilers and libraries, the used software
is shortly summarized: On Intel architecture the Intel C Compiler is used, on
the Blue Gene Q architecture the IBM XL compiler is used. The optimized
Blas and Lapack library for each architecture was used. On Intel this is the
Intel MKL library. On the Blue Gene Q the ESSL library is used.

5.2 parallelization comparison

5.2.1 OpenMP scaling

As described in section 4.3 the NEGF software was parallelized with
OpenMP. A scaling plot is shown in �gure 11. In this scenario the number
of momentum points NK can be evenly divided by the number of used cores.
This is the best case scenario, because the work distribution is most even. In
this case we reach a speedup of 19.70 on 24 cores without Hyperthreading.
With Hyperthreading we get better timings (see table 5), but only a speedup
of 16.29 on 24 cores.
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cores time without HP time with HP

1 10,274.19 s 7,612.34 s

3 3,442.18 s 2,653.47 s

6 1,702.69 s 1,309.87 s

12 985.77 s 801.32 s

24 521.54 s 467.21 s

Table 5: Runtimes on JURECA for the OpenMP implementation without and with
Hyperthreading. The system size is Nk = 48, NE = 301, and Np = 100.
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Figure 11: Speedup plot for the OpenMP implementation on one Jureca node. The
system size is de�ned by NK = 48, NE = 301, and Np = 100. Results
without Hyperthreading are shown in red, whereas green shows the re-
sults with Hyperthreading enabled. The ideal speedup for both situations
is visualized by the dotted lines. Both lines are normalized to the execu-
tion using 1 cores without Hyperthreading. Representative timings are
given.

The worst case would be when then number of k-points can not evenly dis-
tributed across all cores. E.g., to distributed NK = 49 momentum points
on a 24-cores machine. This experiment was also performed and presented
in �gure 12. We can see that the runtime on 1-core increases only slightly,
whereas the runtime on all 24-cores is much higher compared to the pre-
vious case. Thus the speedup on 24-cores decreased to 14.34 on 24 cores
without Hyperthreading and 12.20 with Hyperthreading.
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Figure 12: Similar setup as shown in �gure 11, but this time with NK = 49. Thus the
number of momentum points can not be evenly distributed on 24 cores.
This corresponds to the worst case scenario for the OpenMP implemen-
tation.

5.2.2 MPI scaling

In the NEGF simulation the most computationally intensive part is the cal-
culation and integration of the inelastic self-energy. This part is also the
complicated part regarding the distributed implementation, as described in
section 4.4. Therefore this part is measured separately. The speedup of the
MPI implementation is shown in �gure 13.
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Figure 13: Scaling of the self-energy integration on JURECA. In this case only one
thread per node was used to visualize only the MPI characteristics. The
system sizes are NK = 256, NE = 256, and NP = 100.

The same scaling experiment was performed on JUQUEEN with a bigger
input problem on more nodes, see �gure 14. The self-energy integration is
also scaling on more cores.
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Figure 14: Scaling of the self-energy integration on JUQUEEN. In this case also only
one thread per node was used to visualize only the MPI characteristics.
The system sizes are NK = 1024, NE = 1024, and NP = 100.

5.2.3 Hybrid scaling

The hybrid implementation as described in section 4.5 combines the MPI
and the OpenMP parallelization. In the scaling experiment one MPI rank per
node was used. On the node level OpenMP was used to exploit parallelism.
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Figure 15: Hybrid scaling of the self-energy integration on JURECA. The system
sizes are NK = 256, NE = 256, and NP = 100.

Figure 16 shows the speedup plot for this hybrid implementation on
JUQUEEN. We can see that the self-energy intergration is scaling on the
full JUQUEEN installation, that means on all 28,672 nodes, which equals
458,752 cores. For the experiment runs 2-way SMT was used, thus 32
threads have been used on one node. The parallel e�ciency on all 28,672
nodes is 0.86 related to 2,048 nodes. This is a very good result.
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Figure 16: Hybrid scaling of the self-energy integration on JUQUEEN. The system
sizes are NK = 2048, NE = 5376, and NP = 100.

5.2.4 Scaling of one complete self-consistent iteration

The results before have only shown the scaling for the integration of the
self-energy. This is clearly the most crucial part in the distributed implemen-
tation, but it is also important to prove that the other parts are also scaling
as good as expected. In �gure 17 the speedup and e�ciency of one complete
iteration of the NEGF implementation is shown. Comparing the results, we
can see that the scaling of one complete iteration scales as good as only the
integration of the self-energy.
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Figure 17: One complete NEGF iteration on JURECA. The speedup and e�ciency
of the hybrid implementation is shown. The system sizes are NK = 256,
NE = 256, and NP = 100.

5.3 nin-diode

A schematic drawing of the structure of the diode is presented in �gure 18.
The following material parameters have been used:

m = 0.25m0 (101)
ε0 = 11.92ε (102)

ε∞ = 9.93ε (103)
q0 = 5× 10−5 (104)

h̄ωLO = 37.5meV (105)
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n i n

2× 1025m−3 2× 1024m−3 2× 1025m−3

Figure 18: Schematic of diode with the doping Nd.

5.3.1 Ballistic results

In the following section the physical results from the ballistic NIN diode are
presented.

5.3.1.1 Charge density

In �gure 19 the charge density of the diode is shown.

 2e+24

 4e+24

 6e+24

 8e+24

 1e+25

 1.2e+25

 1.4e+25

 1.6e+25

 1.8e+25

 2e+25

 0  10  20  30  40  50  60  70  80  90  100

n 
[m

^-
3]

z [nm]

Figure 19: Charge density n(z) of the ballistic nin-diode plotted as a function of the
position z.

5.3.1.2 Potenial

The spectral current for the same situation is shown in �gure 20.
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Figure 20: Potential U(z) of the ballistic nin-diode plotted as a function of the posi-
tion z.

5.3.1.3 Spectral charge density distribution

Figure 21 shows the spectral charge density n(z = 50nm, E) for a �xed
position in the middle of the device at z = 50nm as a function of the energy
E. Each momentum contribution n(z, k, E) is plotted in a di�erent color. In
this case equation 61 is ful�lled:

0.53eV =
K2
maxh̄2

2m
≥ Emax = 0.5eV. (106)
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Figure 21: Spectral charge density n(z = 50nm, E) of the nin-diode plotted as a
function of the energy E. Each momentum contribution n(z, k, E) is plot-
ted in a di�erent color.
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5.3.2 Inelastic results

In the following the results of the inelastic scattering are presented. The
system size is the same as before, except that now an external voltage is
applied.

5.3.2.1 Charge density

The charge density for an applied voltage of 0.2 V is shown in �gure 22.
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Figure 22: Charge density n(z) of the nin-diode with inelastic scattering plotted as
a function of the position z.

5.3.2.2 Spectral current

The spectral current is shown in �gure 26.
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Figure 23: Spectral current and potential U(z) of the nin-diode with inelastic scat-
tering plotted as a function of the position z.

5.3.2.3 I-V characteristics

The I-V characteristics is given in 24.
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Figure 24: Current I plotted as a function of the applied bias U.

5.4 high barrier

In the �gure 26 the spectral current is shown for a case with a barrier. The
device consist of two di�erent materials which leads to an e�ective barrier
due to the di�erent band o�set. This leads to a step-function like term in the
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Hamiltonian, which can be also seen in the potential. This case represents a
unipolar device with a barrier comparable to a Schottky junction.
A schematic drawing of the structure of the diode for the high barrier case
is presented in �gure 25. The following material parameters have been used
for material 1 and 2, respectively:

m1 = 0.067m0 (107)
ε0,1 = 13.18ε (108)

ε∞,1 = 10.89ε (109)
m2 = 0.092m0 (110)
ε0,2 = 11.80ε (111)

ε∞,2 = 9.36ε (112)
∆Eband o�set = 0.1eV (113)

q0 = 5× 10−5 (114)
h̄ωLO = 37.5meV (115)

n i n

1× 1025m−3 1× 1024m−3 2× 1024m−3

mat 1 mat 1 mat 2

Figure 25: Schematic of diode for the high barrier case with the doping Nd.

Figure 26: Spectral current and potential U(z) of the nin-diode with a barrier plot-
ted as a function of the position z.
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C O N C L U S I O N A N D O U T L O O K

6.1 conclusion

Within the scope of a this thesis, an e�cient parallelization of the NEGF
method for nanodevices has been implemented. In chapter 4, a detailed ex-
position of the strategy has been provided. Speci�cally, the integration of
the polar optical phonon self-energy for the inelastic scattering has been de-
rived and the di�culties which occur when the integration is across multiple
nodes have been pointed out.
It has been shown that the di�erent parallelization approaches work per-
fectly and show good scaling. The OpenMP approach has a speedup of 19.70
on 24 cores. Even for non ideal (regarding the parallelization) input values
the code is still scaling very good, with a speedup of 14.34 on 24 cores.
With the MPI version the NEGF simulation can run on multiple nodes. The
parallelization is performed such that momentum and energy points are dis-
tributed across the nodes. This allows to run on a large number of nodes.
The integration across the nodes is here the most crucial point. It has been
shown that the integration of the charge density as well as the integration of
the self-energy in the inelastic part can be parallelized e�ciently. The MPI
parallelization is scaling very good on JURECA and also on JUQUEEN.
The MPI implementation has been extended to a hybrid implementation. The
work on the node level, the spatial points, are parallelized with OpenMP
threads. This hybrid parallelization allows to exploit the architecture of mod-
ern supercomputer most e�ciently. Also this implementation scales on JU-
RECA and JUQUEEN. The integration of the self-energy is scaling on up to
458,752 cores on JUQUEEN.
The NEGF algorithm that has been implemented can be used to simulate
a nin-diode including inelastic phonon scattering as well as a case with a
high barrier. The code can calculate the charge density, the potential pro�le,
the spectral charge distribution, the spectral current distribution, as well as
the I-V characteristic line, which is are very important quantities for the
simulation of nanodevices.

6.2 outlook

The parallelization presented in this work does apply for the general NEGF
equations and the polar optical phonon scattering in particular. This allows
us to simulate simple diodes. More complex devices require additional scat-
tering mechanisms or other kind of scattering, e.g. scattering with photons.
The developed parallelization approach can be extended to address also these

53



54 conclusion and outlook

features. This is possible, since the general structure, e.g. the distribution of
the momentum, energy and spatial points remain the same. Thus, the ap-
proach presented in this thesis can be transfered with minor changes.
In this work a simple mixing, also known as Kerker mixing, scheme was
used. This is the most basic mixing scheme for a self-consistent �eld (SCF) it-
eration. These SCF iterations also occur within the Density function theory
(DFT) framework [17]. It has been shown that the mixing factor α depends
on the material and on the size of the system [23]. For su�ciently small α the
simple mixing procedure will always lead to convergence, however it might
take a large amount of iterations. The DFT community has developed tech-
niques for accelerating the self consistent �eld iteration. Two main meth-
ods for accelerating have been developed: advanced mixing schemes and
preconditioning [9]. The important mixing schemes are Anderson’s method
[3], Broyden’s method [5] and Pulay’s method [29], which is based on Direct
Inversion of Iterative Subspaces (DIIS). The second approach uses an e�ec-
tive preconditioner to minimize the number of iteration. Two examples for
preconditioner used in the DFT community are the Kerker preconditioner
[16] and an elliptic preconditioner [24]. Usually a combination of mixer and
preconditioner is used for accelerating the SCF iteration, e.g. Anderson mix-
ing + Kerker preconditioner. While the number of SCF cycles are reduced
by this choice, the construction of the preconditioner comes with an addi-
titonal computational cost. The goal is to optimize this issue to achieve an
overall increase in accuracy and decrease in the overall computational cost.
In the future work these innovative techniques could be adapted to the NEGF
framework.
The accuracy of the program depends on the granularity of the used meshes.
In the present implementation an equidistant grid was used. This might not
be ideal. Some parts in the energy mesh require higher accuracy whereas
other parts don’t bene�t from a higher accuracy. E.g. localized states corre-
spond to a sharp energy peaks. Also quantum e�ects like con�nement lead to
sharp energy resonance. Due to inelastic scattering states that haven’t been
occupied before can be occupied. This would require an energy re�nement.
In order to resolve these issues an adaptive integration mesh needs to be
implemented. Another constraint which makes this more challenging is the
compatibility with the conservation laws. This adaptive integration mesh
will lead to better accuracy and also reduce the number of self-consistent
cycles, and thus e�ectively shorten the simulation time.
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