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Abstract. We introduce a new kind of hypergraphs and hyperedge re-
placement grammars, where nodes are associated types. We use them
to adapt the abstraction framework Juggrnaut presented by us in [7,
8] – for the verification of Java Bytecode programs. The framework is
extended to handle additional concepts needed for the analysis of Java
Bytecode like null pointers and method stacks as well as local and static
variables. We define the abstract transition rules for a significant subset
of opcodes and show how to compute the abstract state space. Finally
we complete the paper with some experimental results.

1 Introduction

Object-oriented languages, used in most software projects these days, introduce
new challenges to software verification. As objects can be created on runtime the
state space is (potentially) infinite, thus making it impossible to apply standard
verification techniques.

In [7, 8] we presented an abstraction framework Juggrnaut based on a natural
representation of heaps by graphs. We employ hyperedge replacement grammars
to specify data structures and their abstractions. The key idea is to use the
replacements which are induced by the grammar rules in two directions. By a
backward application a subgraph of the heap is condensed into a single nonter-
minal hyperedge (as depicted in Fig. 1), thus obtaining an abstraction of the
heap. By applying rules in forward direction, parts of the heap that have been
abstracted before can be concretised again.
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Fig. 1. Representation of abstracted heap parts by nonterminal hyperedges.

The structure in Fig. 1 describes a tree with linked leaves, i.e. the leaves form a
linked list, a common data structure in data bases. This data structure is used
as a running example in Section 2.



While in previous publications our focus was on pointer properties like de-
structive updates, sharing and dynamic allocation of heap cells, we did not
consider object-oriented aspects like member variables (fields), object methods,
polymorphism and other type depending instructions (e.g. instanceof). Further-
more (recursive) method calls and local variables, potentially resulting in an
unbounded number of variables, were not considered so far. In this paper we
extend the framework to handle a significant subset of Java Bytecode including
the aspects listed above. In Section 2 we provide the theoretical foundations, ex-
tending hypergraphs with typed nodes to model typed objects in object-oriented
languages (e.g. Java, C++, Objective-C, . . . ). The introduction of types involves
an adaptation of hyperedge replacement grammars used for heap abstraction as
well as of the requirements formulated by us before [8]. In Section 3 we extend
the Juggrnaut framework towards an abstract Java Virtual Machine (JVM) sup-
porting Java Bytecode specific concepts like static and dynamic method calls as
well as static and local variables. Technically this is achieved by extending the
abstract graph representation of the heap to cover the entire state of the JVM.

Proofs omitted due to space restrictions are found in a technical report [9].

2 Basic Concepts

Given a set S, S? is the set of all finite sequences (strings) over S including the
empty sequence ε, where · concatenates sequences. For s ∈ S?, the length of s
is denoted by |s|, the set of all elements of s is written as [s], and by s[i], with
1 ≤ i ≤ |s|, we refer to the i-th element of s. We denote the disjoint sum by
]. Given a tuple t = (A,B,C, . . . ) we write At, Bt etc. for the components if
their names are clear from the context. Function f�S is the restriction of f to S.
Function f : A→ B is lifted to sets f : 2A → 2B and to sequences f : A? → B?

by point-wise application. We denote the identity function on a set S by idS .

2.1 Hypergraphs and Heaps

In [8] heap structures are represented by hypergraphs. Hypergraphs contain
edges connecting arbitrary many nodes. They are labelled using a ranked al-
phabet Γ of terminals and nonterminals. A ranking function rk : Γ → N maps
each label l to a rank, defining the number of nodes an l-labelled edge connects.

Example 1. Consider the right graph of Fig. 1. Nodes (depicted as circles)
represent objects on the heap. Edges are labeled using an alphabet Γ . Terminal
edges (labelled by terminals) connecting two nodes represent pointers, whereas
nonterminal edges (depicted as shaded boxes) represent abstracted heap parts.
In Fig. 1 an L-labelled hyperedge connects three nodes, i.e. rk(L) = 3. The order
on attached nodes is depicted by numbers labelling connection lines (which we
call tentacles) between edges and nodes. In case of terminal edges, the direction
induces the order.

Definition 1 (Tentacle). A tuple (a, i), a ∈ Γ, 1 ≤ i ≤ rk(a)] is a tentacle.
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Although objects in common object-oriented languages are of a well-defined type,
this is not reflected in this representation. We therefore extend the graph model
to (labelled and typed) hypergraphs over a typed alphabet assigning a type to
each node.

Definition 2 (Typed Alphabet). A typed alphabet Σ is a triple (L, (T,�),
types) with set of labels L, type poset (T,�) and typing function types : L→ T ?.

Note that the ranking function is now implicitly given by rk(f) = |types(f)|. The
value of types(X)[i] defines the type of node to which tentacle (X, i) connects.

We define the relation � also over sequences of types, where two type se-
quences t1 � t2 are related iff they are equal in length and if for each position
the elements are related correspondently, i.e. t1[i] � t2[i],∀1 ≤ i ≤ |t1|.

Definition 3 (Hypergraph). A (labelled and typed) hypergraph (HG) over a
typed alphabet Σ is a tuple H = (V,E, lab, type, att , ext), with a set of nodes V ,
a set of edges E, an edge labelling function lab : E → LΣ and a node labelling
function type : V → TΣ. The attachment function att : E → V ∗ maps each
hyperedge to a node sequence and ext ∈ V ? is a (possibly empty) sequence of
pairwise distinct external nodes.
For e ∈ E we require that types(lab(e)) � type(att(e)), i.e. every tentacle is
connected to a node of its corresponding type or a subtype.

The set of all hypergraphs over Σ is denoted by HGΣ.

A[1] A B B

[2]

X A

X

n
n

p

n

n
1

2

3

12

3

Fig. 2. A labelled and typed hypergraph.

Example 2. Fig. 2 depicts a hypergraph over the typed alphabet Σ = ({n, p,X},
({A,B}, B � A), [n 7→ AA, p 7→ BA,X 7→ BAA]). Each node is annotated with
its type. The order on the (grey) external nodes is given by numbers in square
brackets next to them. Edge connections must respect the types function, e.g.,
tentacles (X, 3) and (X, 1) of the right X-edge are mapped to the same node of
type B. This is correct as B � types(X)[1] and B � types(X)[3].

We use hypergraphs to model heaps where terminal edges represent pointers
and nonterminal edges represent embedded heap structures of a well defined
shape. Though the hypergraph depicted in Fig. 2 is correct according to the
definition of a hypergraph, it does not represent a proper heap. Indeed there are
two problems. The first one occurs at the second node from left, which has two
outgoing n-pointers. The second is based on the fact that every pointer on the
heap has to be represented either concretely as a terminal edge or abstractly
within a hyperedge. Thus there should be an outgoing p-pointer at the second
external node. As it is not concretely represented it has to be abstracted within
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the X, either in the first or in the third tentacle. However if it was abstracted
in the first tentacle there would be two p-pointers at external node two (as two
(X, 1)-tentacles are connected), whereas if it was abstracted within the third
tentacle there would be a p-pointer at the second node from left, which is of
type A, thus has no p-pointer.
In order to formalise the requirements we introduce the notion of entrance-
and reduction-tentacles, also named O- and N-tentacles, respectively. Nodes can
be left via O-tentacles, i.e. they represent outgoing pointers, whereas N-tentacles
represent incoming ones only. Given a set A we use: AN = A×{N}, AO = A×{O}
and AON = AN ∪ AO. We denote (a,N) and (a,O) by aN and aO, respectively.
If we use elements of AON where elements from A are expected, we refer to the
projection on the first element.

Definition 4 (Heap Alphabet). A heap alphabet ΣN = (F∪N, (T,�), types)
is a tuple with a set of field labels F, a set of nonterminals N , a set of types T
and a typing function types : F ∪N → TON

?, where types(F) ⊆ TO · TN.

T corresponds to the classes with subtype relation �, whereas F are the field
names. The function types maps fields to their defining class (as O-tentacle)
and to the class they point to (as N-tentacle), e.g. given the class definition
class A{ B f;} types(f) = AOBN. We define fields(t) = {f ∈ F | types(f)[1] � tO}
for t ∈ T.

class Node{
Inner parent ;

}
class Inner extends Node{

Node l e f t , r i g h t ;
}
class Leaf extends Node{

Leaf next ;
}

(a) Class definition

Object

Node

Leaf Inner

(b) Type poset

Fig. 3. Class definitions and resulting poset.

Example 3. Given the Java-class definitions from Fig. 3(a) we get the set of types
T = {Object,Node, Inner,Leaf} and as terminal edge labels the field-names
F = {Node.parent , Inner .left , Inner .right ,Leaf .next}. The poset (T,�) defined
by the subtype relation is given in Fig. 3(b). The type sequence for parent
is types(Node.parent) = NodeOInnerN, for left and right types(Inner .left) =
types(Inner .right) = InnerONodeN and types(Leaf .next) = LeafOLeafN.

The resulting function fields is fields(Node) = {Node.parent}, fields(Inner) =
{Inner .left , Inner .right ,Node.parent}, fields(Leaf) = {Leaf .next ,Node.parent}.

By OH(v) = {e ∈ EH | (∃i ∈ N : types(lab(e))[i] ∈ TO ∧ att(e)[i] = v} we define
the set of edges connected to the node v ∈ VH through an entrance tentacle.
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Definition 5 (Heap Configuration). A heap configuration (HC) over a heap
alphabet ΣN is a tuple H = (V,E, lab, type, att , ext), where V is a set of nodes,
E a set of edges. An edge labelling function lab : E → F∪N and a node labelling
function type : V → T. The function att : E → V ∗ maps each hyperedge to
a sequence of attached nodes and ext ∈ V ?NO is a (possibly empty) sequence of
pairwise distinct external vertices.

For a terminal edge e ∈ E, lab(e) ∈ F we require that types(lab(e)) � type(att(e))
whereas for e ∈ E, lab(e) ∈ N we require that types(lab(e)) �N type(att(e)),
where tN �N t′N iff t � t′ and tO �N t′O iff t = t′.

For vN ∈ ext we require OH(v) = ∅, whereas for v ∈ V such that vN /∈ ext we
require:

lab(OH(v)) = fields(type(v)) ∧ x, y ∈ OH(v) ⇒ lab(x) 6= lab(y) (1)
∨ lab(OH(v)) ⊆ N ∧ |OH(v)| = 1 (2)

The set of all heap configurations over ΣN is denoted by HCΣN
.

Whereas terminal O-tentacles represent a single outgoing pointer, non-terminal
O-tentacles represent all outgoing pointers of a node. Therefore a node can be
connected to either every non-reduction terminal tentacle defined by the type
(1) or a single nonterminal O-tentacle (2).

External nodes can be considered to be references to nodes outside the graph
and their outgoing pointers are either all outside the graph and the external node
is annotated as reduction-node (N) or are all inside the graph and the external
node is therefore an entrance node (O) as we can enter the graph from this node.

Example 4. In Fig. 4(a) a HC over the heap alphabet from Ex. 3 is given,
extended by the nonterminal L with types(L) = INIOLOLN. Here I is the short
form for Inner, L for Leaf. Nonterminal edges labelled by L represent trees with
linked leaves. The external nodes are: the root node (2) of a subtree, its parent
node (1), the leftmost leaf (3) and the n-reference (4) of the rightmost leaf of
the subtree. The numbering of external nodes is extended to mark them as O-
or N-nodes. As the first external is a N-node it has no outgoing edges, whereas
the second has abstracted outgoing edges represented by the O-tentacle (L, 2).
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Fig. 4. An abstract heap configuration.
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We use Σ to denote a heap alphabet ΣN without nonterminals, i.e. N = ∅. If a
HC does not contain nonterminal edges, i.e. is defined over a heap alphabet Σ
we call it concrete (H ∈ HCΣ), otherwise abstract (H ∈ HCΣN

).

2.2 Data Structure Grammars

Hyperedge replacement grammars can be used to describe heap structures. These
grammars are defined as a set of rules each consisting of a nonterminal on the
left-hand side and a hypergraph on the right-hand side.

Definition 6 (Hyperedge Replacement Grammar (HRG)). A hyperedge
replacement grammar (HRG) over a typed alphabet ΣN is a set of production
rules p = X → H, with X ∈ N and H ∈ HGΣN

, where types(X) � type(extH).

We denote the set of all hyperedge replacement grammars over ΣN by HRGΣN
.

Derivation steps of a HRG are defined by hyperedge replacement, i.e. a hyper-
edge e is replaced by a hypergraph by mapping the external nodes of the latter
with attached notes of e. This replacement is possible only if the number and
types of nodes connected by the replaced edge and of the external nodes in
the replacement graph correspond to each other. This aspect is covered in the
following adaption of the definition from [8] for labelled and typed hypergraphs.

Definition 7 (Hyperedge Replacement). Given hypergraphs H, I ∈ HGΣN

and an edge e ∈ EH with type(attH(e)) � type(extI), the replacement of the
edge e in H by I is defined as K = H[I/e] = (VK , EK , labK , typeK , attK , extK):

VK = VH ] (VI \ extI) EK = (EH \ {e}) ] EI extK = extH
typeK = typeI�VK ] typeH labK = labH�EK ] labI
attK = attH ] attI ◦ (idVI

�VK ∪ {extI(i) 7→ attH(e)(i) | i ∈ [1, |extI |]})

Example 5. Reconsider the HC H from Fig. 4(a) containing exactly one nonter-
minal edge e labelled with L. The rank of L is equal to the number of external
nodes of the concrete HC I in Fig. 4(b), thus we can replace e by I and get
K = H[I/e], depicted in Fig. 4(c). Note that the result is again a HC K ∈ HCΣ ,
because types(L) �N labI(extI) as stated in the following theorem.

Theorem 1 (Edge Replacement in HCs). Given H, I ∈ HCΣN
and e ∈ EH

with types(labH(e)) �N type(extI) it holds that H[I/e] ∈ HCΣN
. (Proof in [9])

Definition 8 (Data Structure Grammar). A Data Structure Grammar (or
short DSG) over an abstract heap alphabet ΣN is a set of production rules p =
X → R, with X ∈ N and R ∈ HCΣN

, where types(X) �N labR(extR).

We denote the set of all data structure grammars over ΣN by DSGΣN
.

Given grammar G ∈ DSGΣN
and graph H ∈ HCΣN

we write H ⇒G H ′ if there
exists a production rule X → R ∈ G and an edge e ∈ EH with labH(e) = X and
H ′ = H[R/e]. We write ⇒∗G for the reflexive transitive closure of ⇒G. We say
H ′ is derivable from H by G iff H ⇒∗G H ′.
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Corollary 1. Given a data structure grammar G ∈ DSGΣN
and H ∈ HCΣN

every derivable graph is a HC: H ⇒∗G H ′ ⇒ H ′ ∈ HCΣN
.

Example 6. Fig. 5 depicts a DSG for trees with linked leaves and parent pointers.
The DSG consists of four rules for nonterminal L with types(L) = INIOLOLN,
introduced in Ex. 4. Every right hand side is a HC with type(ext) = types(L).

The rules define the data structure recursively. The smallest tree represented
by L is a tree where the child nodes of the root node are the two leaves. Bigger
trees are defined recursively as trees where either one (second and third rule)
or both (fourth rule) children of the root node are trees, with properly linked
leaves.
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Fig. 5. DSG for trees with linked leafs.

As our grammar definition does not include a start symbol we define languages
in dependence of a start configuration.

Definition 9 (Language). For G ∈ DSGΣN
we define the language LG(H)

induced by a start graph H ∈ HGΣN
over G as the set of derivable concrete

HGs: LG(H) = {H ′ ∈ HGΣ | H ⇒∗G H ′}, and for M ⊆ HGΣN
: L(M) =⋃

H∈M L(H).

It follows from Corollary 1 that using an abstract HC as start graph and a
data structure grammar the only derivable concrete graphs are again HCs. It
remains to show that the restrictions in the definition of DSGs do not impair
the expressiveness, i.e. that the languages representable by DSGs are exactly the
HC languages (⊆ HCΣ) representable by HRGs.

Theorem 2. Given a HRG G over ΣN . Then a grammar G′ over Σ′N can be
constructed such that for every hypergraph S over ΣN with LG(S) ⊆ HCΣ there
exists a heap configuration S′ with LG′(S

′) = LG(S). (Proof in [9])

For nonterminal X we use X• to denote the X-handle, i.e. a hypergraph consist-
ing of a single nonterminal edge labelled with X and one node for each tentacle:

VX• = {vi | i ∈ [1, |types(X)|]} EX• = {e}
typeX• = {vi 7→ types(X)[i] | i ∈ [1, |types(X)|]} labX• = {e 7→ X}
attX• = {e 7→ v1v2 . . . v|types(X)|} extX• = ε
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Definition 10 (Local Greibach Normal Form [8]). A grammar G ∈ DSGΣN

is in Local Greibach Normal Form (LGNF) if for every non-reduction tentacle
(X, i) there exists G(X,i) ⊆ G with:

LG(X,i)
(X•) = LG(X•) and ∀X → R ∈ G(X,i) : OR(extR(i)) ⊆ F

Lemma 1. Any DSG can be transformed into an equivalent DSG in LGNF [8].

3 An Abstract Java Virtual Machine

Java programs are compiled to Java Bytecode programs that are executed by
a Java Virtual Machine (JVM). In this section we define an abstract JVM for
an significant subset of Java Bytecode, excluding threads and exceptions as well
as data values, others then booleans. The introduced abstract JVM is based on
HCs as defined in the previous chapter.

3.1 Java Bytecode and the JVM

Based on the formal definition of Java Bytecode and the JVM from [16], we
distinguish between the static environment and the dynamic state of a JVM.

Static Environment of a JVM [16]. A JVM executes programs with respect
to a static environment cEnv : Class ∪ Interface → ClassFile. For each class of a
Java program (top-level, inner or anonymous) a separate class file is compiled.

Definition 11 (Java Class File). In a Java Bytecode program a class file
is a tuple cf = (name, isInterface,modifiers, super, implements,fields,methods),
where name ∈ Class ∪ Interface is the unique identifier of the class or interface,
isInterface ∈ {true, false} is true iff the file defines an interface, modifiers ⊆
Modifier are the modifiers (static, private, public, . . . ), super ∈ Class is the su-
per class and implements ⊆ Interface are the implemented interfaces, fields is
a mapping fields : Field → P(Modifier) × Type, with Type = Class ∪ Interface ∪
{boolean} defining the fields of the class, their modifiers and types, and the map-
ping methods : MSig → MDec defines the methods of the class, where MSig is
the set of method signatures MSig = Meth× Type? with Meth the set of method
identifier, and MDec the set of method declarations as defined below.

ClassFile denotes the set of all class files of a given Java Bytecode program.

The sets Class and Interface contain the identifiers of the classes/interfaces, dis-
tinguished by isInterface: Class = {namecf | cf ∈ ClassFile ∧ ¬isInterfacecf } and
Interface = {namecf | cf ∈ ClassFile ∧ isInterfacecf }. We define the sets of avail-
able fields Class/Field = {namecf .field | cf ∈ ClassFile ∧ field ∈ Fieldcf }, which
are uniquely identified by the combination of class and field name, and the
set of methods Class/MSig = {namecf .mSig | cf ∈ ClassFile ∧mSig ∈ MSigcf },
uniquely defined by class names and method signatures.
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Definition 12 (Method Declaration). A method declaration is a tuple md =
(modifiers, returnType, code, excs,maxReg,maxOpd), with modifiers ⊆ Modifier
and returnType ∈ Type∪{void}, code ∈ Instruction? being a sequence of instruc-
tion (Instruction is defined in 3.3); excs belongs to a set of exceptions (not con-
sidered in this paper) and maxOpd ∈ N being the maximum size of the operand
stack, while maxReg ∈ N being the highest register used by the method.

The function method applied as method(c,mSig) returns c′.mSig ∈ Class/MSig
where c′ is the class in which the corresponding method is declared, i.e. returns
the method of the given signature inherited from c′. Note that method is deter-
mined by the content of ClassFile.

State of a JVM. Heap and method stack determine the state of a JVM.

The heap formally is a function heap : Ref → Heap. Heap = Class×Class/Field→
Val [16], is a set of objects defined by the type and evaluation of references.

The method stack consists of frames stack ∈ Frame∗ with ( pc, reg, opd,method ) ∈
Frame, where method ∈ Class/MSig is the method, pc ∈ N is the program counter
defining the current position in the method, reg : N → Val defines the values of
the registers, which are used by the JVM to store the local variable information,
and opd ∈ Val? is the operand used to store intermediate results of calculations.
The top frame of the stack defines the state of the active method.

3.2 Modelling JVM States by Heap Configurations

Our goal is to model (abstract) states of the JVM by HCs. Starting with a very
basic model, representing only the heap and restricting the programs to classes
and member variables. In this section we extend the representation step by step.

The Basic Model. We consider programs in the most basic case where each
class file defines a class and all fields are member variables, i.e. Interface = ∅,
and no static fields. States are represented by HCs over the heap alphabet Σ
with T = Class, F = Class/Field and types(c.f) = cOtN, where t = fields(c.f)[2].

Interfaces and null. Java differentiates between classes and interfaces. Inter-
faces cannot be instantiated, i.e. heap objects can not be of an interface type.

We extend the heap alphabet ΣN to T = Class ∪ Interface ∪ {⊥}, where ⊥
represents null. For all t ∈ T we let ⊥ � t, i.e. ⊥ is the least element. Elements
of Class and Interface are ordered corresponding to the subtype relation.

We model null as an external N-node, i.e. a node that can be referenced but
is not part of the heap. We consider HCs (V,E, lab, type, att , nullN) over ΣN ,
where ⊥ ∈ TΣN

and {v ∈ V | type(v) = ⊥} = {null}, i.e. the null reference
is unique. This is important for comparisons. As ⊥ is the least element every
pointer can point to null.
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Example 7. Fig. 6 represents a binary tree. Every node is of type Tree denoted
by T : class Tree{Tree left , Tree right ;}. Leafs are Tree objects pointing to null.
There are only two different types: Tree and ⊥ with ⊥ � Tree. The external
node (ext = nullN) is of type ⊥ to realise pointers to null.

T

T T

T
T

⊥

[1N]

l r

l

r

r

l

1

2
3

Fig. 6. A Tree

Static Variables. Beside member variables (fields) there
are also static variables. These variables are not linked to an
object and are accessible from any context. We make them
accessible through an external node static of (a new) type
static ∈ T. For every static field f ∈ Class/Field we define
types(c.f) = staticOtN (t = fields(c.f)[2]), i.e. type static
has one outgoing pointer for each static variable. We ex-
tend the sequence of external nodes by a node static and
get (V,E, lab, type, att , nullNstaticO). We require static

to be the sole static-node, i.e. {v ∈ V | type(v) = static} =
{static}. The node static is an O-node.

Literals and Boolean Values. Literals (constants) are a special case of static
variables, whose values are explicitly given within a Java program. As we do
not consider general data values the only possible literals are the boolean values
false and true, represented in Java Bytecode as integer values zero and one. In
order to model boolean values we add two nodes of the (newly introduced) type
int ∈ T representing integer value zero and one, accessible through static by
edges labeled int(0) and int(1), i.e. types(int(0 )) = types(int(1 )) = staticOintN.

Complete Heap Representation. Given a Java Bytecode program as a set of
class files ClassFile, we use HCs over the alphabet Σ with T = Class∪ Interface∪
{static, int,⊥}, F = Class/Field ∪ {int(0 ), int(1 )} and

types = {c.f 7→ cOtN | c.f ∈ Class/Fieldo ∧ fields(c.f)[2] = t}
∪ {c.f 7→ staticOtN | c.f ∈ Class/Fields ∧ fields(c.f)[2] = t}
∪ {int(0 ) 7→ staticOintN, int(1 ) 7→ staticOintN}

We use a HC of the form H = (V,E, lab, type, att , staticOnullN), where none
of the nodes is of an interface type ({v ∈ V | type(v) ∈ Interface} = ∅), node
null is the only node of type ⊥ ({v ∈ V | type(v) = ⊥} = {null}) and node
static the only one of type static ({v ∈ V | type(v) = static} = {static}). The
only two int-nodes {v ∈ V | type(v) = int} = {vint(0), vint(1)} are successors of
the node static: ∃e0, e1 ∈ O(static) : lab(ei) = int(i) ∧ att(ei)[2] = vint(i).

Method Stack. So far we only considered the heap component. Now we model
the method stack and its components within the same HC by representing each
stack frame as a node of a special method type. This allows us to abstract the
stack and handle recursive functions with unbounded method stack size. It is
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preferable to model both parts in one homogeneous representation as abstracting
heap and stack independently would imply loosing the relation between the two.

We model each frame by one node. For each method c.a ∈ Class/MSig we
define a proper type mc.a, reflecting the method component of the frame. Each
method type is a subtype of a general method type method ∈ T (see Fig. 7(b)).

int

int

ma()

mb()

op op

++

pc

called by

op

++

next

value
r1

r2

rn

(a) Method nodes represent frames

>

int Object

. . .

method

ma() mb() . . .

op static

⊥

(b) Extended type order

Fig. 7. Method nodes represent frames of the method stack.

For the program counter we add one int-node for each possible value, i.e. we add
nodes {vint(i) | i ∈ [0,max({|code(c.m)| | c.m ∈ Class/MSig})]} and fields int(i)
as pointers from static to int. Further we add the field ++ with types(++) =
intOintN representing the successor relation between int-nodes. The program
counter is modelled as a pointer method .pc ∈ F to the corresponding int-node,
i.e. types(method .pc) = methodOintN. For the operand stack we add an op-type
for stack elements with next and value successors, types(op.next) = opOopN and
types(op.value) = opO>N, where > ∈ T with int and Object as subtypes (see
Fig. 7(b)), i.e. op.value can reference int- and Object-nodes. We add a pointer
to each method-node op ∈ F to the operand stack (types(op) = methodOopN).

As registers offer random access we model each register i by a pointer ri. The
amount of registers depends on the method, therefore we define the ri-pointer
for each specification of the method-type. Given c.m ∈ Class/MSig we define for
each i ∈ [1,maxRegc.m ]: types(ri) = c.mO>N (see Fig. 7(a)).

We model the method stack itself by an additional field called by ∈ F with
types(called by) = methodOmethodN referencing the next node of the stack
(where the least element in the stack points to null). The top of the stack
is the active method. The corresponding node contains the currently modifiable
information and therefore modelled as an external O-node. We get HCs of the
following form: (V,E, lab, type, att , methodOstaticOnullN).

Example 8. In Fig. 8 a recursive tree traversal algorithm is given as Java (a) and
Java Bytecode program (b) (details on Bytecode in Section 3.3). In Fig. 8(c) a
state of the program from (b) is depicted. In this state the method trav(Tree t)
is called. The program counter is still set to zero. The trav method was called
various times. Three method calls are concrete, further are abstracted in the
nonterminal edge Xl. Each method call was a trav(t.left) call as each program
counter points to i(5). Note that in Xl method and tree nodes are abstracted.
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public class Tree{
Tree l e f t ;
Tree r i g h t ;
stat ic void t rav ( Tree t ){

i f ( t != null ){
t rav ( t . l e f t ) ;
t rav ( t . r i g h t ) ;

} } }

(a) Java Class Definition

0 Load ( Tree , 0)
1 Cond( i f N u l l , 8)
2 Load ( Tree , 0)
3 GetFie ld ( Tree , Tree . l e f t )
4 InvokeSta t i c (void , Tree . t rav ( Tree ) )
5 Load ( Tree , 0)
6 GetFie ld ( Tree , Tree . r i g h t )
7 InvokeSta t i c (void , Tree . t rav ( Tree ) )
8 Return (void )

(b) Java Bytecode: trav(Tree t)

T

T T

TX

T

T T

T T

m

m

m

m

[1O]

⊥ [3N]

int

int
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int

intst.

[2O]

l r

l r

++

++

i(0)

i(3)

i(4)

i(5)

i(8)

false

cB
pc

r1

cB

pc

r1

op

pc

r1

cB/op

op

1

2
1

2

1

2

1

2
3

4

5

6

(c) State of the abstract JVM

Fig. 8. Recursive Tree Traversal.

Abstract JVM States So far we considered HCs over the concrete alphabet
Σ, thus concrete HCs. To represent an abstract state we extend the alphabet by
a set of nonterminals N as defined before (see Ex. 3), where we restrict types over
N to types : N → (ClassON ∪ Class/MSigON ∪ InterfaceN ∪ {⊥N,>N})?, i.e. only
class- and method-nodes can be connected to O-tentacles. From this restriction
it follows that type(v) ∈ Interface ∪ {>,⊥} ⇒ vN ∈ [ext ].

Given H ∈ HCΣN
we call a node v ∈ VH concrete if its successors are concrete

(O(v) ⊆ T), abstract otherwise (O(v) ⊆ N). Concrete and abstract parts coexist
on a HC. A HC without abstract nodes is called concrete, otherwise abstract.

Concretisation. Concretisations are defined through the application of grammar
rules, i.e. given H,H ′ ∈ HCΣN

H ′ is a concretisation of H iff H ⇒ H ′. L(H) is
the set of all concrete HCs represented by the (abstract) HC H. Given a DSG
in LGNF we can systematically concretise the abstracted successors of a node
v by replacing the connected O-tentacle by the corresponding rules from the
grammar. Correspondingly we define for H ∈ HCΣN

and abstract node v ∈ V :

concG(H, v) = {H[e/R] | OH(v) = {e} ∧ att [i](e) = v ∧ (lab(e)→ R) ∈ G(lab(e),i)}

and if v is a concrete node then concG(H, v) = H, thus conc has no effect. Note
that for every H ∈ HCΣN

and G ∈ DSGΣN
: LG(H) = LG(concG(H, v))

We call a mapping m : HCΣN
→ HCΣN

a concrete modifier for H ∈ HCΣN
iff

LG(m(H)) = m(LG(H)), i.e. the modification m is safe and most precise under
the abstraction. As long as a modifier uses only the information of concrete nodes
and their incident edges and preserves abstracted parts it is a concrete modifier.
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Abstraction. Abstraction is defined through backward application of grammar
rules, i.e. given H,H ′ ∈ HCΣN

, H is an abstraction of H ′ iff H ⇒ H ′. In practice
abstraction is realised by the search of embeddings of rule graphs and followed
by replacement of the embedding with the corresponding nonterminals.

Definition 13 (Embedding). Given I,H ∈ HCΣN
an embedding of I in H

consists of two mappings emb : (VI → VH , EI → EH) with following properties:

emb(v) 6= emb(v′) ∀v 6= v′ ∈ VI \ {v ∈ VI | vN ∈ extI}
emb(e) 6= emb(e′) ∀e 6= e′ ∈ EI
labI(e) = labH(emb(e)) ∀e ∈ EI
typeI(v) � typeH(emb(v)) ∀v ∈ {v ∈ VI | vN ∈ extI}
typeI(v) = typeH(emb(v)) ∀v ∈ VI \ [extI ]
emb(attI(e)) = attH(emb(e)) ∀e ∈ EH
e /∈ emb(EI) ⇒ [attI(e)] ∩ emb(VI) = ∅ ∀e ∈ EH

Given I,H ∈ HCΣN
Emb(I,H) denotes the set of all embeddings of I in H.

Given G ∈ DSGΣN
, I,H ∈ HCΣN

, emb ∈ Emb(I,H) and X ∈ N replacing I in
H results in replace(I,H, emb, X) = K, with:

VK = VH \ emb(VI \ [extI ]) EK = (EH \ emb(EI)) ] {e}
labK = labH�EK ∪ {e 7→ N} typeK = typeH�VK
attK = attH�EK ∪ {e 7→ emb(extI)} extK = extH

abstrG(H) = {replace(R,H, emb, X) | X → R ∈ G, emb ∈ Emb(R,H)} are the
HCs we get via one abstraction step (H ′ ∈ abstrG(H) iff H ′ ⇒G H), abstr?G(H)
is the transitive closure (H ′ ∈ abstr?G(H) iff H ′ ⇒?

G H). We denote the set
{H ′ ∈ abstr?G(H) | ∀X → R ∈ G : Emb(R,H ′) = ∅} of maximal abstracted HCs
by maxAbstrG(H). Note that maxAbstrG(H) in general is not a singleton but
finite. We call G backward confluent iff maxAbstrG(H) is a singleton for any
H ∈ HCΣN

.

3.3 Execution of Java Bytecode

The following abstract instructions cover the whole instruction set [16]:

Prim(PrimOp) Dupx() Pop()

Load(Type, RegNo) Store(Type, RegNo) Goto(LineNumber)

Cond(PrimOp, LineNumber)

GetStatic(Type, Class/Field) PutStatic(Type, Class/Field) InvokeStatic(Type, Class/MSig)

Return(Type)

New(Class) Return(Type) InstanceOf(Type)

GetField(Type, Class/Field) PutField(Type, Class/Field) Checkcast(Type)

InvokeSpecial(Type, Class/MSig) InvokeVirtual(Type, Class/MSig)

Athrow Jsr(LineNumber) Ret(RegNo)

We defined and implemented the transition rules for the above abstract instruc-
tions up to the grey ones (used for exception handling). The Type information
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in the instructions can be used to check for type safeness but is ignored by the
JVM. As we do not consider general data values, there is a notable cutback of
primary operations. The following are supported:

if acmpeq if acmpne if icmpeq if icmpne

iconst 0 iconst 1 iand ior

The primary if -operations, used by the Cond instruction, are realised by com-
paring the corresponding nodes referred by the stack, iconst 0 and iconst 1 push
the corresponding int-nodes on the stack. iand and ior can be defined explicitly
for the four possible inputs. Note that the set {0, 1} is closed under both oper-
ations. We present a selection of instructions and their transition rules. Most of
the instructions are realised as concrete modifiers expecting external nodes and
the actual operand stack to be concrete.

Graph Manipulations We define some basic actions, shared by several Byte-
code instruction (as push, pop, etc.) by means of direct graph manipulations.

new(H, t) = (H ′, vnew ) adds a new node to a HC. Given H ∈ HCΣN
and t ∈ T

we get H ′ = (VH ] {vnew}, EH , labH , typeH ∪ {vnew 7→ t}, attH , extH).

suc (H, v, f) returns for H ∈ HCΣN
, v ∈ VH and f ∈ F the f -successor of v:

suc(H, v, f) = v′, if {v′} = attH({e ∈ OH(v) | labH(e) = f})[2].

setSuc (H, v, f, v’) alters for H ∈ HCΣN
, v, v′ ∈ VH and f ∈ F the edge rep-

resenting the f -pointer of v: setSuc(H, v, f, v′) = (VH , EH , labH , typeh, atth[e 7→
v v′], exth), where {e} = {e ∈ OH(v) | lab(e) = f}.

pushOp(H, v) pushes a reference to v ∈ VH onto the operand stack by adding a
node of type op (Hnew , vop) = new(H, op) and connecting the next-edge to the
operand stack vtop = suc(H, extH [1], op) and the value-edge to node v: H ′ =
setSuc(setSuc(Hnew , vop, value, v), vop, next, vtop). The reference to the operand
stack is updated for the top method: pushOp(H, v) = setSuc(H ′, ext′H [1], op, vop).

popOp(H) = (H ′, v) pops the top element vtop = suc(H, extH [1], op) by altering
the op-edge to the next operand H ′ = setSuc(H, ext′H [1], op, suc(H, vtop, op)).
The value of the removed stack element v = suc(H, vtop, value) is returned.

peekOp(H,n) = sucn(H, extH [1], op) returns for H ∈ HCΣN
, n ∈ N the nth

element of the operand stack, where sucn is defined recursively as sucn(H, v, f) =
sucn−1(H, suc(H, v, f), f) for n > 0 and suc0(H, v, f) = H.

incPc(H) increments the program counter vpc = suc(H, extH [1], pc), by altering
it to the successor node: incPc(H) = setSuc(H, extH [1], pc, suc(H, vpc ,++)).

inst(H) returns the current instruction: inst(H) = c[pc], where c = code(typeH(extH [1]))
and pc = intValue(suc(H, methodH , pc)).
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Transition Rules In our tool (see Sec. 4) we implemented transition rules
for all of the instructions given at the beginning of this subsection. Here we
exemplarily present the transition rules of some of the instructions. Further
rules can be found in the extended version [9]:

Load(RegNo) reads a reference from register RegNo and pushes it to the operand
stack. We determine the node corresponding to the value of the register and push
it to the stack.

inst(H) = Load(t, i)

H → incPc(pushOp(H, suc(H, methodH , ri)))

GetStatic(Class/Field) reads a static variable and pushes the result to the operand
stack.

inst(H) = GetStatic(c.f)

H → incPc( pushOp(H, suc(H, extH [2], c.f))

PutField(Class/Field) writes a value to a field of an object. As the node that
represents the object could be abstract we concretise it before we set the field.
The update could be destructive and could yield garbage. Therefore we perform
a garbage collection on the result and afterwards try to abstract. Note that this
instruction is not deterministic.

inst(H) = PutField(f) popOp(H) = (H ′, v′) popOp(H ′) = (H ′′, v′′)

H → maxAbstr(gc( incPc( setSuc(K, v′′, f, v)))),K ∈ conc(H ′′, v′′)

InvokeVirtual(Class/MSig) is the call of an object method. We add a new method
node and set the registers to the parameters given in msig = Name(p), with
p ∈ Type?. This instruction uses information from the static environment cEnv
of the program.

inst(H) = InvokeVirtual(c.msig) popOp(H) = (H ′, v)

H → call(H ′,methodcEnv (type(v), c.msig)))

where call(H, c.m(p)) = setSuc(K, op, peekOp(H, |p|+ 1)) with:

VK = VH ] {vm}
EK = EH ] {ecalledBy , eop , epc} ] {eri | i ∈ [1,maxRegc.m(p)]}
labK = labH ] {ex 7→ x | ex ∈ EK \ EH}
typeK = typeH ∪ {vm 7→ c.m(p)}
attK = attK

∪ {ecalledBy 7→ extH [1], eop 7→ extH [3], epc 7→ suc(H, extH [2], int(0))}
∪ {eri 7→ peekOp(i) | i ∈ [1, |p|]}
∪ {eri 7→ extH [3] | i ∈ [|p|+ 1,maxRegc.m(p)]}

extK = vmO extH [2] extH [3]

15



4 Experimental Results

We implemented the above concepts in a prototype tool which, for a Java Byte-
code program, a hyperedege replacement grammar, and a start heap generates
the abstracted state space. The following table gives some experimental results:

Method Rules States Parsing Generation

ReverseList (singly linked) 3 113 0:010 s 0:006 s
TraverseTree (recursive) 49 574 0:472 s 0:264 s
Lindstrom (no marking) 14 4,297 0:245 s 0:198 s
Lindstrom (single marking) 14 224,113 0:245 s 2:360 s
Lindstrom (extended marking) 14 937,510 0:245 s 9:074 s

TraverseTree is the Java program from Fig. 8. The Lindstrom Traversal Al-
gorithm [10] traverses a tree with constant additional memory by altering the
pointers of the elements. This algorithm (Fig. 9) was analysed by us before [7].

The column rules gives the size the provided grammar, states the size of
the generated abstracted state space, parsing the time for parsing Bytecode,
grammar, and start heap and generation the time needed to generate the state
space. The examples where calculated on a 2 GHz Intel Core i7 Laptop.

In none of the given examples, null pointer dereferencing occurs. To describe
complex properties we use LTL with pointer equations (e.g. x.l = y) and a flag
terminal as atomic propositions. For Lindstrom we proved termination, com-
pleteness (each node is visited) and correctness (at the end the input tree is not
altered) [7].

stat ic void t rav ( Tree root ){
i f ( root == null ) return ;
Tree sen = new Tree ( ) ;
Tree prev = sen ;
Tree cur = root ;
while ( cur != sen ){

Tree next = cur . l e f t ;
cur . l e f t = cur . r i g h t ;
cur . r i g h t = prev ;
prev = cur ;
cur = next ;
i f ( cur == null ){

cur = prev ;
prev = null ;

} } }

Fig. 9. Lindstrom Traversal

We need quantification over objects as in [13]
to verify these properties. We realise quan-
tification by adding markings, i.e. static vari-
ables not visible to the program. Markings are
determined by exhaustive object exploration
where objects are concretised and abstracted
as needed. For Lindstrom we get 41 different
abstract markings, in each of them one ob-
ject is marked as x. We can prove that for
each of these the LTL formulas FG(cur 6= x)
and ¬(cur 6= xU terminal) hold. The former
states that the variable cur points only finitely
many times to the marked object and as this
could be any object (or null) the calculation
has to terminate eventually. The latter states
that before terminating, cur points at least once to the marked node, thus the al-
gorithm is complete. For correctness we also mark the left and right successor of x
by xl and xr respectively and check that the successors are the same at the end of
the traversal: (x = root→ G(x = root))∧(G(terminal → (xl = x.l∧xr = x.r))).
Markings increase the state space (see row single and extended marking). The
above only works for quantification over objects in the start heap. The termina-
tion check is only correct if no objects are generated at runtime.
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5 Related Work

The basic idea of using hyperedge replacement grammars for abstraction of heap
structures was proposed in [7, 8]. However it was not suitable for the analysis of
Java Bytecode as typed objects were not reflected. Various other techniques for
the analysis and verification of heap manipulating programs where supposed.
The most popular ones are shape analysis via three-valued logic [15] and sep-
aration logic [14]. The latter is an extension of Hoare logic and uses recursive
predicates to describe the shape of heaps. There is a one-to-one correspondence
between recursive predicates and nonterminals of our representation as stated
by [5]. Separation logic is classically used in Hoare Triple style verification where
decidability of entailment is essential. Therefore entailment, not decidable in gen-
eral, has to be proven decidable for any recursive predicate. There are decidable
logics for lists and trees [1, 2]. In [12] separation logic is extended for Bytecode
by adding type information. There are several separation logic tools as SpaceIn-
vador [17], for linear data structures, or Smallfoot [2], for (doubly) linked lists
and trees. The advantage of tools based on deductive methods is scalability [17].
However, their applicability is restricted to predefined data structures.

Another abstraction technique is the shape analysis via three-valued logic
[14]. Nodes are summarised by properties expressed as predicates in a three-
valued logic. Predicates are typically shape properties such as reachability, cycle
membership, etc. Most of these are implicitly given by our representation and
are considered during state space exploration. Given an abstract state the sat-
isfied predicates should be extractable [4]. Whereas in shape analysis all nodes
reflecting the same set of predicates are summarised, in our approach nodes
are summarised if they form a well defined substructure, resulting in additional
structural information. Unfortunately, structures expressible by HRG and the
commonly used fragment of separation logic are restricted to those with bounded
tree width [6], e.g. the set of all graphs is not expressible by HRGs.

In [11] TVLA is used to verify the Lindstrom Algorithm. The given proof
depends on 24 predicates encoding deep knowledge of the algorithm, resulting
in a less automatic proof than the one provided in Sect. 4.To reduce the number
of predicates and to keep the example manageable, the input code is modified in
[11] so that the heap is always a tree. This is not necessary in our approach as it
is robust against local violations of the data structure. Our abstraction results
in slightly larger state space but also in shorter running time (TVLA: 183,564
states in over 36 minutes on a 2.4GHz Core 2 Duo with 4GB of RAM [3]).

6 Conclusion

We introduced labeled and typed hypergraphs and corresponding HRGs, where
modes are associated with a type from a type hierarchy. We showed how they can
be used to model abstracted JVM states and how to compute an abstract state
space for Java Bytecode programs. Experimental results attest that the approach
has a practical value. In the future we will consider automatic inference of DSGs
during state space generation as well as extended verification techniques.
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