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A B S T R A C T

The translation of linear algebra computations to efficient code con-
sisting of kernels as provided by libraries such as BLAS and LAPACK
is a frequently encountered problem in different areas of science and
engineering. Since the manual translation is a tedious, error-prone
and time consuming process that requires a lot of expertise, several
high-level languages and libraries have been developed that solve
this problem automatically. Example include Matlab, Julia, Eigen, and
Armadillo. These languages and libraries allow users to describe linear
algebra computations in code which closely resembles the mathemati-
cal description of the problem; this high-level code is then internally
translated to sequences of kernel calls. Unfortunately, while those lan-
guages and libraries increase the productivity of the user, it has been
shown that this automatic translation frequently results in suboptimal
code.

In this thesis, we present Linnea, a domain-specific compiler that
automatically translates the high-level description of linear algebra
problems to efficient sequences of kernel calls. Linnea aims to combine
the ease-of-use of high-level languages with the performance of low-
level code written by an expert. Unlike other languages and libraries,
Linnea extensively makes use of knowledge about linear algebra: Alge-
braic identities such as associativity, commutativity, and distributivity
are used to rewrite the input problem. In addition, Linnea is able to
infer matrix properties and detect common subexpressions. To explore
the large space of candidate solutions, Linnea uses a custom best-first
search algorithm that quickly finds a first solution, and increasingly
better solutions when given more time.

This thesis concludes with an extensive experimental evaluation
of Linnea on 25 application and 100 synthetic test problems, both
with sequential and parallel execution. The results show that Linnea
almost always outperforms Matlab, Julia, Eigen and Armadillo, with
speedups up to and exceeding 10×. For all test problems, Linnea finds
a first solution in less than one second; finding the optimal solution
rarely takes longer than a few minutes.
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Z U S A M M E N FA S S U N G

Die Übersetzung von Berechnungen der linearen Algebra in effizien-
ten Code, der aus Funktionen (sogenannte Kernel) besteht, wie sie von
Bibliotheken wie BLAS und LAPACK bereitgestellt werden, ist ein häu-
fig auftretendes Problem in verschiedenen Bereichen der Natur- und
Ingenieurwissenschaften. Da die manuelle Übersetzung ein mühsamer,
fehleranfälliger und zeitaufwendiger Prozess ist, der viel Fachwissen
erfordert, wurden mehrere höhere Programmiersprachen und Biblio-
theken entwickelt, die dieses Problem automatisch lösen. Beispiele
hierfür sind Matlab, Julia, Eigen und Armadillo. Diese Sprachen und
Bibliotheken ermöglichen es dem Benutzer, Berechnungen der linearen
Algebra in Code zu beschreiben, der der mathematischen Beschrei-
bung des Problems sehr ähnlich ist; dieser Code wird dann intern in
Sequenzen von Kernel-Aufrufen übersetzt. Diese Sprachen und Biblio-
theken führen zwar zu einer höheren Produktivität des Anwenders,
es hat sich jedoch gezeigt, dass die automatische Übersetzung häufig
in suboptimalem Code resultiert.

In dieser Arbeit stellen wir Linnea vor, einen domänenspezifischen
Compiler, der die mathematische Beschreibung von Problemen der
linearen Algebra automatisch in effiziente Sequenzen von Kernel-
Aufrufen übersetzt. Ziel von Linnea ist es, die Benutzerfreundlichkeit
von höheren Programmiersprachen mit der Geschwindigkeit von Code
zu kombinieren, der von einem Experten in einer niedrigeren Program-
miersprache geschrieben wurde. Im Gegensatz zu anderen Sprachen
und Bibliotheken macht Linnea ausgiebig Gebrauch von Wissen über
lineare Algebra: Algebraische Identitäten wie Assoziativität, Kom-
mutativität und Distributivität werden verwendet, um das Problem
umzuschreiben. Darüber hinaus ist Linnea in der Lage, Eigenschaften
von Matrizen abzuleiten und redundante Teilausdrücke zu erkennen.
Um die große Anzahl von möglichen Lösungen zu durchsuchen ver-
wendet Linnea einen modifizierten Best-First-Suchalgorithmus, der
schnell eine erste Lösung und mit etwas mehr Zeit zunehmend bessere
Lösungen findet.

Diese Arbeit schließt mit einer umfangreichen experimentellen Eva-
luation von Linnea anhand von 25 Anwendungs- und 100 syntheti-
schen Problemen, sowohl mit sequentieller als auch paralleler Aus-
führung. Die Ergebnisse zeigen, dass der generierte Code fast immer
schneller ist als Matlab, Julia, Eigen und Armadillo, zum Teil um einen
Faktor von mehr als 10. Für alle Testprobleme findet Linnea eine erste
Lösung in weniger als einer Sekunde; die optimale Lösung zu finden
dauert selten länger als ein paar Minuten.
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1
I N T R O D U C T I O N

In the domain of numerical linear algebra, a significant effort is in-
vested into optimized implementations of a relatively small number of
common matrix operations. Over time, this effort has lead to a number
of libraries, such as BLAS and LAPACK, that offer highly-tuned code
for those operations. The routines provided by those libraries are used
as building blocks in countless scientific codes, as well as in languages
and libraries that support linear algebra.

Unfortunately, the near-optimal performance of those computa-
tional building blocks does not necessarily carry over to the high-level
application problems that domain experts solve in their day-to-day
work. The reason is that making optimal use of those building blocks
requires expertise in both high-performance computing and numerical
linear algebra that domain experts rarely have. As a result, high-level
languages and libraries such as Matlab, Julia, Eigen, and Armadillo
become increasingly popular. They allow users to describe a linear
algebra problem with code which closely resembles the mathematical
description of the problem; this high-level code is then internally trans-
lated to routines as provided by BLAS and LAPACK. Those languages
and libraries have the advantage that they free the application experts
from the tedious, error-prone and time consuming process of using
such libraries directly by writing their code in C or Fortran. Unfor-
tunately, while the productivity of the user is increased, it has been
shown that this automatic translation frequently results in suboptimal
code [108].

1.1 problem definition

The goal of this thesis is to combine the advantages of existing ap-
proaches in the domain of linear algebra: The simplicity, and thus,
productivity, of a high-level language, paired with performance that
comes close to what a human expert can achieve by manually writing
low-level code. Specifically, given a high-level, mathematical descrip-
tion of a linear algebra problem and a set of kernels as provided by
libraries such as BLAS and LAPACK, the goal is to automatically find
a sequence of kernel calls that efficiently computes the input prob-
lem. This problem is a case of the Linear Algebra Mapping Problem
(LAMP) as introduced in [108], which is NP-complete.

The following examples illustrate some of the challenges that arise
in the mapping from high-level expressions to low-level kernels. A
straightforward translation of the assignment yk := H†y + (In −
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2 introduction

H†H)xk, which appears in an image restoration application [126],
will result in code containing one O(n3) matrix-matrix multiplication
to compute H†H. In contrast, by means of distributivity, this assign-
ment can be rewritten as yk := H† (y−Hxk) + xk, and computed
with only O(n2) matrix-vector multiplications. The computation of
the expression

Bk :=
k

k− 1
Bk−1

(
In

−ATWk
(
(k− 1)Il +W

T
kABk−1A

TWk
)−1

WT
kABk−1

)
,

which is part of a stochastic method for the solution of least squares
problems [23], can be sped up by identifying that the subexpression
WT
kA or its transpose (ATWk)

T appear four times.
Often times, application experts possess domain knowledge that

leads to imporved implementations: In x := (ATA+α2I)−1ATb [50],
since α > 0, it can be inferred that ATA+ α2I is symmetric positive
definite (SPD); consequently, the linear system can always be solved
by using the Cholesky factorization, which is less costly than LU or
LDL. Most languages and libraries either do not offer the means to
specify such additional knowledge, or do not automatically infer or
exploit it.

To give an idea of the difference that an efficient sequence of kernels
can make in practice, we use the expression

B1 :=
1

λ1

(
In −ATW1

(
λ1Il +W

T
1AA

TW1
)−1

WT
1A
)

as an example, which is also part of a stochastic method for the
solution of least squares problems [23]. All matrices have full rank,
with W1 ∈ Rm×l, A ∈ Rm×n, l = 625, n = 1000, m = 5000, and
λ1 > 0. In and Il are respectively identity matrices of size n and l.
Fig. 1.1 shows two different Julia implementations that compute this
expression; a basic one that is the result of an almost direct translation
of the expression to code (Fig. 1.1a), and an optimized one that makes
explicit use of BLAS and LAPACK kernels (Fig. 1.1b). With one thread,
the optimized implementation is 5.6× faster than the basic one; with
24 threads, it is 4.6× faster.1 In this thesis, we aim to achieve the high
performance of the optimized implementation with input as simple as
the basic one.

1.2 terminology and notation

In this section, we give a brief overview of the most important termi-
nology and notation used throughout this thesis.

1 For this experiment, the same setup as described at the beginning of Ch. 10 was used;
it was performed on the Haswell processor.
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1 In = Array{Float64}(I, 1000, 1000)

2 Il = Array{Float64}(I, 625, 625)

3 B = 1/lambda*(In-transpose(A)*W*((lambda*Il+transpose(W)*A*
transpose(A)*W)\transpose(W))*A)

(a) Basic translation of the expression to code.

1 tmp1 = Array{Float64}(undef, 1000, 625)

2 gemm!(’T’, ’N’, 1.0, A, W, 0.0, tmp1)

3 tmp2 = Array{Float64}(I, 625, 625)

4 syrk!(’L’, ’T’, 1.0, tmp1, lambda, tmp2)

5 potrf!(’L’, tmp2)

6 trsm!(’R’, ’L’, ’T’, ’N’, 1.0, tmp2, tmp1)

7 tmp3 = -1.0 / lambda

8 B = Array{Float64}(I, 1000, 1000)

9 B ./= lambda

10 syrk!(’L’, ’N’, tmp3, tmp1, 1.0, B)

11 for i = 1:1000-1;

12 view(B, i, i+1:1000)[:] = view(B, i+1:1000, i)

13 end;

(b) Optimized implementation that uses BLAS and LAPACK kernels. Since
the SYRK kernel only computes the lower triangular half of the symmetric
matrix B, in lines 11–13 the full matrix is reconstructed.

Figure 1.1: Two Julia implementations that compute the expression B1 :=
1
λ1

(In −ATW1(λ1Il +W
T
1AA

TW1)
−1WT1A.



4 introduction

expression Symbolic expressions are tree-like data structures that
represent mathematical expressions such as A−1B + C. As a
convention, for matrices we use uppercase letters such as A, B,
or C. Vectors are denoted with lowercase letters, for example v,
x, or y. For scalars, we use lowercase greek letters, for instance α,
β, or γ. A special case of expressions are sequences of assignments
such as

xf :=WA
T
(
AWAT

)−1
(b−Ax)

xo :=W
(
AT
(
AWAT

)−1
Ax− c

)
.

In this thesis, those sequences of assignments describe what
needs to be computed, but not how something is computed.
Expressions are formally defined in Sec. 3.2.

property The operands that appear in expressions frequently have
properties. Examples of matrix properties are lower triangular,
diagonal, and SPD. All properties used in this thesis are shown
in Tab. 6.1.

kernel A kernel is an optimized routine that computes a specific
linear algebra operation, such as ATB + C. In this thesis, we
only consider kernels provided by BLAS and LAPACK. Many
kernels do not just compute a single operation, but an entire
family of operations. For instance, the TRSM kernel solves linear
systems α op(A−1)B and αB op(A−1), where op is either the
identity function op(A) = A or the transposition op(A) = AT ,
and A is either upper or lower triangular. Which operation is
computed by a given call to TRSM is determined by a number
of arguments. Throughout this thesis, we are frequently only
interested in one specific operation that can be computed with a
kernel. In case of TRSM such an operation could be for instance
A−TB, where A is lower triangular and α = 1. When we refer
to such an operation, it is assumed that all arguments are set
accordingly. Unless otherwise noted, kernels also include matrix
factorizations, as for example the Cholesky factorization, or the
symmetric eigenvalue decomposition.

sequence of kernels While a sequence of assignments describes
what needs to be computed, a sequence of kernels describes how
something is computed. In order to emphasize the distinction
between those two concepts, we use ← for the assignment op-
erator in sequences of kernels. As an example, the assignment
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X := S−1A, where S is SPD, can be computed with the sequence
of kernels

L← chol(S) POTRF

M← L−1A TRSM

X← L−TM TRSM

Unless they are relevant for the discussion, we usually do not
annotate sequences of kernels with the names of the kernels. It
should be noted that a sequence of kernels only considers the
mathematical operations computed by the kernels; it does not
describe any implementation details such as where and how the
operands are stored in memory.

solution In this thesis, a solution is a sequence of kernels that com-
putes the input expression.

cost function The cost function is used to quantify the quality
of a solution. The solution that minimizes this cost function is
the optimal solution. The cost function used in this thesis counts
the number of floating-point operations (FLOPs) required by a
sequence of kernels; it is discussed in more detail in Sec. 4.5.

As a convention both for sequences of assignments and sequences
of kernels, it is assumed that the value of all operands that do not
appear on the left-hand side of an assignment (either := or ←) are
known input operands. As an example, in the expression

X := ABC

Y := X+D,

A, B, C, and D are input operands, while X and Y are unknown
output operands. However, once the value of an output operand is
determined by an assignment, it can be used on the right-hand side in
subsequent assignments/kernel calls.

1.3 linnea : an overview

In this thesis, we present Linnea, a compiler that makes use of domain
knowledge to translate the mathematical description of linear alge-
bra problems to efficient sequences of kernel calls.2 Linnea is written
in Python and targets mid-to-large scale linear algebra expressions,
where problems are typically compute-bound. It currently supports

A problem is
compute-bound if
the speed at which
the problem can be
solved is limited by
the speed of the
processor. In
contrast, a problem
is memory-bound
if the speed at which
the problem can be
solved is limited by
the memory
bandwidth.

real-valued computations, and parallelism via multi-threaded kernels.
As input, Linnea accepts a sequence of assignments, where the left-
hand side is a single operand, and the right-hand side is an expression

2 Linnea is available at https://github.com/HPAC/linnea. An online demo of Linnea
can be found at http://linnea.cs.umu.se/.

https://github.com/HPAC/linnea
http://linnea.cs.umu.se/
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m = 1000

n = 2000

ColumnVector b(m) <>

ColumnVector c(n) <>

ColumnVector x(n) <>

Matrix A(m, n) <FullRank>

Matrix W(n, n) <SPD, Diagonal>

x = W*(trans(A)*inv(A*W*trans(A))*b-c)

Figure 1.2: An example of the input to Linnea for the expression x :=

W(AT (AWAT )−1b− c).

built from addition, multiplication, subtraction, transposition, and
inversion. The input language is described in more detail in Sec. 3.1.
As building blocks, Linnea uses BLAS and LAPACK kernels, as well as
a small number of code snippets for simple operations not supported
by those libraries. However, other kernel libraries such as the ones
described in Sec. 2.1 could be used instead. As output, we decided to
generate Julia code because it offers a good tradeoff between simplicity
and performance: Low-level wrappers expose the full functionality of
BLAS and LAPACK, while additional routines can be implemented
easily without compromising performance [12]. The input and output
of Linnea for the expression x := W(AT (AWAT )−1b− c), which ap-
pears in an optimization problem [123], are shown in Figs. 1.2 and 1.3,
respectively.3

While Linnea was built having in mind users that are not experts in
numerical linear algebra or high-performance computing, it is nonethe-
less useful for experts too: It saves implementation time by quickly
exploring the most important optimizations, it makes it possible to
easily investigate alternative implementations, and it serves as a start-
ing point for further optimizations. Since Linnea generates code, it
is—unlike other languages and libraries—transparent in the sense
that users can verify how solutions are computed. To aid this verifi-
cation, in the generated code, each kernel call is annotated with the
mathematical operation that it computes. In addition, Linnea can also
generate a description of how the input expression was rewritten to
generate a specific algorithm, together with the costs of the individual
kernels.

The structure of Linnea is illustrated in Fig. 1.4. Similar to other
compilers, Linnea consists of three main components:

front-end The front-end translates the description of the input ex-
pression written in the Linnea language (Sec. 3.1) into a symbolic

3 The code shown in Fig. 1.1b was also generated by Linnea.
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1 function algorithm0(ml0::Array{Float64,2}, ml1::Array{Float64,1},

ml2::Array{Float64,2}, ml3::Array{Float64,1})

2 # cost: 4.34e+09 FLOPs

3 ml4 = diag(ml0)

4 ml5 = Array{Float64}(undef, 1000, 2000)

5 blascopy!(1000*2000, ml2, 1, ml5, 1)

6 # tmp2 = (A W)

7 for i = 1:size(ml2, 2);

8 view(ml2, :, i)[:] .*= ml4[i];

9 end;

10

11 ml6 = Array{Float64}(undef, 1000, 1000)

12 # tmp3 = (tmp2 A^T)

13 gemm!(’N’, ’T’, 1.0, ml2, ml5, 0.0, ml6)

14

15 # (L4 L4^T) = tmp3

16 potrf!(’L’, ml6)

17

18 # tmp10 = (L4^-1 b)

19 trsv!(’L’, ’N’, ’N’, ml6, ml3)

20

21 # tmp65 = (W c)

22 ml1 .*= ml4

23

24 # tmp12 = (L4^-T tmp10)

25 trsv!(’L’, ’T’, ’N’, ml6, ml3)

26

27 # tmp15 = ((-1.0 tmp65) + (tmp2^T tmp12))

28 gemv!(’T’, 1.0, ml2, ml3, -1.0, ml1)

29

30 # x = tmp15

31 return (ml1)

32 end

Figure 1.3: The generated code for x := W(AT (AWAT )−1b− c). The docu-
mentation of the function as well as some additional comments
were removed in the interest of space. Lines 7–9 is one of the code
snippets for operations not supported by BLAS and LAPACK; the
multiplication of a full and a diagonal matrix.
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Code Generation

Front-End

Algorithm Generation

Translation to M-IR

Translation to Julia

Linnea language

symbolic expression

symbolic sequence
of kernels

M-IR

Julia code

kernels

Figure 1.4: The structure of Linnea.

expression (Sec. 3.2). In addition, the correctness of the input is
checked.

algorithm generation The algorithm generation (Ch. 4) is the
core of Linnea. This component takes as input the symbolic input
expression, as well as a set of kernels, and translates this input
expression to a sequence of kernels (Ch. 5). In order to optimize
the sequence, during this translation Linnea uses knowledge
about linear algebra to rewrite the expression (Ch. 7) and infer
matrix properties (Ch. 6). In addition, common subexpressions
are eliminated (Ch. 8).

code generation The code generation (Ch. 9) consists of two steps:
In the first step, the symbolic sequence of kernels is translated
to an augmented representation called Memory-IR (M-IR) that
also considers the location and storage formats of operands in
memory. In the second step, the M-IR is then directly translated
to the actual Julia code.

1.4 contributions

The main contribution of this thesis is Linnea. Beyond the implemen-
tation itself, the contributions include the techniques and algorithms
that are used in Linnea to achieve a low algorithm generation time and
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to solve different subproblems that appear as part of LAMP. Those
contributions are:

1. A customized anytime best-first search algorithm which quickly
finds a first solution, and increasingly better solutions when
given more time (Ch. 4). This search algorithm makes it possible
to combine algorithms that constructively find solutions for spe-
cific subproblems with an exhaustive exploration of the search
space. To achieve a low generation time, the algorithm makes
use of the algebraic nature of the domain to significantly reduce
the size of the search graph without reducing the size of the
search space.

2. Two so called constructive algorithms that translate certain types
of subexpressions to efficient sequences of kernels in polynomial
time (Sec. 5.6): The Generalized Matrix Chain Algorithm [7], and
an algorithm for matrix sums.

3. A method for the application of factorizations to solve linear
systems and invert matrices that ensures termination (Secs. 4.4
and 5.7). In contrast to kernels that solve linear systems, the
direct use of factorizations enables optimizations that are not
possible otherwise.

4. Techniques to make use of knowledge about linear algebra. This
includes an algorithm for the inference of matrix properties
(Ch. 6), and a method for the systematic exploration of different
representations of expressions (Ch. 7).

5. An algorithm for the detection and elimination of common
subexpressions in symbolic expressions (Ch. 8).

6. An algorithm for the translation of symbolic sequences of kernels
to code that is able to take advantage of specialized storage
formats for matrices and the ability of kernels to overwrite their
input operands (Ch. 9).

Since all steps of the generation are performed symbolically, using
rewrite rules and term replacement, the generated algorithms are
correct by construction.

The methodology for the automatic generation of algorithms that
is implemented in Linnea can be applied to every domain that forms
an algebra (see Sec. 4.6). Other possible domains include tensor alge-
bra, the simplification and efficient implementation of automatically
generated index expressions, for example as they appear in Lift [107,
Sec. 5.3], Optimal Jacobian Accumulation [98], query optimization for
relational databases, and graph algorithms when formulated as linear
algebra problems [27, 79]. In addition, the methodology could also be
applied to real or complex scalars, boolean algebra, quaternions or
polynomials.
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experimental evaluation This thesis includes an extensive
experimental evaluation of Linnea, including:

1. An evaluation of the generated code on application and syn-
thetic test problems, both sequential and in parallel (Sec. 10.2).
The generated code is compared to Matlab, Julia, Eigen, and
Armadillo.

2. An evaluation of the algorithm generation time of Linnea, in-
cluding the effectiveness of using the algebraic nature of the
domain to reduce the size of the search graph and speed up the
generation time (Sec. 10.3).

3. An evaluation of the accuracy of FLOPs as a cost function
(Sec. 10.4).

4. An evaluation of the influence of the hardware in the experi-
ments above (Sec. 10.5).

The experiments indicate that the code generated by Linnea usually
outperforms Matlab, Julia, Eigen and Armadillo. At the same time,
the code generation time is mostly in the order of a few seconds, that
is, significantly faster than human experts.

1.5 organization of this thesis

The organization of this thesis mostly follows the structure of Linnea
as shown in Fig. 1.4. Related work is discussed in Ch. 2. In Ch. 3,
we provide a description of the input language of Linnea, a formal
definition of expressions, and a definition of pattern matching. The
algorithm generation is presented in Ch. 4, including a detailed de-
scription of the search algorithm. The subsequent chapters cover the
different parts of the algorithm generation; the application of kernels
in Ch. 5, the inference of properties in Ch. 6, the rewriting of expres-
sions in Ch. 7, and the elimination of common subexpressions in Ch. 8.
The code generation is discussed in Ch. 9. Ch. 10 contains the experi-
mental evaluation, followed by the conclusion and possible directions
for future work in Ch. 11. The appendix contains a list of the applica-
tion problems used in the experiments and as examples throughout
this thesis (App. a), a description of the specification language for
kernels (App. b), and a formalism for the inference of properties based
on the bandwidth of matrices (App. c).

reading guide For readers who are only interested in certain
aspects of Linnea, below we provide some guidelines for how to read
this thesis.

overview For an overview of the main ideas of the algorithm gen-
eration, without going into the details of the optimizations that
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are applied, we recommend reading Sec. 3.2, Sec. 3.3, and Ch. 4.
For a complete, but significantly shorter overview of Linnea, we
recommend reading [9].

generality For an overview of the theoretical foundations of the
algorithm generation that are independent of the domain of
linear algebra, it is sufficient to read Sec. 3.2, Sec. 3.3, and Sec. 4.6.

optimizations The chapters that cover the different optimizations
used in Linnea, that is the inference of properties (Ch. 6), rewrit-
ing expressions (Ch. 7), and common subexpression elimination
(Ch. 8), can also be read independently from the rest of this
thesis. The only prerequisites are Sec. 3.2 and Sec. 3.3. For the
code generation (Ch. 9), it is sufficient to know what a sequence
of kernels is (see Sec. 1.2).

users For readers who are only interested in using Linnea, we rec-
ommend reading Sec. 3.1 and Ch. 10.

library developers Developers of kernel libraries who are inter-
ested in making their library available to Linnea should read
Ch. 9 and App. b.





2
R E L AT E D W O R K

Parts of this chapter
have been published
in [8] and [9].

Linnea relates to three different areas of research: Software for linear
algebra, code generation as it is done in compilers, and the automatic
generation of programs. In this chapter, we provide an overview over
the existing work in those areas.

2.1 linear algebra

Due to its importance in science and engineering, there is a large
number of languages, libraries, and other tools that support linear
algebra.

languages for scientific computing The support for linear
algebra is a core feature of high-level languages for scientific comput-
ing such as Matlab, Octave, Julia, and R, but also computer algebra
systems such as Mathematica and Maple. In those languages, work-
ing code can be written within minutes, with little or no knowledge
of numerical linear algebra. However, the resulting code (which is
possibly numerically unstable1) usually achieves suboptimal perfor-
mance [108]. One of the reasons is that, with the exception of Julia,
which supports matrix properties in its type system, these languages
rarely make it possible to express properties. A few Matlab functions
exploit properties by inspecting matrix entries, a step which could
be avoided with a more general method to annotate operands with
properties. Furthermore, if the inverse operator is used, an explicit
inversion takes place, even if the faster and numerically more stable
solution would be to solve a linear system instead [65, Sec. 13.1]; it is
up to the user to rewrite the inverse in terms of operators, such as “/”
and “\” [95], which solve linear systems.

libraries Libraries that make it possible to describe linear algebra
problems at a high level of abstraction exist in many different pro-
gramming languages. For instance, expression template libraries such
as Eigen [56], Blaze [72], Armadillo [112], and the Matrix Template
Library (MTL) [54] provide a domain-specific language embedded
into C++. The main idea of those libraries is to improve performance
by eliminating temporary operands. NumPy [62] is an example of a
library for linear algebra in Python. Similar to high-level languages,

1 Some systems compute the condition number for certain operations and give a
warning if results may be inaccurate.

13
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those libraries are missing many important optimization. As a result,
they frequently deliver suboptimal code [108].

kernels Internally, most high-level languages and libraries rely
on the highly optimized computational kernels for basic linear alge-
bra operations provided by BLAS [33, 34, 87] and LAPACK [4]. In
addition, there are several other libraries that implement the same or
similar functionality with a compatible interface, such as Intel MKL
[73], OpenBLAS [131], GotoBLAS [53], libflame [128], BLIS [129], Re-
LAPACK [104], and BLASFEO [45]. While those libraries offer very
good performance, the translation of a mathematical problem into an
efficient sequence of kernel invocations is a lengthy and error-prone
process that requires deep understanding of both numerical linear
algebra and high-performance computing.

domain-specific approaches Transfor [52] is likely the first
translator of linear algebra problems (written in Maple) into BLAS
kernels; since the inverse operator was not supported, the system was
only applicable to relatively simple expressions. More recently, several
other approaches have been developed that address different problems
in the area of numerical linear algebra: The Formal Linear Algebra
Methods Environment (FLAME) [16, 59] is a methodology for the
derivation of algorithmic variants for linear algebra operations such as
factorizations and the solution of linear systems; Cl1ck [36, 37] is an
automated implementation of the FLAME methodology. The goal of
BTO BLAS [99] is to generate C code for memory-bound operations,
such as fused matrix-vector operations. DxTer uses domain knowledge
to optimize programs represented as dataflow graphs [92, 93]. LGen
targets linear algebra operations for small operand sizes, a regime
in which BLAS and LAPACK do not perform very well, by directly
generating vectorized C code [121]. SLinGen [120] combines Cl1ck and
LGen to generate code for more complex small-scale problems, but still
requires that the input is described as a sequence of basic operations.
The functional programming language NumLin [90] incorporates a
type system that enforces the correct usage of BLAS and LAPACK
kernels. Pilatus [116] is a polymorphic domain-specific language for
linear algebra embedded into Scala.

SPORES [130] is an optimization approach for the computation of
linear algebra expressions that appear in machine learning application.
The idea behind SPORES is to convert the linear algebra expressions
into relational algebra expressions in order to find optimization that
might be difficult to detect by rewriting expressions according to
linear algebra identities. Linnea and SPORES do not support the
same set of operations: While SPORES also supports elementwise
multiplication, the summation of matrix elements, and sparse matrices,
it does not support linear systems and inversion. However, SPORES
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could potentially be useful to augment the rewriting of expressions in
Linnea.

The goal of the LAGO framework [35, 115] is the automatic genera-
tion of programs that compute an incremental update of linear algebra
expressions. While the focus of LAGO is different from that of Linnea,
both have in common that they make use of algebraic identities to find
efficient programs. In contrast to Linnea, LAGO is not able to make
use of matrix factorizations.

While the modification or replacement of unoptimized code is an
optimization method that is not specific to the domain of linear algebra,
there are some cases in which it has been applied to this domain:
Using knowledge provided by the user, the Broadway compiler [60]
optimizes C code containing library calls by replacing those calls with
other code. In [60] this compiler is used to optimize parallel linear
algebra code. With Multi-Level Tactics [20], it is possible to detect and
replace a naive implementation of a matrix-matrix product consisting
of three loops with a call to the GEMM kernel. In addition, Multi-Level
Tactics can be used to apply high-level, domain specific optimizations
such as solving the matrix chain problem (see also Sec. 5.6.2). LiLAC
[48] replaces low-level implementations of sparse linear algebra code
with kernel calls.

In contrast to the linear algebra compiler CLAK [38], which inspired
the work presented in this thesis, Linnea includes several advances:
An improved search algorithm that can incorporate constructive al-
gorithms, the use of the algebraic nature of the domain to remove
redundancy in the search graph, an extended inference of proper-
ties, a more systematic method for rewriting expressions, as well as
improved algorithms for the application of factorizations, common
subexpression elimination, and code generation.

related domains Several tools and compilers exists for domains
closely related to linear algebra, such as tensor algebra or linear trans-
forms: The Tensor Contraction Engine (TCE) [10] solves a generaliza-
tion of the matrix chain problem for dense tensors. The Tensor Algebra
Compiler (TACO) [80] generates code for operations over combina-
tions of dense and sparse tensors; the focus is on the support for a
large number of different storage formats. The Tensor Contraction
Code Generator (TCCG) [122] generates code for binary, GEMM-like
contractions of dense tensors. Spiral [43] and FFTW [44] generate
optimized code for operations such as the Fourier transform.

2.2 code generation

The translation from the intermediate representation of a program
in the form of an expression tree to machine instructions is a prob-
lem closely related to that discussed in this thesis. However, existing
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approaches using pattern matching and dynamic programming [1,
2], as well as bottom-up rewrite systems (BURS) [105] solely focus
on expressions containing basic operations directly supported by ma-
chine instructions. The two main objectives of code generation are to
minimize the number of instructions and the optimal use of registers.
While there are approaches that generate optimal code for arithmetic
expressions, considering associativity and commutativity [114], more
complex properties of the underlying algebraic domain, for example
distributivity, are usually not considered.

Instead of applying optimization passes sequentially, Equality Satu-
ration [125] is a compilation technique that constructs many equivalent
programs simultaneously, stored in a single intermediate represen-
tation. Domain specific knowledge can be provided in the form of
axioms. Since it allows for control flow, Equality Saturation is more
general in its scope than Linnea. In general, Equality Saturation could
also be applied to the domain of linear algebra. However, it is not clear
how matrix factorizations can be incorporated.

2.3 program synthesis

The automatic generation of programs, also called program synthesis,
covers a wide range of different approaches and applications. In this
section, we provide a brief overview.

The goal of superoptimizers is to find the best possible implementa-
tion of a given functionality [94]. They are usually used to generate
short pieces of straight-line code that consists of machine instructions.
Those implementations can be generated exhaustively [94] or by a
probabilistic search [113]. In both cases, the input is a suboptimal im-
plementation of the desired functionality. The Denali superoptimizer
[76] instead generates code based on a formal specification and relies
on a SAT solver. The optimizations applied by Denali are described
in terms of axioms. In GreenThumb [106], equivalence classes are
used to reduce the size of the search space. This idea is similar to the
idea of merging branches in the search graph of Linnea (see Sec. 4.2).
The difference is that the use of algebraic expressions together with
a normal form allows for a rather simple equivalence test. The idea
behind program sketches is to fill placeholders in an incomplete pro-
gram [118, 119]. Another synthesis approach is to generate programs
from pairs of input/output examples, for example for string [57] or
table processing [40, 63], or more general tasks [3]. To this end, some
approaches use machine learning techniques [89]. Component-based
synthesis consists in composing components provided by libraries to
a program with the desired functionality. Some approaches rely on
SAT or SMT solvers for the program generation. The input may be
described by a formal specification [58], an input/output oracle [74] or
by examples [40]. Others use specialized data structures to represent



2.3 program synthesis 17

the relations and interactions between components, for example based
on petri nets [41], or a so called signature graph [91].

Using terminology from the domain of program synthesis, Linnea
can be described as a superoptimizer for linear algebra expressions.
The input is described in terms of a mathematical specification; the
output program is constructed from components. To find an optimal
program, Linnea relies on a graph search.





3
P R E L I M I N A R I E S

In this chapter, both the input language and the internal representation
of linear algebra expressions are described. Since the optimizations
applied by Linnea mostly consist in the manipulation of expressions
according to mathematical laws, the internal representation of expres-
sions is much closer to the representation of symbolic expressions
in a computer algebra system such as Mathematica than the internal
representations used in traditional compilers. In addition, we provide
an overview of pattern matching, an important tool to manipulate
expressions that is primarily used for the application of kernels.

3.1 input language

The input to Linnea is a domain-specific language for the description
of linear algebra problems. In this language, a linear algebra problem
consists of a sequence of assignments, where the left-hand side is a
single operand, and the right-hand side is an expression built from
addition, multiplication, subtraction, transposition, and inversion. As
operands, matrices, vectors, and scalars can be used. Operands can
be annotated with the properties shown in Tab. 6.1. It is possible
for operands to have more than one property, as long as they do
not contradict one another.1 For instance, a matrix can be diagonal
and SPD, which implies that all diagonal elements are positive. An
example of the input to Linnea is shown in Fig. 3.1. The input consists
of three parts: The definition of operand sizes, the definition of the
operands and their properties, and the assignments for which code
shall be generated. The grammar of the input language is shown
in Fig. 3.2; additional details of this language are described in the
language manual.2

In Linnea, operands are considered as unique, mathematical objects.
For this reason, the value of an operand cannot change, and it is not
possible to make an assignment to an operand more than once. As a
result, the input assignments have to be in static single assignment
(SSA) form. Which operands are input and which ones are output
is determined from the sequence of assignments: All operands that
appear on the left-hand side of an assignment are considered output,
all other operands are input. For instance, in the expressions

1 In order to detect contradicting properties, for each property there is a set of in-
compatible properties. If a property is added to an operand, it is checked that this
operand does not have any properties that are in this set.

2 The language manual is available at https://github.com/HPAC/linnea/blob/

master/documentation/language_manual.pdf.
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m = 1000

n = 5000

Matrix H(m, n) <FullRank>

Matrix Hd(n, m) <FullRank>

IdentityMatrix I_n(n, n)

ColumnVector y(m) <>

ColumnVector y_k(n) <>

ColumnVector x_k(n) <>

Hd = trans(H)*inv(H*trans(H))

y_k = Hd*y + (I_n-Hd*H)*x_k

Figure 3.1: An example of the input to Linnea.

model = {size_decl}, {op_decl}, {assignment};

size_decl = id, "=", int;

op_decl = "Matrix", id, dim_matrix, properties

| "RowVector", id, dim_vector, properties

| "ColumnVector", id, dim_vector, properties

| "Scalar", id, properties

| "IdentityMatrix", id, dim_matrix

| "ZeroMatrix", id, dim_matrix;

dim_vector = "(", id, ")";

dim_matrix = "(", id, ",", id, ")";

properties = "<", [property, {",", property}], ">";

assignment = id, "=", expr;

expr = term, {( "+" | "-" ), term};

term = factor, {"*", factor};

factor = "(", expr, ")"

| "trans(", expr, ")"

| "inv(", expr, ")"

| "-", factor

| number

| id;

Figure 3.2: Grammar of the Linnea language in extended Backus-Naur form.
In the interest of brevity, the rules for the nonterminals property,
number, id (identifiers), and int (integers) are not included.
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X = A*B

Y = C+D

A, B, C, and D are input, X, and Y are output. Once a value has been
assigned to an output operand, this operand can be used on the
right-hand side in subsequent assignments:

X = A*B

Y = C+X

If an output operand is used in a subsequent assignment, its properties
are inferred from the right-hand side of its initial assignment. As an
example, consider the following assignments:

X = trans(A)*A

Y = X*B

It is not necessary to specify that X is symmetric. Instead, this property
is inferred from trans(A)*A.

An important difference between Linnea and most other languages
and libraries that support linear algebra computations is that in Lin-
nea, there is no distinction between the explicit inversion of a matrix
and the solution of a linear system; there is only one inversion oper-
ation. Linnea automatically detects if it is possible to compute this
operation by solving a linear system, or if it is necessary to explicitly
invert a matrix instead. Matrices are explicitly inverted only if this is
unavoidable, for example in expressions such as A−1 +B.

additional arguments In addition to the description of the in-
put expression, Linnea takes as input several arguments that influence
the algorithm generation. Among other things, those arguments allow
to set the floating point precision (either single or double precision),
a time limit for the generation, and whether or not to produce addi-
tional information about the algorithm generation, such as a visual
representation of the search graph, and a description of how the input
expression was rewritten to find a specific algorithm.

3.2 representation of expressions

Internally, the input, the operations that are computed by kernels, and
the sequences of kernels are represented as symbolic expressions. For
expressions and pattern matching (see Sec. 3.3), we mostly use the
same formalism and notation as in [5]. The main difference is that for
the sake of consistency, we exclusively use expression for what is called
term in [5].

Symbolic expressions are tree-like algebraic data structures con-
structed from function symbols and variables. As an example, given a
binary function f, a unary function g, a constant a, and two variables
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f

b g

a b c

Figure 3.3: Representation of the expression f(b,g(a,b, c)) as a tree. f is a
binary function, g is a ternary function, while a, b, and c are
constants.

x and y, expressions such as f(x,g(y)) and g(a) can be constructed.
An example of the representation of an expression as a tree is shown
in Fig. 3.3. The set of available function symbols is defined as follows:

Definition 3.1 (Signature). A signature Σ =
⋃
n>0 Σ

(n) is a set of
function symbols, where Σ(n) contains function symbols with arity n.
The function symbols in Σ(0) are also called constant symbols. �

In this thesis, constant symbols or simply constants usually represent
matrices, vectors, and scalars. While formally, constants are constant
functions, that is, functions without any arguments, they are treated
as constants in the usual sense; they are written as a instead of a().3

In contrast to constants, which represent a fixed value, variables canIn Mathematica, a
variable is written as
x_, while x denotes a

constant.

be thought of as placeholders for arbitrary expressions. More formally,
the main difference between constants and variables is that variables
can be replaced with other expressions by a substitution (see Sec. 3.3).

Definition 3.2 (Expressions). Let Σ be a signature and X be a set of
variables with Σ∩X = ∅. The set of all expressions T(Σ,X) is defined
as the smallest set such that

1. X ⊆ T(Σ,X) and

2. for all n > 0, all f ∈ Σ(n) and all t1, . . . , tn ∈ T(Σ,X) we have
f(t1, . . . , tn) ∈ T(Σ,X). �

The set of variables occurring in an expression t is denoted by Var(t).
An expressions that does not contain any variables, that is Var(t) = ∅,
is called ground expressions. The set of all ground expressions is denoted
with T(Σ,∅).

Example 3.1. Let f ∈ Σ(2) and g ∈ Σ(1) be function symbols, a,b ∈
Σ(0) be constants, and x,y ∈ X be variables. Then a, f(a,b) and
f(g(a), x) are expressions. a and f(a,b) are also ground expressions,
as they do not contain variables, while t = f(g(a), x) is not a ground
expression because of Var(t) = {x}. �

3 The reason for using constant functions is that they simplify definitions involving
expressions.
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f
ε

g
1

a
11

h
12

b
121

c
13

d
2

e
3

Figure 3.4: Expression tree for f(g(a,h(b), c),d, e). Nodes are labelled with
their paths.

In order to refer to and manipulate arbitrary subexpressions in an
expression, we define paths on expressions.4

Definition 3.3 (Paths). Let s, t ∈ T(Σ,X).

1. A path is a sequence of integers p ∈ N∗. The set of paths of t, Given a set S, S∗ is
the set of all
sequences over S,
including the empty
sequence ε. For
instance,
ab,aaa ∈ {a,b}∗.
The concatenation of
two sequences
s1, s2 ∈ S∗ is
written as s1s2. For
s ∈ S∗, it holds that
sε = εs = s.

Paths(t), is defined as follows:

a) If t ∈ X ∪ Σ(0), then Paths(t) := {ε}, where ε denotes the
empty sequence.

b) If t = f(t1, . . . , tn), then

Paths(t) := {ε}∪
n⋃
i=1

{ip | p ∈ Paths(ti).}

2. Given p ∈ Paths(t) with p = iq, the subexpression of t at p,
denoted by t|p, is defined as

t|ε := t

f(t1, . . . , tn)|iq := ti|q.

3. Given p ∈ Paths(s) with p = iq, the replacement of the subexpres-
sion at p in s with t, denoted by s[t]p, is defined as

s[t]ε := t

f(s1, . . . , sn)[t]iq := f(s1, . . . , si[t]q, . . . , sn). �

Example 3.2. Let t = f(g(a,h(b), c),d, e) be the expression shown in
Fig. 3.4. The set of all paths is

Paths(t) = {ε, 1, 11, 12, 121, 13, 2, 3}.

The subexpressions at 1 and 121 are t|1 = g(a,h(b), c) and t|121 = b,
respectively. The replacement of the subexpression at 12 with i(b)
results in t[i(b)]12 = f(g(a, i(b), c),d, e). �

4 The definition mostly follows that of positions in [5, pp. 36–37]. We use path for what
is called position in [5] because in Ch. 8 we define positions as a generalization of
paths.
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Throughout this thesis, common functions are written in their usual
notation and parenthesis are omitted if they are not necessary. For
instance, an expression that represents the addition of two matrices is
written as A+B, the multiplication of two matrices is written as AB,
and the transposition of a matrix is written as AT .

Function symbols can be associative and/or commutative. A binary
function symbol f is associative if f(x, f(y, z)) = f(f(x,y), z) for all x,
y and z. Nested associative functions are always flattened to variadic
functions, that is, both f(x, f(y, z)) and f(f(x,y), z) are flattened to
f(x,y, z). A binary function symbol f is commutative if f(x,y) = f(y, x)
for all x and y. Arguments in commutative functions are always sorted
according to an arbitrary total order defined on all expressions.5

implications of flattening associative functions Flat-
tening associative functions has both advantages and disadvantages.
The main advantage is that it reduces the number of alternative rep-
resentations for algebraically equivalent expressions. This simplifies
pattern matching, and in algorithms that manipulate expressions there
is no need to cover the case of nested addition or multiplication. The
disadvantage is that checking the correctness of the input expressions
and determining the number of rows and columns of expressions
becomes more difficult. This difficulty is related to the fact that in
Linnea there are no dedicated functions for the multiplication of a
matrix with a scalar, as well as for inner products. Furthermore, even
though the grammar allows for parentheses in associative functions,
flattening those associative functions prevents that parentheses are pre-
served in the symbolic expressions. Thus, for a vector v and a matrix
A, the input expression (vTv)A becomes a single product with three
arguments; vT , v and A. For a matrix product to be valid, it is usually
required that the number of columns of an operand is equal to the
number of rows of the operand to its left; for the subexpression vA in
vTvA, this rule is not applicable. Thus, both to check correctness and
determine the size of this expression, it is necessary to identify scalars
and inner products in matrix products. How the size of expressions
and especially products is computed is discussed in Sec. 6.4.

sequences of assignments Formally, both assignments and
sequences of assignments can be described as an expression as defined
in Def. 3.2 by introducing a binary assignment operator := ∈ Σ(2),
and an associative binary sequence operator s ∈ Σ(2). As a result,
most definitions and algorithms that involve expressions also apply to

5 In Linnea, functions and variables are sorted by their names. Expressions that have
the same functions at the root are sorted by the number of arguments. If the number
of arguments is the same, functions are sorted according to a lexicographic order on
the arguments (see also [82, Def. 2.7]).



3.3 pattern matching 25

sequences of assignments.6 In order to keep the presentation simple, in
those cases we do not distinguish between expressions and sequences
of assignments and use the term expression for both.

3.3 pattern matching

Pattern matching is a convenient and powerful tool to work with and
manipulate symbolic expressions. In Linnea, it is primarily used to
identify where kernels can be applied, but also to rewrite expressions.
In order to define pattern matching, it is necessary to first introduce
substitutions. Substitutions are functions that can be applied to expres-
sions and replace variables with other expressions. As an example,
given an expression f(x,y) and a substitution that replaces x with a
and y with g(b), the application of this substitution to f(x,y) results
in f(a,g(b)).

Definition 3.4 (Substitution). Let Σ be a signature and X be a set of
variables. A substitution is a function σ : T(Σ,X)→ T(Σ,X) with

σ(f(t1, . . . , tn)) := f(σ(t1), . . . ,σ(tn))

for all f ∈ Σ and t1, . . . , tn ∈ T(Σ,X). Variables can be mapped to
arbitrary expressions in T(Σ,X), including themselves. The set of
variables that σ does not map to themselves is called the domain
of σ; it is defined as Dom(σ) = {x ∈ X | σ(x) 6= x}. The set of all
substitutions is denoted with S. �

Since the variables that are not mapped to themselves are sufficient
to fully describe a substitution, we usually write a substitution σ with
Dom(σ) = {x1, . . . , xn} as σ = {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

Example 3.3. Let s = f(x,b) and t = f(x, f(x,y)) be expressions, and
σ = {x 7→ a,y 7→ g(b)} be a substitution. The application of σ to s
results in σ(s) = f(a,b), while σ(t) = f(a, f(a,g(b))). �

With substitutions, pattern matching is defined as follows.

Definition 3.5 (Pattern Matching). A pattern t ∈ T(Σ,X) matches a Formally, there is no
difference between
expressions and
patterns. We call an
expression a pattern
if it is used as a
pattern for pattern
matching.

subject s ∈ T(Σ,∅) if and only if there exists a substitution σ such that
σ(t) = s. We also refer to such a substitution as a match. �

As an example, the pattern t = f(x,y) matches the subject s = f(a,b)
with the substitution σ = {x 7→ a,y 7→ b} since σ(t) = s. Throughout
this thesis, associativity and commutativity are taken into account for
pattern matching. That is, given a pattern t ∈ T(Σ,X) and a subject
s ∈ T(Σ,∅), we say that t matches s with σ if it is possible to rewrite
s to s ′ by making use of associativity and commutativity such that
σ(t) = s ′. Pattern matching without associative and commutative
functions is called syntactic pattern matching. Paths can be used to

6 Sequences of assignments require a separate treatment whenever the dataflow be-
tween consecutive assignments is relevant.
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describe that a pattern matches a subexpression of an expression:
A pattern t matches a subexpression in s if there is a path p and a
substitution σ such that σ(t) = s|p.

Example 3.4. Let f ∈ Σ(2), g ∈ Σ(1), a,b, c ∈ Σ(0), and x ∈ X.

1. Given the pattern t1 = f(a, x) and the subject s1 = f(a,b), the
substitution σ1 = {x 7→ b} is a match.

2. Assuming that f is commutative, the subject s2 = f(c,a) can be
rewritten to s ′2 = f(a, c) such that t1 matches s2 with σ2 = {x 7→
c}.

3. Assuming that f is also associative, the subject s3 = f(b,a, c) can
be rewritten to s ′3 = f(a, f(b, c)) such that t1 matches s3 with
σ3 = {x 7→ f(b, c)}.

4. Given a pattern t2 = g(x) and a subject s4 = f(g(a),b), t2
matches the subexpression g(a) in s4 at position 1 with σ4 =

{x 7→ a} since σ4(t2) = s4|1.

5. There can be more than one match for a given pattern. For
instance, if f is associative but not commutative, there are two
matches for the pattern f(x,y) and the subject f(a,b, c):

σ1 = {x 7→ a,y 7→ f(b, c)}

σ2 = {x 7→ f(a,b),y 7→ c} �

Variables in patterns can have constraints, that is, conditions that
have to be satisfied in order for the pattern to match a given subject.
In Linnea, those constraints usually concern matrix properties, or the
type of an expression, that is, whether it is a matrix, vector, or scalar.

Example 3.5. Let x−1y be the pattern for the TRSM kernel. In this
case, x has the constraints that it can only match triangular, square
matrices that have full rank, and y can only match matrices. �

In addition to standard variables that can match exactly one expres-
sion, in Linnea we also use sequence variables that match a sequence of
expressions. There are two different types of sequence variables: Se-
quence variables x∗ that match zero or more expressions, and sequenceIn Mathematica, a

variable x+ is
written as x__, while

x∗ is written as
x___.

variables x+ that match at least one expression.

Example 3.6. Let f ∈ Σ(2), g ∈ Σ(1), a,b ∈ Σ(0), and x+, x∗ ∈ X. In
the following, as a subject we use f(a,g(b)).

1. For the pattern f(x∗), the substitution σ1 = {x∗ 7→ (a,g(b))} is a
match.

2. For the pattern f(a,g(b), x∗), the substitution σ2 = {x∗ 7→ ()} is a
match, where () is the empty sequence.

3. For the pattern f(a,g(b), x+), there is no match because x+ has
to match at least one expression. �
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Pattern matching is frequently used for the application of rewrite
rules. A rewrite rule describes how subexpressions of an expression
can be replaced with other expressions. As an example, consider the
rewrite rule h(x) → f(x); it describes that any subexpression that
matches the pattern h(x) with a substitution σ can be replaced with
σ(f(x)). Rewrite rules are defined as follows:

Definition 3.6 (Rewrite Rule). A rewrite rule is a tuple (l, r) ∈ T(Σ,X)×
T(Σ,X) with Var(l) ⊇ Var(r). Rewrite rules will be written as l→ r.

Given a rewrite rule l → r, an expression s ∈ T(Σ,X), a position
p ∈ Paths(s), and a substitution σ with s|p = σ(l), the application of
l→ r at position p in s results in t = s[σ(r)]p. �

Example 3.7. Let f ∈ Σ(2), g,h ∈ Σ(1), a,b, c,d ∈ Σ(0) and t =

f(a,g(b)). The rewrite rule g(b) → f(c,d) can be applied at posi-
tion 2 in t with σ = ∅, resulting in f(a, f(c,d)). The application of
the rule f(x,y) → h(x) at position ε in t with σ = {x 7→ a,y 7→ g(b)}

results in h(a). �

implementation For pattern matching as well as for the repre-
sentation of expressions, Linnea relies on the Python module MatchPy
[83, 85]. Specifically, expressions in Linnea are subclasses of MatchPy
expressions. In general, pattern matching with associative and/or
commutative functions is NP-complete [11]. Despite this theoretical
limitation, when many patterns need to be matched against a single
subject, it is still possible to significantly speed up matching by mak-
ing use of the similarities among patterns. The idea of this approach,
which is known as many-to-one matching, is to combine all patterns into
a data structure similar to a decision tree. Given a subject, all possible
matches for this subject are found by traversing this tree. MatchPy
implements efficient algorithms for many-to-one matching, both for
syntactic and associative-commutative matching [84].





4
A L G O R I T H M G E N E R AT I O N

Most of the material
presented in this
chapter has been
published in [9]. In
addition, some of the
material has been
published in [8].

The core idea behind Linnea is to rewrite the input problem while suc-
cessively identifying parts that are computable by a sequence of one
or more of the available kernels. In general, for a given input problem
and cost function, Linnea generates many different sequences, which
all compute the problem, but differ in terms of cost. In order to effi-
ciently store all generated sequences, we use a graph in which nodes
represent the input problem at different stages of the computation,
and edges are annotated with the kernels used to transition from one
stage (node) to another.

This process starts with a single root node containing a symbolic
expression that represents the input problem. The generation process
consists of two steps, which are repeated until termination. 1) In the
first step, the input expression is rewritten in different ways, for ex-
ample by making use of distributivity. The different representations
of a given expression are not stored explicitly; instead, a node only
contains one canonical representation, and it is rewritten when neces-
sary. 2) In the second step, on each representation of the expression,
different algorithms are used to identify subexpressions that can be
computed with one or more of the available kernels. Whenever such
an expression is found, a new successor of the parent node is con-
structed. The edge from the parent to the new child node is annotated
with the sequence of kernels, and the child contains the expression
that is left to be computed.

The two steps are then repeated on the new nodes, until at least one
node with nothing left to compute is found, or until the time limit is
exceeded. In practice, this process corresponds to the construction and
traversal of a graph. An example of such a graph is shown in Fig. 4.1.

Upon termination, the concatenation of all kernels along a path in
the graph from the root to a leaf is a program that computes the input
problem. In Sec. 4.4, we discuss how termination is guaranteed. Given
a function that assigns a cost to each kernel, the optimal program is
found by searching for the shortest path in the graph from the root
node to a leaf.

4.1 the search algorithm

In Linnea, the construction and traversal of the search graph is done
with a best-first search algorithm. The rationale is to find a good,
although potentially suboptimal solution as quickly as possible, to
then use the cost of that solution to prune branches that cannot lead

29
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b :=
(
XTX

)−1
XTy

b := R−1QTy

b := v8

b :=M−1
1 XTy

b := L−TL−1XTy

b := v3 b := v6

(Q,R)← qr(X)

v7 ← QTy

v8 ← R−1v7

M1 ← XTX

L← chol(M1)

M2 ← L−1XT

v1 ←M2y

v3 ← L−Tv1

v4 ← XTy

v5 ← L−1v4

v6 ← L−Tv5

Figure 4.1: An example of a search graph for the input b := (XTX)−1XTy.
This graph represents only a small part of the search space that
Linnea actually explores.

to a better solution. Over time, progressively better solutions are
found. To guide the search towards good solutions, we use priorities
to indicate which node to explore next. Priorities are non-negative
integers, where smaller numbers indicate higher priority. In order to
break ties and ensure that a first solution is found quickly, nodes are
stored in a priority stack. This stack can be seen as a collection of
stacks, one for each priority. In a priority stack, the push operation
corresponds to putting an element onto the internal stack of the
corresponding priority. The pop operation instead takes an element
from the top of the highest priority, non-empty stack.

The property that high priorities (i.e., small numbers) correspond
to nodes that are likely to have a promising next successors is due
to the following two facts: 1) The priority of a node is equal to the
number of successors that have already been generated for this node,
and 2) the next_successor function, which returns a new successor of a
node every time it is called, is designed to return the most promising
successors first (this function is described in more detail in Sec. 4.3).
By using the number of current successors of a node as its priority, the
algorithm effectively balances the number of successors of all nodes,
that is, it does not explore the n+ 1th successor of any node before
having explored the first n successors of all nodes. As a result, in
contrast to depth-first search which explores the current branch first,
the algorithm quickly goes back to the root node. The underlying idea
is that the importance of a node does not depend on its position in
the graph. While a node deep in the graph is closer to a solution, the
decision that has the largest impact on the quality of this solution
could have taken place already at the top of the graph. As it is usually
not necessary, and frequently also not practical to explore the full
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1 G := ({vinput},∅) = (V ,E) # graph initialization
2 best_solution := c∞ # cost initialization
3 stack := PriorityStack() # stack initialization
4 stack.push(0, vinput) # the root node is added to the stack
5 while ¬stack.empty() and elapsed_time < tmax:
6 (p, v) := stack.pop()
7 if cost(v) > best_solution: # node is pruned
8 continue # jump to line 5
9 vnew := next_successor(v) # successor creation

10 V := V ∪ {vnew} # update graph
11 E := E∪ {(v, vnew)}

12 if ¬is_terminal(vnew):
13 stack.push(0, vnew)
14 else:
15 if cost(vnew) < best_solution:
16 best_solution := cost(vnew) # update cost of best solution
17 stack.push(p+ 1, v) # the current node is added back to the stack

Figure 4.2: Pseudocode of the search algorithm.

graph, we allow to specify an upper limit for the time spent on this
search.

The algorithm is shown in Fig. 4.2. The search graph is initialized
with vinput as the root node in line 1; the variable best_solution will
hold the cost of the current best solution, and is initialized with infinity
in line 2; the priority stack initially contains vinput with priority 0 (line
4). At every iteration of the while loop, a new successor is generated.
To this end, in line 6 the node with the highest priority is taken from
the stack. This operation returns both the node v, as well as its priority
p. If the cost of v (the cost of the path from the root node to v), is
higher than the cost of the current best solution, then node v is pruned
(it cannot lead to a better solution), and the rest of the loop body is
skipped (lines 7–8). If v is not pruned, then its next successor, vnew, is
generated in line 9; cost(vnew) is set to the sum of cost(v) and the cost
of the kernel(s) along the edge from v to vnew. Although not shown
in the code, if vnew does not exist because all successors were already
explored, the rest of the loop body is skipped too. If vnew is a terminal
node, that is, there is nothing left to compute, best_solution may have
to be updated with cost(vnew) (lines 15–16); if vnew is not terminal, in
line 13 it is added to the stack with priority 0. Finally, in line 17, the
node v is put back on the stack with priority p+ 1. The loop terminates
either when the stack is empty, or when the time limit is reached.

Example 4.1. Fig. 4.3 shows the order in which the first 15 nodes are
visited in a ternary tree. The successors of each node are sorted from
left to right, the leaves are terminal nodes. At the point shown in



32 algorithm generation

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

Figure 4.3: Example of the visitation order.

X := A(B+C+DE)

X :=M3 +ADE X :=M5 +ADE

M1 ← AB

M2 ← AC

M3 ←M1 +M2

M4 ← B+C

M5 ← AM4

Figure 4.4: Search graph with redundancy.

Fig. 4.3, the algorithm has explored the first and second successor of
all non-terminal nodes that have been visited so far. Thus, in the next
step, the third successor of the node labelled with 13 will be visited,
because it is the last node that was put on the priority stack. Thereafter,
the third successor of the node labelled with 9 will be visited. �

4.2 redundancy in the search graph

With large input expressions, it frequently happens that there is a lot
of redundancy in the search graph. As an example, to compute the
subexpression A(B+C) of A(B+C+DE), the two different programs
shown in Fig. 4.4 were constructed. As the generation process unfolds,
both leaf nodes will be expanded, deriving the same programs for
ADE twice. This phenomenon can be alleviated by taking advantage
of the algebraic nature of the domain: In Fig. 4.4, it is clear thatM3 and
M5 represent the same quantity because AB+AC = A(B+C).1 Thus,
it is possible to merge the two branches and only do the generation
for ADE once.

Our approach for detecting equivalent nodes and for merging
branches in the search graph consists of two parts: First, we define
a normal form for expressions, that is, a unique representation for
algebraically equivalent terms. Then, we make sure that irrespec-

1 Ignoring differences due to floating-point arithmetic.
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Table 4.1: The table of intermediate operands after deriving two programs
that compute the subexpression A(B+C) in X := A(B+C+D).

intermediate expression

M1 AB

M2 AC

M3 AB+AC

M4 B+C

tive of how a subexpression was computed, its result is represented
by the same, unique intermediate operand. In case of the graph in
Fig. 4.4, this would mean that the same intermediate is used for
AB+AC = A(B+C) in both leaves. When rewritten to their normal
form, the equivalence of two expressions can simply be checked by a
syntactic comparison. The normal form is discussed in more detail in
Sec. 7.2.1.

It should be noted that this normal form is not a true normal form
in the sense that there is no guarantee that all algebraically equivalent
expressions have the same normal form. This aspect is explained
in more detail in the following section, as well as in Sec. 4.6.4 and
Sec. 7.3. However, since the normal form is only necessary for merging
branches, which is a performance optimization, it is not required that
all algebraically equivalent expressions can be identified as equivalent.
If two equivalent expressions are not identified as equivalent, this
simply has the effect that an opportunity for merging is not identified,
so the optimization is less effective.

4.2.1 Unique Intermediate Operands

To ensure that the same intermediate operand is used for equivalent
expressions, we make use of the normal form of expressions. The idea
is to maintain a table of intermediate operands and the expressions
they represent in the normal form. Whenever a kernel is used to
compute part of an expression, we reconstruct the full expression that
is computed by recursively replacing all intermediate operands. The
resulting expression is then transformed to its normal form, and it is
checked if there already is an intermediate operand for this expression
in the table of intermediate operands.

Example 4.2. Let us assume we are given the input X := A(B+C+

D). Initially, the table of intermediate operands, which is shown in
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X := S−1B+C

X := L−TL−1B+C X := ZW−1ZTB+C

X :=M2 +C X :=M5 +C

L← chol(S) Z,W ← eigen(S)

M1 ← L−1B

M2 ← L−TM1

M3 ← ZTB

M4 ←WM3

M5 ← ZM4

Figure 4.5: Search graph with redundancy due to factorizations.

Tab. 4.1, is empty. The first partial program is found by rewriting this
assignment as X := AB+AC+AD and computing

M1 ← AB

M2 ← AC

M3 ←M1 +M2,

resulting in X :=M3 +AD. For the first two kernels, we simply add
the intermediates M1 and M2, and the corresponding expressions
AB and AC to the table. For M1 +M2, we first use the table to
replace the intermediate operands M1 and M2 with the expressions
they represent, resulting in AB+AC. As this expression is already
in normal form, we can simply check if there already is an entry for
it in the table. Since at this point, there is no entry for AB+AC yet,
AB+AC is added to the table, and a new operand M3 is created.
Alternatively, the same part of X := A(B+C+D) can be computed as

M4 ← B+C

M3 ← AM4.

For the kernel invocation AM4, the intermediate operand is created by
replacing M4 by B+C, and then converting the resulting expression
A(B+C) to normal form, which in this case is AB+AC. Then, from
the table, M3 is retrieved. Tab. 4.1 shows the state of the table after
deriving those two programs. �

4.2.1.1 Factorizations

To solve linear systems and, if necessary, to explicitly invert matrices,
Linnea directly uses factorizations. Unfortunately, the approach for
the construction of unique intermediate operands as presented above
fails if factorizations are applied in an expression. The problem can
be illustrated well with the expression X := S−1B+C, where S is SPD.
A search graph for this expression is shown in Fig. 4.5. In this graph,
both the Cholesky factorization and the symmetric eigenvalue decom-
position are applied to S, respectively resulting in X := L−TL−1B+C
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Table 4.2: The table of intermediate operands after generating two programs
that compute the subexpression S−1B in X := S−1B+C.

intermediate expression

M1 L−1B

M2 S−1B

M3 ZTB

M4 WZTB

and X := ZW−1ZTB+C after the conversion to normal form. Even
though the subexpressions L−TL−1B and ZW−1ZTB are mathemati-
cally equivalent, their normal forms are different; as a result, with the
approach described above, they would not be identified as equivalent.
The problem is that with factorizations, it is much more difficult to
go back to the original expression: With kernels that produce a single
output operand, that operand can simply be replaced with the oper-
ation that was computed. Factorizations instead produce an output
expression; in this case LLT and ZTWZ. While it would be possible to
replace those output expressions with the operand S that was factored
to go back to the original input expression S−1B, this is only possible
if the output expression still appears in its original form. Since in the
normal form the inverse is pushed down, this is usually not the case.

In order to solve this problem, whenever factorizations are applied,
rewrite rules are generated that take the conversion to normal form
into account. In case of the example above, when the Cholesky factor-
ization is applied to S, the rewrite rule L−TL−1 → S−1 is generated.
The left-hand side of this rule is constructed from the output expres-
sion LLT of the Cholesky factorization, which is first inverted and
then converted to normal form. Whenever an intermediate operand is
constructed for an expression that contains L−TL−1, this rewrite rule
is applied to obtain the original expression.

Example 4.3. As an example, we use again the expression X := S−1B+

C, where S is SPD. During the construction of the graph in Fig. 4.5,
the rewrite rules L−TL−1 → S−1 and ZW−1ZT → S−1 are constructed.
As before, when the intermediate operand M2 is generated, M1 is
replaced with L−1B, resulting in L−TL−1B. In this expression, the
rewrite rule for the Cholesky factorization of S matches; it is applied
to obtain S−1B, the equivalent expression of M2.

When the intermediate operand for the operation ZM4 is con-
structed, the intermediate M4 is replaced to obtain ZW−1ZTB. At this
point, the rewrite rule for the symmetric eigenvalue decomposition
is used to retrieve the original expression S−1B. Since this expression
is already in the table of intermediate operands, instead of creating
M5 as shown in Fig. 4.5, the existing M2 is reused for this operation.
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b :=
(
XTM−1X

)−1
XTM−1y

b :=
(
XTL−T1 L−11 X

)−1
XTL−T1 L−11 y

b :=M−1
2 MT

1L
−1
1 y

b := L−T2 L−12 MT
1L

−1
1 y

L1 ← chol(M)

M1 ← L−11 X

M2 ←MT
1M1

L2 ← chol(M2)

Figure 4.6: Example of a graph where two rounds of applying rewrite rules
are necessary to obtain the input expression.

As a result, the two leaves in this graph can be merged. The table of
intermediate operands after the construction of the graph is shown in
Tab. 4.2. �

If the operand which is factored is an intermediate operand, in
order to retrieve the input expression, it might be necessary to apply
multiple rounds of replacing intermediate operands, converting the
expression to normal form, and applying rewrite rules. To avoid this,
instead of the operand being factored, its equivalent expression is used
in the right-hand side of the rule. With such rules, one application of
each of the three steps is sufficient.

Example 4.4. An example of a case where rewrite rules have to be
applied multiple times is shown in Fig. 4.6. In order to go back from
the expression

b := L−T2 L−12 MT
1L

−1
1 y

to the input

b :=
(
XTM−1X

)−1
XTM−1y,

it is necessary to

1. apply rule L−T2 L−12 →M−1
2 ,

2. replace M2 with its equivalent expression XTL−T1 L−11 X,

3. replace M1 with its equivalent expression L−11 X,

4. convert the resulting expression to normal form,

5. and apply rule L−T1 L−11 →M−1.2

2 Other orders are also possible. The dependencies are 1.→ 2.→ 5. and 3.→ 4.→ 5.
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This process can be simplified by replacing the intermediate operand
M2 with its equivalent expression XTM−1X in the right-hand side of
the first rewrite rule, resulting in the rule L−T2 L−12 → (XTM−1X)−1.
With this rule, it is sufficient to

1. replace M1 with its equivalent expression L−1X,

2. convert the resulting expression to normal form,

3. and apply rules L−T2 L−12 → (XTM−1X)−1 and L−T1 L−11 →M−1.
�

Since factorizations are also applied to matrices that are both in-
verted and transposed, as well as to matrices that are not inverted
directly, but instead appear within an inverted subexpression, for
example S in (ATSA)−1 (see Sec. 5.7), up to four rewrite rules are
generated when a factorization is applied: Rules for inversion, trans-
position, the combination of inversion and transposition, as well as a
rule that replaces the unmodified output expression. As an example,
when the LU factorization is applied to a matrix A, the following rules
are generated:

U−1L−1P → A−1

UTLTP → AT

PTL−TU−T → A−T

PTLU→ A

Rewrite rules involving the inversion are only generated if the factored
operand is square; rules involving the transposition are only generated
if the output expression is not symmetric.

limitations There are cases where the conversion to normal form
modifies the expression in a way such that the generated rewrite rules
are not applicable anymore. This is for example the case when factors
cancel out: When the QR factorization is applied to the subexpression
S(STAS)−1STA that appears in example problem a.15, this subexpres-
sion is simplified to Q(QTAQ)−1QTA. Going back to the original
expressions with rules such as QR → S is not possible. Instead, it
would be necessary to detect that Q(QTAQ)−1QT is equivalent to
S(STAS)−1ST and replace the former with the latter. While it is rela-
tively simple for a human expert to identify that those two expressions
are equivalent, this problem is difficult to solve algorithmically. The
development of an algorithm that solves this problem is planned for
the future.

4.2.2 Merging Branches

When merging branches, we implicitly assume that nodes do not have
any state information such as the state of the registers, caches, or
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Figure 4.7: An example of how through merging, pruned nodes need to
be reactivated. Let us assume that the cost of the current best
solution is 32, and that the blue nodes can be merged. Initially,
the two red nodes are pruned. When the blue nodes are merged,
the cost of one of the pruned nodes decreases from 37 to 27. As a
consequence, this node may now lead to a new solution with a
cost below 32.

memory. This is a simplification that does not hold true in reality.
However, without this assumption, it would not be possible to merge
branches in the search graph. This optimization can drastically reduce
the size of the search graph without reducing the size of the search
space, thus making it possible to generate programs for larger input
expressions.

4.2.3 Updated Search Algorithm

Merging branches is an optimization that imposes some changes in the
search algorithm; when a new node is generated, it has to be checked
whether or not it is equivalent to an already existing one. If there is
an equivalent node, the new node is merged into the existing one. In
addition, through merging, it is possible that the cost of a pruned node
decreases, such that the node can again lead to a new, better solution.
As a result, pruned nodes need to be reactivated. An example of how
merging affects pruned nodes is shown in Fig. 4.7.

The pseudocode of the updated algorithm is shown in Fig. 4.8.
Compared to the original algorithm in Fig. 4.2, this one contains the
following changes: In line 5, Vpruned is initialized with the empty set;
during the execution of the algorithm, it will hold pairs containing
pruned nodes and their priorities. Those pairs are added to the set in
line 9. After a new node is generated, in line 12 it is tested whether
an equivalent node with the same expression already exists. If an
equivalent node v ′ exists, vnew is not added to the graph. Instead, an
edge is added from v, the successor of vnew, to v ′ (line 13). If the cost
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1 G := ({vinput},∅) = (V ,E) # graph initialization
2 best_solution := c∞ # cost initialization
3 stack := PriorityStack() # stack initialization
4 stack.push(0, vinput) # the root node is added to the stack
5 Vpruned := ∅
6 while ¬stack.empty() and elapsed_time < tmax:
7 (p, v) := stack.pop()
8 if cost(v) > best_solution: # node is pruned
9 Vpruned := Vpruned ∪ {(p, v)}

10 continue # jump to line 6
11 vnew := next_successor(v) # successor creation
12 if ∃v ′ ∈ V with vnew ≡ v ′: # equivalent node exists
13 E := E∪ {(v, v ′)}
14 update_cost(v ′, cost(vnew))
15 for pp, vp in Vpruned: # reactivate pruned nodes
16 if cost(vp) < best_solution:
17 stack.push(pp, vp)
18 else:
19 V := V ∪ {vnew}

20 E := E∪ {(v, vnew)}

21 if ¬is_terminal(vnew):
22 stack.push(0, vnew)
23 else:
24 if cost(vnew) < best_solution:
25 best_solution := cost(vnew)
26 stack.push(p+ 1, v) # the current node is added back to the stack

Figure 4.8: Pseudocode of the updated search algorithm with merging.

of vnew is lower than that of v ′, the cost of v ′ and its successors is
updated (line 14). This is implemented by visiting all successors in
topological sort order and updating their cost if necessary. Pruned
nodes are reactivated by adding them back to the stack (lines 15–17).

4.2.4 Diamonds

Merging branches in the search graph frequently leads to so called
diamonds. One such diamond is shown in Fig. 4.9. Intuitively, a
diamond simply means that subexpressions or assignments can be
computed independently of one another and in any order. In the worst
case, for a sequence of n kernel calls that can be reordered in any way,
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X := AB+CD

X :=M1 +CD X := AB+M2

X :=M1 +M2

M1 ← AB M2 ← CD

M2 ← CD M1 ← AB

Figure 4.9: An example of a diamond in the search graph.

the search graph will contain n! paths, one for each order (and 2n

nodes when all branches are merged).3

In isolation, diamonds can be considered redundant: The different
sequences of kernels that are represented by a diamond can be ob-
tained from any single path in the diamond by reordering the kernel
calls. Thus, in order to reduce the size of the search graph, a diamond
can be represented by a single edge that is annotated with a sequence
of kernels in an arbitrary order. However, diamonds are not neces-
sarily redundant in the context of a larger search graph: Specifically,
intermediate nodes (for instance X :=M1 +CD in Fig. 4.9) that lead
to a solution that cannot be reached from the bottom node of the
diamond are not redundant.

As discussed in Sec. 5.2, to some extent redundant diamonds can
be avoided by designing the generation steps such that independent
computations are avoided. However, since it is difficult to predict the
interaction between different generation steps, it is difficult to avoid
redundant diamonds entirely.

4.3 successor generation

A crucial part of Linnea’s search algorithm is the design of the
next_successor function. In that function, the optimizations that Linnea
uses to generate sequences of kernels are applied to the different rep-
resentations of an expression. Those optimizations are encapsulated in
generation steps. A generation step is a function that takes an expression
as input and generates one or more output expressions, each together
with a possibly empty sequence of kernels. The following generation
steps are implemented in Linnea:

1. The exhaustive application of kernels through pattern matching
(Ch. 5),

2. the application of kernels with constructive algorithms (Sec. 5.6),
that is, an algorithm for matrix sums (Sec. 5.6.1), as well as the
generalized matrix chain algorithm (Sec. 5.6.2),

3 For a sequence of n kernel calls that can be reordered in any way, diamonds generalize
to n-dimensional hypercubes. The number of vertices of such hypercubes is 2n, and
the number of paths between two opposing vertices is n!.
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3. the application of factorizations (Sec. 5.7),

4. common subexpression elimination (Ch. 8), and

5. the application of so called tricks (Sec. 7.5).

The design of Linnea allows for a high degree of freedom in the im-
plementation of the individual generation steps, ranging from very
simple steps that only use pattern matching to arbitrarily complex
algorithms. Simple generation steps usually only change a small part
of the expression and make relatively little progress towards a solution,
while complex generation steps change larger parts of an expression
and make more progress. However, since in the search graph, genera-
tion steps are applied repeatedly to the same expressions, the repeated
application of a simple step can lead to the same result as a single
application of a much more complex generation step. The generalized
matrix chain algorithm is an example of a complex generation step
that efficiently finds the optimal parenthesization of a matrix product.
The disadvantage of this algorithm is that it can only make use of a
limited set of kernels. In contrast, the exhaustive application of ker-
nels through pattern matching inefficiently enumerates all possible
parenthesizations, but pattern matching allows to make use of all
available kernels. One of the strengths of Linnea is that it allows to
combine both simple and complex generation steps for the same type
of subproblem: The matrix chain algorithm is used to quickly find
the optimal parenthesization of matrix products, while the exhaustive
application of kernels may lead to an improved sequence of kernels by
making use of additional kernels. More complex generation steps can
also be used to implement heuristics to consider only the most promis-
ing alternatives. This is done for the application of factorizations and
common subexpression elimination. Especially in the application of
factorizations, the number of different combinations of factorizations
that can be applied is usually much larger than the number of combi-
nations that are likely to lead to a good solution. While the repeated
application of a simple generation step that only applies one factoriza-
tion at a time eventually generates all combinations, a more complex
algorithm that analyses the expression helps to reduce the number of
suboptimal solutions.

As mentioned in Sec. 4.1, for a given node, next_successor has to
return the most promising successors first. There are several design
decisions that determine the behavior of this function:

1. The order in which different representations of an expression
are explored.

2. The order in which the generation steps are applied to an ex-
pression.

3. The combination of representations and generation steps.
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4. Given a generation step that is applied to a representation of an
expression, the order in which the generated output expressions
are explored.

Most of these decisions are based on heuristics that encode the exper-
tise of linear algebra library developers. Those decisions and heuristics
are discussed in the following.

4.3.1 Order of Representations

For a given expression, Linnea uses up to four different representa-
tions. The normal form, which is a sum of products, two product of
sums representations, and a sum of products representation where all
inversion operators are pushed up as far as possible. The details of
those representations as well as how they are obtained is described
in Ch. 7. For simple expressions, some or all of those representations
might be the same. If they are distinct, the different representations
are used in the following order:

1. Product of sums (left first),

2. product of sums (right first),

3. sum of products with inversion pushed up, and

4. normal form.

The reason for beginning with the product of sums is that it reduces
the number of expensive multiplications: While AB+AC requires two
matrix-matrix multiplications, A(B+C) requires only one. Pushing
up the inversion operator allows to decrease the number of matrix fac-
torizations in favor of matrix-matrix multiplications: While A−1B−1C

requires two factorizations, (BA)−1C requires only one.

4.3.2 Order of Generation Steps

The following order of generation steps is used for all nodes except
the root:

1. Application of kernels with constructive algorithms,

2. common subexpression elimination,

3. application of factorizations,

4. exhaustive application of kernels through pattern matching, and

5. application of tricks.
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The idea is to begin with those steps that are most important to
quickly find a relatively good solution. While factorizations are in
many cases necessary to find a solution at all, there are also cases
where the application of factorizations is possible, but not necessary to
find a solution. Because of the latter, the application of factorizations is
only the third step. If the application of factorizations is necessary to
make progress, then eventually both the constructive algorithms and
common subexpression elimination will not be able to generate new
expressions. In that case, the application of factorizations effectively
becomes the first step. The exhaustive application of kernels is only
the fourth step because the number of applicable kernels is usually
very large, while the benefit of the exhaustive application compared to
the constructive algorithms tends to be low. Tricks come last because
at present, only a small number of highly problem-specific tricks are
implemented. As a result, there is a low chance that they are applicable.
Should the number of tricks be increased, it might be beneficial to give
them higher priority. The application of factorizations and tricks are
not used again if they were used to generate the current node. The
reason is that is is unlikely that the repeated application of those steps
without another step in between is beneficial.

The order for the root node differs in that common subexpression
elimination is the first step. This has the effect that, if there are any,
common subexpressions will be replaced at least once along the path
that leads to the first solution.

4.3.3 Combination of Representations and Generation Steps

For a given expression, every generation step is applied to every rep-
resentation. Since it is very challenging to predict which generation
step is the most promising for a given representation, we favor va-
riety over depth: for instance, instead of first replacing all common
subexpressions and then proceeding to factorizations, we replace one
common subexpression, followed by one factorization, and continue
in a round-robin fashion. The combination of all representations and
generation steps can be thought of as a nested round-robin order. The
idea is illustrated in Fig. 4.10. The outer round-robin cycles between all
representations; for each representation, the inner round-robin cycles
between the generation steps, every time returning one new expres-
sion per step. If for any combination of representation and generation
step, no (further) expressions can be generated, this combination is
skipped.
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Figure 4.10: The order in which new expressions are generated from combi-
nations of representations and generation steps (excluding the
root node).

4.3.4 Order of Generated Expressions

The order of the expressions that result from the application of a
generation step to a given representation is determined by the imple-
mentation of the respective generation step.

1. The constructive algorithms return only one new expression.

2. Those common subexpressions that allow to replace the largest
number of operands at once are replaced first. The details are
discussed on page 128.

3. The application of factorizations starts with those factorizations
that are necessary to make progress, before also applying fac-
torizations that may not be necessary. In addition, the cheapest
factorizations are used first. The details are described on page
85.

4. For the exhaustive application of kernels, the order of the gen-
erated expressions is arbitrary. Is it determined by the order in
which MatchPy finds matches for the applicable kernels.

5. The order of the application of tricks is again arbitrary and
determined by the order in which MatchPy finds matches for
the applicable tricks.
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4.3.5 Implementation

Generators are
functions that return
a sequence of outputs
one at a time. Since
outputs can be
returned anywhere
in the function, the
outputs can be
returned as they are
constructed. The
execution of a
generator is
suspended after an
output is returned,
and it can be
resumed later.

In the interest of performance, the implementation of the next_succes-
sor function heavily relies on generators. Generators allow to easily
implement lazy evaluation. All generation steps as well as the func-
tions that rewrite expressions into different representations are imple-
mented as generators; the amount of computation that is performed
to construct the next expression is reduced to the necessary minimum.
Similarly, the implementation of the round-robin order is a generator
that does not require the eager evaluation of the generation steps it
iterates over. The use of generators allows to save computational effort
if a node has a large number of possible successors, but only a few are
actually explored. In addition, it decreases the time to a first solution.

4.4 existence of a solution and termination

For Linnea to be useful in practice, it has to be guaranteed that 1)
a solution exists for every valid input problem, and 2) that Linnea
always terminates.

Trivially, to guarantee that a solution exists, it is sufficient to have
one general kernel for every supported operation. In practice, Linnea
uses a much larger set, including multiple kernels for the same op-
erations that make use of different properties, as well as kernels that
combine multiple operations. However, Linnea does not use kernels
that compute the inverse of a full matrix, either explicitly or as part of
a linear system. Instead, those operations are computed with matrix
factorizations (Sec. 5.7). Since both the LU factorization and the singu-
lar value decomposition can be applied to full matrices, the inverse
of full matrices can always be computed. As a result, with the set of
kernels used by Linnea, a solution exists for every input problem.

There are two aspects that are relevant for termination; the applica-
tion of kernels to a fixed expression, that is, an expression that is not
rewritten, and the rewriting of expressions.

Excluding factorizations, the application of kernels to a fixed expres-
sion is guaranteed to terminate because every application decreases
the size of the expression, that is, the number of nodes in the ex-
pression tree. With factorizations, the situation is more complicated:
Repeatedly applying a matrix factorization and then undoing it by
a matrix product can easily lead to infinite loops. In Linnea, such
loops are avoided by labeling operands as factors and by requiring
that for any given kernel call, there must be at least one operand that
is not a factor. For instance, in the expression S−1B, the Cholesky
factorization is applied to S, resulting in (LTL)−1B. To compute the
resulting expression, first the inverse has to be distributed over LTL,
yielding L−1L−TB. Then, the linear systemM = L−TB is solved, which
is allowed because B is not a factor, and the remaining linear system
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L−1M can be solved too because M is not a factor either. An ex-
ception from this rule has to be made for explicit inversion. As an
example, consider the assignment X := S−1, where S is SPD. Since
S cannot be inverted directly, the Cholesky factorization is applied
to it, resulting in X := L−1L−T . In order to compute the right-hand
side of this assignment, it is necessary to compute operations where
all operands originate from the same factorization, which is usually
not allowed. To ensure that such expression can be computed, during
the application of kernels, Linnea searches for subexpressions that
form an explicit inversion; those subexpressions are products where
all operands are factors that originate from the same factorization. If
such a subexpression is found, the requirement that the arguments of
a kernel cannot originate from the same factorization is lifted and the
generalized matrix-chain algorithm (Sec. 5.6.2) is used to compute the
subexpression.

Rewriting can affect termination because it can lead to arbitrarily
large expressions. This can happen for instance with the replacement
of a single operand X by (XT )T , which can be repeated an arbitrary
number of times. If after every application of a kernel, the size of the
expressions grows due to rewriting, the algorithm generation may not
terminate. In order to prevent such cases of non-termination, those
rewritings that could potentially cause non-termination are imple-
mented in a way such that they cannot be applied arbitrarily often
(see Ch. 7). For instance, the replacement of X with (XT )T is only used
indirectly as part of the application of transposed kernels (Sec. 5.4);
there is no general rule X→ (XT )T that is applied unconditionally.

4.5 cost function

For most inputs, Linnea generates many alternative programs, all
mathematically equivalent, but with different performance signatures
and numerical properties. To discriminate programs and to choose
one that satisfies constraints such as memory usage, a cost function
is necessary. This can either be an exact cost or an estimate. Such a
function could take into account the number and the cost of kernel
invocations (e.g., the number of floating-point operations performed,
the number of bytes moved), and even the numerical stability of the
program.

A cost function has to fulfill two requirements: 1) It has to be defined
on any sequence of one or more kernels, and 2) its codomain has to be
a totally ordered set. For some simple functions, such as the number
of FLOPs, both conditions are satisfied. For many others, the first
condition poses a challenge. For example, while the efficiency of indi-
vidual kernels can be (tediously) modeled [71, 102], the efficiency of an
arbitrary sequence of kernels is expensive to obtain via measurements
and cannot be accurately derived by simply combining that of the
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individual kernels [103]. Similarly, incorporating numerical stability
into a cost function is a challenging task: It is not necessarily clear
how to represent an error analysis by means of one or few numbers, it
is still difficult to derive stability analyses even for individual kernels,
and the analysis for a sequence of kernels is not a direct composition
of the analyses of the kernels [17, 65].

In addition to the two requirements discussed above, it is useful
(but not necessary) for the cost function to have the property that the
cost of a sequence of kernels is the sum of the costs of the individual
kernels. Formally, given two sequences of kernels p1 and p2, this
means that cost(p1p2) = cost(p1) + cost(p2), where p1p2 denotes the
concatenation of the sequences p1 and p2. The reason is that this
property allows to use standard graph search algorithms to find the
shortest path in the graph. Without this property, it is necessary to
enumerate all paths. Since the number of paths is exponential in
the size of the graph, the enumeration of all paths is in many cases
infeasible. If the cost function does not have this property, a simplified
cost function that does have this property could be used to preselect a
number of paths in the graph.

As a cost function, Linnea presently uses the number of FLOPs. This
function has the advantage that it is easy to determine, and for the
targeted regime of mid-to-large scale operands, it is usually a good
proxy for the execution time. An evaluation of the effectiveness of the
number of FLOPs as a cost function is carried out in Sec. 10.4.

For each kernel, Linnea has a formula that computes the number
of FLOPs performed from the sizes of the matched operands. As
an example, for the GEMM kernel—which computes AB+ C with
A ∈ Rm×k and B ∈ Rk×n—the formula is 2mnk. Those formulas
were either taken from [66, pp. 336–337], or inferred by hand. To find
the path in the search graph with the lowest cost, we use a K shortest
paths algorithm [75]. In case of ties, an arbitrary path is selected. The
K shortest paths algorithm is used to allow the user to inspect more
than just the best solution. In addition, it is used to generate the best
100 algorithms used for the evaluation of the cost function in Sec. 10.4.

combined operations Several BLAS and LAPACK kernels com-
bine the computation of multiple mathematical operations. For in-
stance, the GEMV kernel, which computes Ax+ y, combines a matrix-
vector product with the sum of two vectors. In most of those cases, the
same operations can also be computed with multiple calls to kernels
that compute simpler operations. The operation Ax+ y can also be
computed with a call to GEMV to compute the matrix-vector product
Ax, followed by a call to AXPY to compute the sum of two vectors:

v1 ← Ax

v2 ← v1 + x
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Especially due to the constructive algorithms (see Sec. 5.6), it is likely
that Linnea’s search graph contains both solutions: The single GEMV
call, as well as the sequences of two kernel calls. While mathematically
both sequences are equivalent, in practice most likely the single kernel
call is better in terms of performance because it avoids unnecessary
data movement.

Care has to be taken when comparing such alternative solutions in
terms of FLOPs; since both solutions carry out the same computations,
they require the same number of FLOPs. In Linnea, those two solutions
can still be distinguished because the cost function only considers
the highest order term for each kernel. That is, the formula for the
number of FLOPs of Ax+ y is 2mn, where m and n are respectively
the number of rows and columns of A, as opposed to the formula
2mn+n which also considers the cost of adding a vector. As a result,
the cost of the solution that only consists of one call to GEMV is 2mn,
while the cost of the sequence of two kernels is 2mn+n.

While explicit transposition does not require any FLOPs, to ensure
that solutions that use explicit transposition are more expensive, in
Linnea this kernel has a cost of 1 FLOP.

4.6 formal description

While many implementations details of Linnea are specific to the do-
main of linear algebra, the underlying idea of the algorithm generation
is applicable to many other domains. In this section, we provide a
formal description of the algorithm generation. This section serves
two purposes:

1. The basic ideas of the algorithm generation in Linnea are pre-
sented from a high-level, theoretical point of view that is indepen-
dent of the domain of linear algebra. This high-level description
demonstrates the generality of the approach.

2. The computational complexity of the algorithm generation prob-
lem is discussed. Specifically, we show that already relatively
simple cases of this problem are NP-complete.

The formal description builds upon elements from universal algebra
and term rewriting. Thus, we make use of terminology, results, and
notation from [5], which provides an in-depth overview of those
subjects. This section is written to be accessible for readers unfamiliar
with universal algebra and term rewriting. For this reason, in the
presentation we favor simplicity and intuitive explanations based on
examples over technical details and rigorous definitions. Nonetheless,
the definitions in this section are entirely compatible with the ones in
[5], and the definitions therein can be used instead.

Independent of the domain of linear algebra, the problem that
Linnea solves can informally be stated as follows: Given
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1. an input expression from an algebra,

2. a set of algebraic identities,

3. a set of functions that compute expressions from this algebra,
and

4. a cost function that assigns a cost to every sequence of function
calls,

find a sequence of function calls that 1) computes the input expres-
sion and 2) is optimal according to the cost function. In principle,
the approach for the algorithm generation that is implemented in
Linnea can be applied to every other problem that fits this description.
Possible domains include tensor algebra, the simplification and effi-
cient implementation of automatically generated index expressions,
for example as they appear in Lift [107, Sec. 5.3], Optimal Jacobian
Accumulation [98], query optimization for relational databases, and
graph algorithms when formulated as linear algebra problems [27, 79].
In addition, the approach could also be applied to real or complex
scalars, boolean algebra, quaternions or polynomials.

In order to formally define the algorithm generation problem, in
the following we provide definitions of all the concepts used above. In
Sec. 4.6.1, the algebra and algebraic identities are defined, followed by
the computational functions, the cost function, and the problem itself
in Sec. 4.6.2. The complexity of the problem is discussed in Sec. 4.6.3. In
Sec. 4.6.4, the search graph that is used in Linnea is defined in terms
of the formalism introduced in this section. A number of possible
extensions to the formalism are outlined in Sec. 4.6.5.

4.6.1 Σ-algebras

Throughout the remainder of this thesis, we do not distinguish be-
tween the symbolic expressions themselves and their interpretation
as mathematical objects in linear algebra, such as matrices or vectors.
However, for the purpose of this section, this distinction is necessary.
To this end, it is important to note that in Def. 3.2, expressions are
defined as purely syntactic objects without any particular meaning.
As an example, let T(Σ,X) be a set of expressions with symbolic con-
stants 1, 2, 3 ∈ Σ(0) and a binary function + ∈ Σ(2). According to the
definition, the expressions 1+ 2, 2+ 1, 3 ∈ T(Σ,X) are all distinct, that
is

1+ 2 6= 2+ 1 1+ 2 6= 3 2+ 1 6= 3.

The intuitive notion that those three expressions all have the same
value and are thus ‘equal’ was not defined yet. To introduce such a
notion, an interpretation is necessary that assigns some meaning to
the symbols 1, 2, 3, and +. An obvious interpretation is to consider
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1, 2, and 3 as natural numbers and + as the addition of two natural
number. Formally, such an interpretation is provided by a Σ-algebra:

Definition 4.1 (Σ-Algebra [5, Def. 3.2.1]). Let Σ be a signature. A Σ-
algebra A consists of a carrier set (domain) A, and a mapping that
associates with each function f ∈ Σ(n) a function fA : An → A for all
n > 0. �

The Σ-algebra provides an interpretation of the function symbols in
Σ in a domain A. In the example above, one can choose A to be the
set of natural numbers N, and +A : N×N→N to be the addition of
two natural numbers. However, other interpretations are possible too;
for instance, A could also be the set of integers Z or reals R.

In order to formalize the connection between expressions in T(Σ,X)
and the corresponding elements in the Σ-algebra, we define an evalua-
tion function that maps expressions to elements of the Σ-algebra.

Definition 4.2 (Evaluation Function). Let Σ be a signature and A

be a Σ-algebra. An evaluation function is a function ε : T(Σ,X) → A

with ε(f(t1, . . . , tn)) := fA(ε(t1), . . . , ε(tn)) for all n > 0, f ∈ Σ(n),
t1, . . . , tn ∈ T(Σ,X). �

In the following example, in order to distinguish between the sym-
bols 1, 2, 3 ∈ Σ(0) and natural number in N, we use a bold font for
the numbers; they are written as 1, 2, 3 ∈ N. Let ε be an evaluation
function with

ε(1) = 1 ε(2) = 2 ε(3) = 3.

With this function, the expression 1+ 2 evaluates to

ε(1+ 2) = ε(1) +A ε(2) = 1+A 2 = 3.

Thus, it is now possible to express the fact that the expressions 1+ 2,
2+ 1, and 3 have the same value and represent the same object in the
Σ-algebra (the number 3) as

ε(1+ 2) = ε(2+ 1) = ε(3) = 3.

It should be noted that there are many different evaluation functions
for a given Σ-algebra. Let a,b, c ∈ Σ(0), and ε, ε ′ be evaluation func-
tions with

ε(a) = 1 ε(b) = 2 ε(c) = 3

ε ′(a) = 1 ε ′(b) = 1 ε ′(c) = 3.

Whether or not the expressions a+b and c are ‘equal’ now depends on
the evaluation function. While ε(a+ b) = ε(c) holds, ε ′(a+ b) = ε ′(c)
does not.

In many cases, functions in a Σ-algebra have some properties that
can be described in terms of expressions. As an example, the addition
of two natural number is commutative, that is, the expressions x+ y
and y+ x have the same value for all values of x and y. In universal
algebra, this notion is expressed with Σ-identities:
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Definition 4.3 (Σ-identities [5, Def. 3.1.7]). Let Σ be a signature. A
Σ-identity is a pair (s, t) ∈ T(Σ,X)× T(Σ,X). Identities will be written
as s ≈ t. In the follow, we use E to denote a set of Σ-identities. �

Σ-identities can be seen as axioms of a Σ-algebra A. However, by
themselves, those identities are again purely syntactic objects with
no connection to A; we need to require that A is ‘compatible‘ with E.
Intuitively, the functions fA need to actually have the properties that
are described by the identities in E. If there is for example an identity
f(x,y) ≈ f(y, x) that describes that f is commutative, then fA has to
be commutative too. More formally, we require that A is a model of E
[5, Def. 3.5.1 and Def. 3.5.2], that is, for all identities s ≈ t ∈ E and all
possible evaluation functions ε, ε(s) = ε(t) holds.4

If we think of Σ-identities as axioms of a Σ-algebra A, it is clear
that those identities do not just provide information about functions
over A; they can also be used to rewrite expressions without changing
their value. This notion naturally leads to a relation on expressions;
while 1+ 2 and 2+ 1 are distinct expressions, they are related through
the fact that one can be rewritten into the other by using the identity
x+y ≈ y+x as a rewrite rule x+y→ y+x. This relation is formalized
as follows:

Definition 4.4 (Equational Theory5). Let E be a set of Σ-identities. The
relation ≈E⊆ T(Σ,X)× T(Σ,X) is called the equational theory induced
by E. Given two expressions s, t ∈ T(Σ,X), s ≈E t holds if s = t or if
it is possible to rewrite s into t (and vice versa) with the identities in
E. �

Thus, with x+ y ≈ y+ x ∈ E, it holds that 1+ 2 ≈E 2+ 1. In this
case, only one application of one identity in E is necessary to rewrite
1+ 2 to 2+ 1. In general, the number of rewrite steps can be arbitrarily
large, and identities can be used multiple times and in both directions.

The equational theory ≈E forms an equivalence relation on the set
of expressions T(Σ,X). In the following, we use [t]≈E to denote the
equivalence class of the expression t, which is defined as [t]≈E :=

{t ′ ∈ T(Σ,X) | t ≈E t ′}. Intuitively, it is clear that two expressions
that can be rewritten into one another by means of the identities in
E have the same value. Formally, this means that given a Σ-algebra
A that is a model of E and an evaluation function ε, s ≈E t implies
ε(s) = ε(t). The other direction does not need to hold, though. While
ε(1+ 2) = ε(3), with E = {x+ y ≈ y+ x} the equivalence 1+ 2 ≈E 3
does not hold.

4 Technically, A is a model of E if for all homomorphisms ϕ : T(Σ,X)→ A, ϕ(s) = ϕ(t)
holds. An evaluation function as defined above is such a homomorphism.

5 This definition is closer to the definition of the rewrite relation ∗↔E in [5, p. 40] than the
definition of equational theories [5, Def. 3.5.3]. However, since ∗↔E and ≈E coincide
according to Birkhoff’s Theorem [5, Th. 3.5.14], they can be used interchangeably. We
chose this definition because we find it more intuitive.
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If E is empty, then expressions cannot be rewritten and ≈E reduces
to the syntactic equality =, that is, s ≈E t if and only if s = t.

4.6.2 Optimal Program Generation

By making use of definitions from the previous sections, we can work
towards defining the problem itself. We begin with the so called kernel
functions that are used to compute parts of the input expression. Each
function computes one operation that can be described in terms of an
expression. As examples, for the TRSM kernel, this expression is X−1Y;
a fused multiply-add instruction computes xy+ z. The correspond-
ing kernel functions can be thought of as functions f(X, Y) = X−1Y

and g(x,y, z) = xy+ z, respectively. Kernel functions are defined as
follows:

Definition 4.5 (Kernel Function). Let Σ be a signature, ε be an eval-
uation function, and tf ∈ T(Σ,X) be an expression with Var(tf) =

{x1, . . . , xn}. A kernel function is a function f : (Σ(0))n → Σ(0) with
exactly one argument for each variable in Var(tf).6

1. Given a substitution σ = {x1 7→ t1, . . . , xn 7→ tn} with t1, . . . , tn ∈
Σ(0), we define the application of f to t1, . . . , tn as

σ(f(x1, . . . , xn)) := f(σ(x1), . . . ,σ(xn)) = f(t1, . . . , tn).

As an abbreviation, we also write σ(f(x1, . . . , xn)) as σ(f).

2. For all substitutions σ with Dom(σ) = Var(tf), it holds that
ε(σ(f(x1, . . . , xn))) = ε(σ(tf)).

In the following, we use F to denote a set of kernel functions. �

In 1., the application of a function to a set of arguments is de-
fined in terms of a substitution because the substitution creates a
straightforward connection to tf: Given a kernel function f with
tf = xy+ z, the expression t = 2a+b can be computed with f because
tf matches t with the substitution σ = {x 7→ 2,y 7→ a, z 7→ b}, that is,
σ(tf) = t. The same substitution σ can also be applied to f, resulting in
σ(f) = f(2,a,b). With 2., it is ensured that the constant that is returned
by the application of f has the same value as the expression that is
computed. In the example, this means that ε(f(2,a,b)) = ε(2a+ b).
f is defined on constants Σ(0) to ensure that expressions can only
be used as the input to a kernel function once they have been fully
computed. As an example, let g,h ∈ F be functions with tg = xy and
th = x+ y. While g(2,a) can be used to compute 2a, it is not possible
to compute 2a+ b with h(2a,b) since 2a /∈ Σ(0), which means that 2a
has not been computed yet.

6 Kernel functions that return more than one output operand are discussed in Sec. 4.6.5.
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It should be noted that since kernel functions are defined over
symbolic constants Σ(0) instead of elements of A, they are not math-
ematical functions in the usual sense. While such functions are not
necessary for the discussion in this section, one could require that for
every kernel function f ∈ F, there is a function fA with

ε(σ(f(x1, . . . , xn))) = fA(ε(σ(x1)), . . . , ε(σ(xn))).

In practice, kernel functions can also have constraints regarding
the operands. For instance, a function f with tf = x

y could have the
constraint ε(y) 6= 0. In that case, f can only be applied to operands
that satisfy the constraints.

Next, the application of a kernel function to an expression is defined.
Given a kernel function f and an expression s, a subexpression of s
can be computed with f is there is a match σ of tf in s. The matching
subexpression σ(tf) is then replaced with the output of σ(f). As
an example, we use again the expression 2a + b and a function f

with tf = xy. There is a match for tf in 2a + b with substitution
σ = {x 7→ 2,y 7→ a}. The subexpression σ(tf) = 2a can thus be
computed as σ(f) = f(2,a) = c, resulting in the expression c+ b.

Definition 4.6 (Application of Kernel Functions). Let s ∈ T(Σ,∅) be
an expression7, and f ∈ F be a kernel function that computes tf. Given
a position p and a substitution σ with s|p = σ(tf) and t = s[σ(f)]p, the
application of f to s is defined as s σ(f)−−−→ t. �

If it is convenient, we spell out σ(f) in a kernel function application.
For instance, in the example above we also write the application of f
with substitution σ = {x 7→ 2,y 7→ a} as

2a+ b
c=f(2,a)−−−−−−→ c+ b.

Following from ε(σ(tf)) = ε(σ(f)) in Def. 4.5, for s σ(f)−−−→ t it holds
that ε(s) = ε(t), that is, the value of an expression does not change
with the application of a kernel function.

Given an expression s and a kernel function f, there can be multiple
matches of tf in s. This is for example the case for ab + cd and
tf = xy; tf matches both ab and cd. If there are multiple matches, it
is possible to obtain different results by the application of f. That is,
if there are two matches σ1, σ2 of f in s, then there are two different
applications s σ1(f)−−−→ t1 and s σ2(f)−−−→ t2 with t1 6= t2. In addition, it is
also possible that there are multiple identical matches σ at different
positions pi, which means that there is a common subexpression in
s. Since all matching subexpressions σ(tf) can be computed with the
same function application σ(f), as a form of common subexpression
elimination it is possible to replace σ(tf) with σ(f) at all positions pi.

7 This definition only applies to single expressions, not sequences of assignments. The
extension to sequences of assignments is discussed in Sec. 4.6.5.
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The kernel functions are used to construct programs. Specifically,
the idea is to repeatedly apply kernel functions to an input expression
until the expression reduces to a single constant. The sequence of
function applications then forms a program that computes the input
expression. Since the use of Σ-identities can improve the quality of
programs, we allow that expressions can be rewritten before and after
function applications.

Definition 4.7 (Partial Program). Let t0, tk ∈ T(Σ,∅) be two expres-
sions with t0 6= tk, E be a set of Σ-identities, and F be a set of kernel
functions. A partial program is a sequence of applications of kernel
functions

t ′0
σ1(f1)−−−−→ t1

t ′1
σ2(f2)−−−−→ t2

...

t ′k−1
σk(fk)−−−−→ t ′k

with ti ≈E t ′i for all 0 6 i 6 k. In the following, we also denote such a
program as t0

p−→E tk with p = ((σ1, f1), . . . , (σk, fk)). Since the output
operands are uniquely determined by σi(fi), they are omitted from p.
We use P(F) for the set of all programs that can be constructed from
functions in F. �

A program t0
p−→E tk with p = ((σ1, f1), . . . , (σk, fk)) can also be

understood as a sequence of function applications

c1 = σ1(f1)

c2 = σ2(f2)

...

ck = σk(fk)

with input expression t0 and output expression tk.

Example 4.5. Let E be a set of Σ-identities that contains

x+ y ≈ y+ x
xy ≈ yx

x(y+ z) ≈ xy+ xz,

let f,g,h ∈ F be kernel functions with

tf = xy+ z tg = xy th = x+ y

For the input expressions ab+ 3a, one possible program is

ab+ 3a
c1=g(a,b)−−−−−−−→ c1 + 3a

3a+ c1
c2=f(3,a,c1)−−−−−−−−→ c2
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with c1 + 3a ≈E 3a+ c1. Alternatively, it is also possible to rewrite
the input expression to a(b+ 3) and construct the program

a(b+ 3)
c1=h(b,3)−−−−−−−→ ac1

ac1
c2=g(a,c1)−−−−−−−→ c2

It should be noted that it is possible for programs to compute the
input expressions only partially. That is, it is not required that tk is a
constant in Σ(0). As an example,

ab+ 3a
c1=g(a,b)−−−−−−−→ c1 + 3a

c1 + 3a
c2=g(3,a)−−−−−−−→ c1 + c2

is a valid partial program. �

Partial programs have several useful properties:

1. By construction, the function applications σi(fi) are ordered
such that p can be executed in the usual sense, that is, operands
are only used as input to a function after they have computed.
This can be seen as follows: Let ti−1

σi(fi)−−−−→ ti be a function
application in a partial program. σi is a match of tfi in ti−1, and
according to Def. 4.5, σi can only map to constants in Σ(0). The
constants in ti−1 are either constants that already appeared in
t0, that is, they are part of the input of the program, or they are
the result of a previous function application σj(fj) with j < i. In
addition, since ε provides a fixed mapping of operands to their
values, p is in static single assignment (SSA) form.

2. For all programs t0
p−→E tk, it holds that ε(t0) = ε(tk), that

is, the input and output expressions have the same value. The
reason is that for all function applications s σ(f)−−−→ t, ε(s) = ε(t)
holds, and for all expressions s and t, s ≈E t implies ε(s) = ε(t).
Thus, if the output expression tk is a constant (tk ∈ Σ(0)), then
p fully computes the input expression t0, that is ε(ck) = ε(t0).

3. Since the input and output of a partial program t0
p−→E tk

are fully specified by t0 and tk, partial programs can be con-
catenated as follows: Let t0

p1−→E tl and t ′l
p2−→E tk be partial

programs with tl ≈E t ′l. Their concatenation results in a partial
program t0

p1p2−−−→E tk, where p1p2 denotes the concatenation of
the sequences p1 and p2.

As a consequence of 1. and 2., programs are correct by construction.
Unfortunately, programs can have an infinite length. As an example,

let g ∈ Σ(1) be a unary function, E = {x ≈ g(g(x))}, and f ∈ F be a
function with tf = g(x). In this case, there is a partial program

g(a)
b=g(a)−−−−−→ b ≈E g(g(b))

a=g(b)−−−−−→ g(a)
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which can be repeated infinitely often.
Since the goal is to find a program that is in some way optimal, we

define a cost function on programs.

Definition 4.8 (Cost Function). Let C be a totally ordered set. A cost
function is a function cost : P(F)→ C. �

The requirement that C is a totally ordered set is necessary to ensure
that the cost of all programs is comparable.

Finally, we can define the problem of finding an optimal program
that computes a given input expression.

Definition 4.9 (Optimal Program Generation (OPG)). Given an ex-
pression t0 ∈ T(Σ,∅), a cost function, a set of Σ-identities E, and a set
of kernel functions F, Optimal Program Generation is the problem of
finding a program t0

p−→E tk ∈ P(F) with tk ∈ Σ(0) that minimizes
cost(t0

p−→E tk). �

Instead of an optimization problem, this problem can also be stated
as a decision problem by choosing a fixed cost c and asking whether
a program exists with cost(t0

p−→E tk) 6 c. A solution trivially exists
if for every function f ∈ Σ(n) there is one function f ′ ∈ F with
tf ′ = f(x1, . . . , xn). If there are no other functions in F and E is empty,
then the solutions only differ in the order of function applications,
and in whether or not common subexpressions are computed more
than once. Multiple solutions may exists either if there are additional
kernel functions in F, and/or if E is not empty.

It should be noted that the Def. 4.9 is a very basic definition of the
problem. In Sec. 4.6.5, we present a number of extensions that are used
in Linnea.

4.6.3 Complexity

Due to its generality, many different types of problems can be for-
mulated as an instance of OPG. In this section, we show that OPG is
NP-complete already with relatively simple algebras. Specifically, we
show that an algebra with two binary functions, out of which one is
associative and commutative, is sufficient for NP-completeness. In the
following, we refer to this variant of OPG as OPGAC.

We prove that OPGAC is NP-complete by reduction from Ensemble
Computation (EC) [46, Problem PO9], which is known to be NP-
complete. By showing that for every instance of EC there is an equiva-
lent instance of OPGAC, we show that OPGAC is at least as difficult as
EC. The definition of EC is provided below.

Definition 4.10 (Ensemble Computation). Let C = {Ck ⊆ A | k =

1, . . . ,n} be a collection of subsets of a finite set A, and Ω be a positive
integer. Is there a sequence ui = si ∪ ti for i = 1, . . . ,ω, ω 6 Ω, where
si and ti are either {a} for some a ∈ A, or uj for some j < i and
si ∩ ti = ∅, such that for all Ck ∈ C there is a ui = Ck? �
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The idea of EC is to construct a collection of subsets Ck of a set A
with as few binary unions as possible. For those unions, one either
has to use singleton sets {a} with a ∈ A, or intermediate results from
previous unions. An instance of EC (left) and its solution (right) is
shown below:8

A = {a1,a2,a3,a4} u1 = {a1}∪ {a2} = C1
C = {{a1,a2}, {a1,a2,a3}, {a2,a3,a4}} u2 = {a2}∪ {a3}
Ω = 4 u3 = {a1}∪ u2 = C2

u4 = {a4}∪ u2 = C3

For the proof of NP-completeness, we use a Σ-algebra that allows
for a straightforward translation of instances of EC to instances of
OPGAC. Specifically, we use a Σ-algebra B with two binary operations
Σ(2) = {∪, c}, where ∪ is the union of two sets, and c is an unspecified
function that is used to represent the enclosing set C in the input. E
contains the three Σ-identities

x∪ y ≈ y∪ x
x∪ (y∪ z) ≈ (x∪ y)∪ z
c(c(x,y), z) ≈ c(x, c(y, z)).

It should be noted that associativity of c is not required for the proof;
c is only defined to be associative here because it simplifies the con-
struction of the input expression t0. The set of kernel functions F

contains two functions: 1) f(x,y) with tf = x ∪ y and the constraint
that x∩ y = ∅, and 2) g(x,y) with tg = c(x,y). The cost of a program
is given by the number of applications of f. Since c is only used to
represent C, g does not contribute to the cost. Thus, formally the cost
of a program t0

p−→E t is defined as

cost
(
t0

p−→E t
)
:=
∑

σ(h)∈p

cost(σ(h))

with

cost(σ(h)) :=

1 if h = f

0 if h = g
.

Finally, OPGAC is defined as a decision problem, that is, the goal is to
determine whether or not a program exists with cost(t0

p−→E t) 6 Γ .

Theorem 4.1. OPGAC is NP-complete.

Proof: For each instance of EC, an equivalent instance of OPGAC is
obtained as follows. For all ai ∈ A, let there be a {ai} ∈ Σ(0). The
input expression t0 is constructed as t0 = c(t1, . . . , tn) with tk =

8 This example was taken from [98].
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{a1} ∪ . . . ∪ {aj} for a1, . . . ,al ∈ Ck. Let Γ = Ω. A solution of OPGAC

can be verified in polynomial time by executing the output program
t0

p−→E t and checking that all sets Ck are computed, as well as
checking that cost(t0

p−→E t) 6 Γ . �

With this reduction, the instance of OPGAC that corresponds to the
instance of EC that is shown above is:

{{a1}, {a2}, {a3}, {a4}} ⊂ Σ(0)

t0 = c({a1}∪ {a2}, {a1}∪ {a2}∪ {a3}, {a2}∪ {a3}∪ {a4})
Γ = 4.

In the solution t0
p−→E t, the sequence p is

u1 = f({a1}, {a2})

u2 = f({a2}, {a3})

u3 = f({a1},u2)

u4 = f({a4},u2)

u5 = g(u1,u3)

t = g(u5,u4).

with ε(u1) = C1, ε(u3) = C2, and ε(u4) = C3.

remarks Instead of using c to represent the collection of sets C, for
the input expression t0 one could also use a sequence of assignments
with one assignment for every Ck, or a tuple of expressions with one
expression for every Ck. Here, c is used to show that a sequence of
assignments is not necessary for OPGAC to be NP-complete; a single
input expression is sufficient. In addition, instead of ∪, many other
binary associative-commutative operations could be used, for example
scalar multiplication or addition, or the addition of matrices or vectors.

4.6.4 Program Generation via Graph Search

In Linnea, OPG is solved with a graph search. In the following, the
search graph is defined in terms of the formalism introduced in this
section: The nodes of the graph are equivalence classes of expressions,
and there is an edge between two classes [s]≈E and [t]≈E if there is a
f ∈ F with s σ(f)−−−→ t. Finding a program that is optimal according to a
given cost function is equivalent to finding the shortest path in this
graph from the root node to a node with t ′ ∈ [t]≈E and t ′ ∈ Σ(0).

Definition 4.11 (Program Graph). Given an expression t0 ∈ T(Σ,∅),
a set of Σ-identities E, and a set of kernel functions F, a program
graph G(t0,F) is a tuple (V ,E) with V ⊆ {[t]≈E | t ∈ T(Σ,∅)} and
E ⊂ V × S×F× V such that

1. V = {[t0]≈E}∪ {[t]≈E | there is a program t0
p−→E t ∈ P(F)}, and
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2. E = {([s]≈E ,σ, f, [t]≈E) | there is a program s
σ(f)−−−→ t ∈ P(F)}. �

Given an expression t0 and a set of kernel functions F, G(t0,F) con-
tains all possible programs consisting of functions in F that compute
t0. Since there can be programs t p−→E t, the graph can contain loops.

If F and E are large, for some input expression t0 the graph G(t0,F)
might be so large that it is infeasible to fully construct it. In those cases,
as done in Linnea, the only feasible approach might be to construct
only parts of the graph during the search either until a sufficiently
good solution is found, or until a time or memory limit is reached.

In order to be able to use standard graph search algorithms, it is
useful to require that the cost function satisfies the property that for
any two programs t0

p1−→E tl and t ′l
p2−→E tk with tl ≈E t ′l it holds

that

cost
(
t0

p1−→E tl
)
+ cost

(
t ′l
p2−→E tk

)
= cost

(
t0

p1p2−−−→E tk
)

.

Without this property, it might be necessary to enumerate all paths
in a graph to find the optimal solution. Again, in many cases the
exhaustive enumeration might be infeasible because the number of
paths is exponential in the size of the graph.

merging The use of equivalence classes as nodes allows for a
compact representation of a large number of programs. However, it
also requires to identify whether or not two expressions s, t ∈ T(Σ,∅)

belong to the same equivalence class, that is, it is necessary to decide
if s ≈E t holds. This problem is known as the ground word problem,
and it is in general undecidable [5, p. 59]. As described in Sec. 4.2,
in Linnea a normal form is used to decide if two expressions are
equivalent: Given two expressions s and t together with their normal
forms s ′ and t ′, s ≈E t can be decided with the syntactic comparison
s ′ = t ′. However, as mentioned in Sec. 4.2, in Linnea it is possible that
this procedure fails because in some cases two equivalent expressions
have different normal forms s ′ 6= t ′. Fortunately, if two expressions
cannot be correctly identified as equivalent, this only has the effect that
an opportunity for merging nodes is missed and the graph becomes
larger than necessary; the correctness of the generated programs is
not affected.

An important aspect in the identification of equivalent expres-
sions is the use of unique intermediate operands as described in
Sec. 4.2.1. That is, given an input expression t0 with a subexpres-
sion t = t0|p, and two function applications σ1(f1) and σ2(f2) with
ε(t) = ε(σ1(f1)) = ε(σ2(f2)), the goal is to ensure that σ1(f1) = σ2(f2).
While this property is not required by Def. 4.5, it is useful to increase
the number of expressions that can be identified as equivalent and
consequently reduce the size of the search graph.
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4.6.5 Extensions

The formalism presented in this section can be extended in several
ways. In the following, some extensions which are used in Linnea are
discussed.

factorizations Kernel functions as defined in Def. 4.5 cannot be
used to represent matrix factorizations. The reason is that instead of a
single output operand, factorizations produce an output expression
that may contain more than one output operand. For instance, the
symmetric eigenvalue decomposition produces an output expression
ZWZT that contains two output operands W and Z. Factorizations
can be incorporated into the formalism presented in this section by
defining a second type of functions that have an output expression
and produce multiple output operands. In case of the symmetric
eigenvalue decomposition, this output expression is YXYT , and the
factorization function produces as output the tuple (W,Z). A substitu-
tion τ = {X 7→ W, Y 7→ Z} is used to construct the output expression
ZWZT .

Definition 4.12 (Factorization Function). Let Σ be a signature, ε be
an evaluation function ε, and tf ∈ T(Σ,X) be an expression with
Var(tf) = {x1, . . . , xn}. A factorization function is a function f : Σ(0) →
(Σ(0))n with one input argument x.

Given a substitution σwith Dom(σ) = {x}, an output tuple σ(f(x)) =
(t1, . . . , tn), and a substitution τ = {x1 7→ t1, . . . , xn 7→ tn}, it holds
that ε(σ(f(x))) = ε(τ(tf)). �

When a factorization function is applied to an expression s at po-
sition p with s|p = σ(x), the resulting expression is constructed as
t = s[τ(tf)]p.

Instead of defining factorization functions separately from kernel
functions, it would also be possible to define more general kernel func-
tions that also cover factorizations by allowing for an input expression
tin
f , an input expression tout

f , and an arbitrary number of both input
and output operands.

sequences of assignments Instead of using an expression as
input, it is also possible to generate programs that compute a sequence
of assignments. In such a sequence, there can be dataflow between
assignments, that is, the left-hand side of an assignment can be appear
in the right-hand side of a subsequent assignment. All operands
that do not appear on the left-hand side of an assignment are input
operands whose value is known. Since constants in Σ(0) represent
unique mathematical objects, their value cannot change. As a result,
repeated assignments to the same constant are not possible. Sequences
of assignments can be defined as follows:
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Definition 4.13 (Sequence of Assignments). A sequence of assignments
is a tuple of the form (l1 := r1, . . . , ln := rn), with li ∈ Σ(0), ri ∈
T(Σ,∅), and ε(li) = ε(ri) for all i. In addition, we require that

1. for all i, j with i 6= j, li 6= lj holds, and

2. for all i, li does not appear in any rj with j 6 i. �

Requirement 1. ensures that there is at most one assignment to
a given constant, while 2. ensures that the left-hand side of an as-
signment is not used before the assignment. In addition, in a partial
program, a constant c = li that appears inside rj with j > i can only
be used as input to a function f ∈ F if ri ∈ Σ(0), that is, once the
right-hand side of the assignment to li has been fully computed. A
program t0

p−→E tk fully computes the input expression t0 if in tk,
ri ∈ Σ(0) holds for all i.

If dataflow between different assignments is not required, as a
simpler alternative to a sequence of assignments, it would also be
possible to use a tuple of expressions.

common subexpressions There are different ways to incorpo-
rate common subexpression elimination into the presented approach:

1. As mention above, if for a function f and an expression s there
are multiple positions pi with s|pi = σ(tf), it is possible to
replace all occurrences of σ(tf) with σ(f) during a single function
application.

2. In a sequence of assignments, it is possible to extract common
subexpressions into separate assignments. This approach is im-
plemented in Linnea (Ch. 8).

3. In a program with σi(fi) = σj(fj) where j > i, it is possible to
remove the second, redundant function application σj(fj).

rewriting as generation steps In Linnea, instead of increas-
ing the number of different representations that expressions are rewrit-
ten to, it proved to be useful to implement the exploration of some
types of representations as generation steps. Recall that given a node
[t]≈E in a graph G(t0,F), different representations are considered dur-
ing the application of kernel functions by first rewriting t into another
expression s with s ≈E t. Instead, it is also possible to add a new node
[s]≈E to the graph with an edge from [t]≈E to [s]≈E . If expressions
are always correctly identified as equivalent, this approach leads to
nodes with self-loops because t ≈E s and consequently [t]≈E = [s]≈E .
However, if the algorithm that is used to decide t ≈E s fails for t and s,
this approach allows the graph search algorithm to directly influence
how different representations of expressions are explored. In Linnea,
this approach is used for common subexpression elimination (Ch. 8)
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and the application of those tricks that do not apply any kernels
(Sec. 7.5); technically, both are cases of rewriting expressions. However,
by extracting subexpressions into separate assignments, expressions
are rewritten in a way such that t and s are not identified as equivalent.
As a result, common subexpression elimination and the application
of tricks can be implemented as generation steps. Since the extraction
of subexpressions into separate assignments is not undone by the
conversion to normal form, the changes that are applied by those two
steps are preserved in the subgraph that originates at the node [s]≈E .

4.7 conclusion

While on a high level, the structure of Linnea is similar to that of
traditional compilers, the application of optimizations is quite dif-
ferent. In traditional compilers, the optimizations are applied on an
intermediate representation; both the input and the output of a given
optimization is in the intermediate representation. The translation of
the abstract syntax tree to the intermediate representation happens
in a separate step. In Linnea, the majority of the optimizations take
place in the generation steps, that is, during the translation from a
symbolic expression, which can be seen as the abstract syntax tree, to
a sequence of kernels (the intermediate representation).

Even though the application of optimizations works differently, just
like other compilers, Linnea is affected by the phase ordering problem;
the problem of ordering the optimizations in a way that results in
the best code [127]. In Linnea, we address this problem with a search;
the graph search explores different orderings of the generation steps
(the optimizations). The cost function is used to guide this search
towards good solutions. This approach is influenced by search-based
approaches used in the field of artificial intelligence [111, Ch. 3].
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A P P L I C AT I O N O F K E R N E L S

The application of kernels is a central part of the algorithm generation
in Linnea. The problem statement is rather simple: Given a sequence
of assignments and a set of patterns that describe operations that can
be computed with kernels, the task is to find subexpressions in the
assignments that can be computed with the available kernels. As an
example, consider application problem a.6:

X10 := L10L
−1
00

X20 := L20 + L
−1
22 L21L

−1
11 L10

X11 := L
−1
11

X21 := −L−122 L21

For the purpose of this example, we only look at one operation which
can be computed with the TRSM kernel: BA−1, where A is lower
triangular. Pattern matching as provided by MatchPy [83] is used to
find all subexpressions that can be computed by this operation. In this
case, there are two matches; L10L−100 and L21L−111 . For each match, a
kernel call is generated; for L10L−100 , the kernel call is M1 ← L10L00,
where M1 is the intermediate operand that represents the result of this
operation. In addition, in the original sequence of assignments, the
subexpression L10L−100 is replaced with M1, originating a new node in
the search graph. This new node containing the assignments

X10 :=M1

X20 := L20 + L
−1
22 L21L

−1
11 L10

X11 := L
−1
11

X21 := −L−122 L21.

The edge from the node containing the original assignments to this
new node is annotated with M1 ← L10L00. The same is done for the
subexpression L21L−111 . At this point, the graph contains three nodes
and two edges.

With the exception of Sec. 5.1, in the remainder of this chapter, a
number of aspects are discussed that are relevant for the application
of kernels either to decrease the generation time or to increase the
quality of the generated algorithms. The application of factorizations is
discussed in Sec. 5.7. Since factorizations are in several ways different
from other kernels and thus require a separate treatment, for the
remainder of this chapter, when we refer to kernels, this explicitly
excludes factorizations.
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5.1 representation of kernels as patterns

Most BLAS and LAPACK kernels can compute relatively complex
operations. For instance, the GEMM kernel can compute the opera-
tion α op(A) op(B) + βC, where op is either the identity function or
transposition. Intuitively, it is clear that such complex kernels can also
be used to compute simpler operations. For example, by setting α = 1

and β = 0, and choosing the identity function for both occurrences of
op, this kernel computes the much simpler operation AB. However,
in MatchPy, the different operations that can be computed with the
GEMM kernel cannot be described in a single pattern: MatchPy does
not support optional operations as described with op, and it is not able
to identify that a product M1M2 can be computed with the operation
αAB+ βC if α = 1 and β = 0.1 In order to solve this problem, from
the description of kernels (see App. b), one pattern is generated for
every operation that can be computed with a given kernel.2 As an
example, for the GEMM kernel, 24 different patterns are generated, for
all possible combinations of 1) the identity function or transposition
in place of op, 2) optionally setting α to 1, and 3) optionally setting
β to 0 or 1. For kernels such as TRSM which have input operands
that can have different properties, separate patterns are generated for
each property. Since MatchPy uses many-to-one matching algorithms,
the large number of patterns does not significantly affect the cost of
pattern matching.

The patterns that represent kernels have the constraint that variables
can only match a single operand. For the pattern XY of the GEMM
kernel, σ = {X 7→ A, Y 7→ B} is for example a valid match, while
σ = {X 7→ A, Y 7→ BT + C} is not. This constraint ensures that an
expression, in this case BT +C, is not used as input to a kernel before
it has been computed. As a side effect of this constraint, a pattern
such as XY is not sufficient to find all subexpressions that match this
operation. For instance, there is no match for XY in the product ABC,
even thought both AB and BC can be computed with this operation.
The reason is that since X and Y only match single operands, the
remaining operands C and A, respectively, are not matched by any
variable. As a result, a pattern that should also match AB and BC in
ABC needs additional variables. To solve this problem, instead of XY
one can use the pattern t = c∗1XYc

∗
2, where c∗1 and c∗2 are sequence

variables that match an arbitrary number of operands (including zero).

1 Pattern matching in Mathematica supports default values, as well patterns involving
alternatives which could be used to describe operations containing op [110]. Those
features are not supported yet by MatchPy.

2 Those patterns are the patterns tf of the kernel functions defined in Def. 4.5.
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We refer to those variables as context variables. There are two matches
of t in ABC:

σ1 = {c∗1 7→ (),X 7→ A, Y 7→ B, c∗2 7→ (C)}

σ2 = {c∗1 7→ (A),X 7→ B, Y 7→ C, c∗2 7→ ()}

In commutative operations such as addition, one context variable is
sufficient to match the remaining operands. As an example, consider
the AXPY kernel that computes αX+ Y. In the expression A+ 2B+

C+D, there are three matches for the pattern αX+ Y + c∗ with the
sequence variable c∗:

σ1 = {α 7→ 2,X 7→ B, Y 7→ A, c∗ 7→ (C,D)}

σ2 = {α 7→ 2,X 7→ B, Y 7→ C, c∗ 7→ (A,D)}

σ3 = {α 7→ 2,X 7→ B, Y 7→ D, c∗ 7→ (A,C)}

Since in some cases, patterns without context variables are sufficient
to find all subexpressions that can be computed with a kernel,3 for
every kernel one pattern with context variables and one without is
generated.

5.2 avoiding diamonds

Except for very simple linear algebra problems, the number of appli-
cable kernels is typically very large and contributes significantly to
the size of the search graph. In addition, in larger problems, there
are usually many kernels that can be applied independently of one
another. For instance, in the assignment X20 := L20 + L−122 L21L

−1
11 L10,

since the subexpressions L−122 L21 and L−111 L10 do not overlap, kernels
that compute those subexpressions can be applied independently of
one another and in any order. This phenomenon is the primary cause
of diamonds in the search graph (see Sec. 4.2.4). Consequently, the
number of diamonds can be reduced by limiting the number of kernels
that can be applied independently of one another. This is achieved
by applying kernels only to the right-hand side of one assignment
at a time. Specifically, only the first non-terminal assignment is used.
The underlying idea is that kernels which are applied in different
assignments are always independent of one another, which means
that they cause diamonds. In addition, this approach guarantees that
output operands are never used in subsequent computations before
they are computed. As an example, in the expression

X := AB

Y := X+C,

3 Context variables are not necessary for the generalized matrix chain algorithm
(Sec. 5.6.2). The reason is that in this algorithm, all patterns and subjects are products
of two operands.
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if a kernel is applied to X+C before AB, the resulting sequence of
kernels

Y ← X+C

X← AB

does not correctly compute the input expression. Such incorrect se-
quences are avoided by limiting the application of kernels to the first
non-terminal assignment.

5.3 explicit transposition and inversion

In order to ensure that Linnea can generate code for every possible
input expression, including ones such as X := AT or X := L−1, kernels
for the explicit transposition and inversion of a matrix are necessary.4

However, if it is avoidable, those kernels should not be used: Instead
of explicitly computing the transpose of a matrix, if possible this trans-
position should be performed with a kernel that allows for transposed
input arguments, such as GEMM or TRSM. The reason is that with the
combined transposition, an intermediate operand is avoided and the
transposition is performed by changing how the operand is accessed.
Explicit inversion should be avoided not only because it is slow, but
also because it is numerically less stable than solving a linear system
[65, Sec. 13.1].

While there are few cases where explicit transposition or inversion
is necessary to find a solution, the respective kernels can be applied
whenever an expression contains the transposition or inversion op-
erator. As a result, without leading to better solutions, those kernels
have the potential to significantly increase the size of the search space.
For this reason, kernels for the explicit transposition and inversion are
only applied if no other kernels can be applied to the right-hand side
of a given assignment. This approach ensures that those kernels are
only applied if they are necessary to find a solution.

5.4 transposed kernels

Many BLAS and LAPACK kernels allow some input arguments to be
transposed; however, this is usually not the case for all arguments. For
instance, the TRSM kernel can compute the operations α op(A−1)B

and αB op(A−1), where A is triangular and the function op is either
the identity function or transposition. Thus, while A can optionally be
transposed, this is not possible for B. As a result, by itself this kernel
is not sufficient to compute the expression L−1MT

1 , where L is lower

4 Since the explicit inversion of most matrices is computed by means of a factorization,
kernels for the explicit inversion of diagonal and triangular matrices are sufficient for
computing every input expression (see also Sec. 5.7).
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triangular. There are two alternatives: The first one is to compute
X1 ←MT

1 and then apply the TRSM kernel to L−1X1:

X1 ←MT
1

X← L−1X1

The second alternative is to use the TRSM kernel to compute X2 ←
M1L

−T , which is the transpose of L−1MT
1 . In the following, this is

called the application of a transposed kernel. To obtain the result of
L−1MT

1 , it is still necessary to transpose X2:

X2 ←M1L
−T

X← XT2

There are however situations where the application of a transposed
kernel allows to avoid an explicit transposition, because the trans-
position can be combined with another operation. One such case is
the expression L−1MT

1M2, where M2 has more columns than rows.
Because of the shape of M2, the optimal parenthesization for this
expression is (L−1MT

1 )M2. As in the previous example, with this
parenthesization there are two alternatives: The first alternative is to
explicitly transpose MT

1 , followed by a one call to TRSM and GEMM,
respectively. The sequence of kernels is the following:

Y1 ←MT
1

Y2 ← L−1Y1

Y ← Y2M2

In the second alternative, the explicit transposition is avoided by
applying the transposed TRSM kernel, and making use of the fact that
GEMM supports transposed input arguments:

Y3 ←M1L
−T

Y ← YT3M2

In Linnea, the application of transposed kernels is supported as
follows: In the description of kernels, it is possible to specify that
for a given kernel, in addition to the original, unmodified patterns,
transposed patterns have to be generated (see App. b.1). As an exam-
ple, the original and transposed patterns for the TRSM kernels are
shown in Tab. 5.1. During the application of kernels, the transposed
patterns are used in the same way as the original ones, with the ex-
ception that whenever a match is found, the subexpression that is
computed is replaced with a transposed intermediate operand. For
instance, in L−1MT

1M2, when L−1MT
1 is computed with the kernel

call Y3 ← M1L
−T , the subexpression L−1MT

1 is replaced with YT3 ,
resulting in YT3M2.
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Table 5.1: Original and transposed patterns for the TRSM kernel (ignoring
α).

Pattern Parameters

Original Transposed side transA

A−1B BTA−T L N

A−TB BTA−1 L T

BA−1 A−TBT R N

BA−T A−1BT R T

Alternatively, the same effect as with the application of transposed
kernels could also be achieved by pushing up the transposition op-
erator, similar to how the inversion operator is pushed up when
rewriting expressions (see Sec. 7.1.4). For instance, in the example
above, the expression L−1MT

1M2 is effectively computed as rewritten
to (M1L

−T )TM2. The former expression can be rewritten into the
latter by first introducing the transposition for L, and then pushing up
the transposition of L and M1:

L−1MT
1M2 =

(
L−T

)T
MT
1M2 =

(
M1L

−T
)T
M2

The disadvantage of this approach is that it requires to introduce
the transposition operator for operands that were previously not
transposed. Doing this systematically would significantly increase the
number of possible alternative representations of expressions. For this
reason, in Linnea the application of transposed kernels is achieved
through the generation of transposed patterns as described above,
which is more targeted than pushing up the transposition.

5.5 selection of optimal kernels based on properties

Since BLAS and LAPACK offer specialized kernels for matrices with
certain properties, many expressions can be computed with several
different kernels. In Linnea, this is exacerbated by the additional code
snippets for operations not supported by BLAS and LAPACK. The
problem is illustrated well by the product DL, where both matrices
are square, D is diagonal, and L is lower triangular. This product can
be computed by the following kernels:

1. GEMM; D and L are treated as full matrices.

2. TRMM with side = R and uplo = L; D is treated as a full matrix.

3. TRMM with side = L and uplo = L; L is treated as a full matrix,
D as a lower triangular matrix.
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4. TRMM with side = L and uplo = U; L is treated as a full matrix,
D as an upper triangular matrix.

5. SYMM with side = L; L is treated as a full matrix, D as a sym-
metric matrix.

6. The code snippet for the product of a diagonal and a full matrix;
L is treated as a full matrix.

Intuitively, it is clear that such an expression should not be computed
with the overly general GEMM kernel, but instead with a kernel
that is more specific to the properties of D and L. This intuition
is based on the observation that kernels which make use of more
specific properties usually perform fewer FLOPs. The TRMM kernel
for instance performs half the number of FLOPs of a GEMM. As a
result, specialized kernels are usually faster than more general ones.

In Linnea, we can make use of this intuition to pre-select kernels
purely based on properties, without the evaluation of the cost function.
Instead of generating a new successor for every kernel that computes
a given subexpression, we only generates successors for those kernels
that make use of the most specific properties. This approach has
several advantages: It reduces the number of successors per node,
which in turn decreases the size of the search graph and speeds
up the algorithm generation. In addition, the number of suboptimal
algorithms is reduced. When the current cost function is replaced with
one that is more expensive to evaluate, the pre-selection based on
properties allows to reduce the number of expensive evaluations of
the cost function. Finally, once Linnea will be extended to support
variable operand sizes, this approach will make it possible to compare
different kernels that might be difficult to compare otherwise.

The idea is to make use of the partial order on properties, which is
shown in Fig. 6.1, that follows from the special-case relationship of
properties: For each operation, a tuple of sets of properties, in the fol-
lowing called property tuple, is constructed. Each set in a property tuple
corresponds to the constraints of one argument.5 As an example, for
the TRSM kernel that computes A−1B, where A is lower triangular, the
property tuple is ({lower triangular, square},∅). For the GEMM kernel
that computes αATB, the property tuple consists of three empty sets:
(∅,∅,∅).6 In order to determine which property tuple represents the

5 For the property tuple, only those arguments of a kernel are considered that appear
in the operation that is computed. As an example, consider two operations that can
be computed with the GEMM kernel: The property tuple for the operation αAB+βC

has five elements, while the tuple for the operation AB (alpha = 1 and beta = 0)
has only two.

6 Constraints regarding the type of an argument, that is, whether it is a matrix, vector,
or scalar, are not included in the property sets because they are already used as a
special kind of constraint on the variables. Specifically, those constraints do not check
properties as discussed in Ch. 6, but instead whether a matched expression object is
an instance of the Matrix, Vector, or Scalar class.
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most specific kernel, the partial order on properties is first extended to
sets of properties, and then to tuples of sets of properties. The kernels
that make use of the most specific properties can then be identified by
the tuples that are minimal according to the partial order.Given a subset S of a

partially ordered set,
a minimal element
s ∈ S is an element

that is not greater
than any other

element in S. A
subset S can have
multiple minimal

elements.

During the application of kernels, the property tuples are used to
pre-select kernels as follows: The many-to-one matching algorithms in
MatchPy allow to return matched patterns in groups; a group consists
of all structurally identical patterns that only differ in the constraints.
For instance, one group contains all matches for patterns of the form
AB, regardless of whether they belong to GEMM, TRMM, SYMM, or
a code snippet for the multiplication of a diagonal and a full matrix.
Among all matches in a group, considered are only the ones where
the property tuples are minimal elements of the set of property tuples
for those matches. Intuitively, a kernel is only used if there is no other
kernel that is more specific. If there are multiple minimal property
tuples, the cost function is used to select the cheapest kernel.

5.5.1 Extension of Partial Order to Property Tuples

For the extensions of the partial order on properties to sets of proper-
ties, it is first necessary to define how sets of properties are represented.
Due to the relationships between different properties, most properties
and combinations of properties can be represented by several different
sets. As an example, since diagonal is a special case of both upper trian-
gular and lower triangular, and a matrix that is both upper and lower
triangular has to be diagonal, the following sets all represent the same
mathematical property:

{diagonal, lower triangular, upper triangular}

{lower triangular, upper triangular}

{diagonal, upper triangular}

{diagonal, lower triangular}

{diagonal}

In order to allow for a concise definition of the partial order on sets of
properties, it is useful to require that sets of properties are represented
in a canonical form. There are two natural choices for such a canonical
representation: A minimal representation that does not contain any
redundant properties, and a maximal representation that contains all
redundant properties. In the example above, the first set is maximal,
and the last set is minimal. Since the property sets are derived from
the property constraints in the description of kernels, and the minimal
representation is usually more natural for humans, we decided for the
minimal representation.

A property set S1 is considered more specific than a property set S2
if S1 contains more specific properties than S2 and/or if S1 contains
additional properties that are not contained in S2.
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Definition 5.1 (Property Set Order). Let S1, S2 be property sets in
minimal canonical form. S1 is more specific than or equal to S2 (S1 6
S2) if for every p2 ∈ S2, there is a p1 ∈ S1 with p1 6 p2. �

Example 5.1. Let

S1 = {symmetric, diagonal}

S2 = {square, lower triangular}

S3 = {SPD, diagonal}

S4 = {SPD}

It holds that S1 6 S2 because symmetric is more specific than square,
and diagonal is more specific than lower triangular. S3 6 S4 since the
only property in S4, SPD, is also in S3. S1 and S4 are not comparable:
S1 6 S4 does not hold because neither symmetric nor diagonal is more
specific than SPD, nor does S4 6 S1 because SPD is not more specific
than diagonal. This is consistent with the observation that there are
symmetric, diagonal matrices that are not SPD, and SPD matrices that
are not diagonal. �

The partial order on sets of properties is extended to property tuples
with a product order, that is, a tuple T1 is more specific than a tuple
T2 if every element in T1 is more specific than or equal to the element
at the same position in T2.

Definition 5.2 (Property Tuple Order). Let T1 = (S1, . . . ,Sn) and T2 =
(R1, . . . ,Rn) be tuples of property sets. T1 6 T2 if for all i = 1, . . . ,n,
Si 6 Ri. �

Example 5.2. Let DL be the expressions from the initial example,
where both matrices are square, D is diagonal, and L is lower trian-
gular. For this expression, the property tuples of all matching kernels
are the following:

1. GEMM: (∅,∅).

2. TRMM: (∅, {lower triangular, square}).

3. TRMM: ({lower triangular, square},∅).

4. TRMM: ({upper triangular, square},∅).

5. SYMM: ({symmetric},∅).

6. Code snippet: ({diagonal, symmetric},∅).7

The partial order on those tuples is shown in Fig. 5.1. The minimal
elements are {{diagonal, symmetric},∅} and {∅, {lower triangular, square}},

7 This is one of the cases where the minimal representation of property sets is some-
what unintuitive: The code snippet requires that the diagonal matrix has to be square.
However, since a square, diagonal matrix is also symmetric, and the property symmet-
ric is a special case of square, the minimal representation contains symmetric instead
of square.



72 application of kernels

(∅,∅)

({LT, SQ},∅) ({UT, SQ},∅) ({SYM},∅) (∅, {LT, SQ})

({DI, SYM},∅)

Figure 5.1: Partial order of the property tuples of all kernels matching the
expressionDL. Tuples towards the top are more general, tuples to-
wards the bottom more specific. Minimal elements are highlighted
in blue.

which respectively belong the code snippet for the multiplication of a
diagonal and a full matrix, and the TRMM kernel with side = R and
uplo = L. �

5.6 constructive algorithms

While the application of kernels with pattern matching as described
so far is sufficient to find good solutions, it has the disadvantage of ex-
ploring the potentially very large search space almost exhaustively. For
specific types of subexpressions, however, relatively good solutions can
be found without an exhaustive search. As an example, in expressions
with high computational intensity, different parenthesizations in sums
of matrices do not significantly affect performance. For products of
multiple matrices, on the other hand, different parenthesizations can
make a large difference, but there is no need to exhaustively generate
all of them. Instead, efficient algorithms exist that find the optimal
solution in terms of FLOPs to this so called matrix chain problem in
polynomial [49] and log-linear time [68, 69].

For those subexpressions, to find a first solution quickly, and to
increase the chances that this solution is relatively good, Linnea uses
specialized algorithms. In order to distinguish those algorithms from
the exhaustive application of kernels, we refer to them as constructive
algorithms. For sums, we developed a simple greedy algorithm. For
products, we developed a generalized version of the matrix chain
algorithm [7], which finds the optimal parenthesization for matrix
chains containing transposed and inverted matrices and considers
matrix properties.

5.6.1 Constructive Algorithm for Sums of Matrices

For this algorithm, as input we allow sums where all arguments
are matrices or vectors that can optionally be transposed and/or



5.6 constructive algorithms 73

multiplied with a single scalar. For instance, the sum A+αB+CT +

βDT is a valid input for this algorithm. In general, kernels for the
following three operations would be sufficient to compute those sums:
A+B, AT , and αA. However, since those sums are memory bound, is
it beneficial to also use kernels that combine those operations, such as
A+αB and A+BT .

For this algorithm, three sets of kernels are used: Addition kernels
compute a sum of two terms. Those terms can optionally be trans-
posed and/or multiplied with a scalar. Transposition kernels compute
operations of the form AT . Scaling kernels compute operations of the
form αA. All operands can have constraints regarding properties; for
this reason, there are multiple transposition and scaling kernels.

The algorithm performs three steps:

1. Pattern matching is used to to apply the first matching addition
kernel.

2. If in the previous step no matches were found, pattern matching
is used to apply the first matching transposition kernel.

3. If in the previous step no matches were found, pattern matching
is used to apply the first matching scaling kernel.

Those three steps are repeated until a sequence of kernels is found for
the entire sum.

Since addition kernels are applied first, and all other kernels are
only used if there are no matching addition kernels, kernels that
combine multiple operations are prioritized. Conversely, transposition
and scaling kernels are only used if they are necessary: There is for
example no kernel that computes αA+ βB. As a result, for such a
sum, it is necessary to first use a scaling kernel to either compute αA
or βB. However, only one term needs to be computed with a scaling
kernel; the remainder is computed with the AXPY kernel that allows
for one scaled term.

complexity In order to determine the complexity of this algorithm,
it is necessary to first determine the complexity of the three steps in
which the different sets of kernels are applied:

1. In MatchPy, pattern matching in commutative operations is done
in two steps [82]. In the first step, for every term in the input
operation, syntactic many-to-one pattern matching is used to
find matching terms of the patterns. The complexity of syntac-
tic many-to-one matching does not depend on the number of
patterns, but only on the size of the patterns [82], that is, the
number of nodes in the expression trees of the patterns, which
is fixed. As a result, the cost of the first step is O(n), where n
is the number of terms in the input sum. In the second step, a
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bipartite graph is constructed. The nodes of this graph are the
terms of the input sum, as well as the matching terms of the
patterns. The Hopcroft-Karp algorithm is then used to construct
a bipartite graph matching. The complexity of finding a first
graph matching is O(|V |2.5), where |V | is the number of nodes
[67]. As mentioned above, the number of nodes depends both
on the number of terms in the input sum, as well as on the
number of patterns. For the purpose of this algorithm, the latter
is constant. Thus, the complexity is O(n2.5).

2. Syntactic many-to-one pattern matching is used to find matches
of the transposition kernels. Again, the cost of pattern matching
is constant. In the worst case, it is performed O(n) times.

3. Scaling kernels are applied in the same way as transposition
kernels. Thus, the complexity of this step is again O(n).

In order to compute a sum with n terms, n− 1 binary addition ker-
nels are necessary; consequently, the three steps described above are
repeated n− 1 times. As a result, the overall complexity of the con-
structive algorithm for sums of matrices is O(n3.5).

5.6.2 Generalized Matrix Chain Algorithm

The content of this
section has been

published in [7]. It
was edited to avoid

repetitions and
ensure consistent
terminology and

notation.

Given a product of matrices M := A1A2 · · ·An where all matrices
are full, also called a matrix chain, the optimal parenthesization can
be computed efficiently with different algorithms (see Sec. 5.6.2.1).
However, in practice such matrix chains are rare. Instead, in most
matrix products, some matrices are transposed and or inverted, and
they frequently have properties. For such chains, finding an optimal
parenthesization is not sufficient to generate a sequence of kernels;
it is necessary to also select kernels to compute the operations that
appear. The selection of kernels is especially relevant because, unlike
in the original matrix chain problem, kernels that make use of different
properties have different costs, even if the operand sizes are the same.
We refer to the problem of finding an optimal sequence of kernels
for matrix chains that contain transposed and inverted operands as
well as properties as the Generalized Matrix Chain Problem (GMCP). In
order to quickly find good sequences of kernels for such products,
we developed the Generalized Matrix Chain (GMC) algorithm. This
algorithm builds on the original matrix chain algorithm, but extends
it to support transposed and inverted operands, as well as to make
use of matrix properties.

As input, the GMC algorithms accepts matrix chains of the form
M = t0 · · · tn−1, where ti is a matrix or a vector that can be transposed
and/or inverted. We use M[ij] to denote the product ti · · · tj, which
we also call sub-chain. If i = j, the chain consists of one single matrix
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and is denoted by M[i]. Since Linnea does not use kernels that solve
general linear systems8 (see Sec. 5.7), the GMC algorithm cannot be
applied to matrix chains that contain inverted matrices unless they are
triangular or diagonal. This requirement is specific to Linnea and not
a limitation of the GMC algorithm: It is not necessary if solvers for
general linear systems are used; this case is discussed in [7].

5.6.2.1 Related Work

The matrix chain problem is subject to a lot of research. The classic
algorithm to solve the matrix chain problem uses dynamic program-
ming and has O(n3) complexity, where n is the length of the chain [49].
The best known algorithm, by Hu and Shing, exploits the equivalence
between the matrix chain problem and the triangulation of polygons to
achieve O(n log(n)) complexity [68, 69]. A number of approaches take
parallelism into account, some using multiple processors to reduce the
time needed to find the solution (which will be evaluated on a sequen-
tial system) [18, 109, 124], while others find an ordering that is optimal
when the matrix chain is evaluated on a parallel system [88]. Nishida
et al. present a version for GPUs [101]. Additionally, both sequential
[21] and parallel [26] algorithms exist that find approximate solutions.
All the aforementioned algorithms deal with the basic problem of
multiplying matrices that are neither transposed nor inverted.

High-level languages such as Matlab and Julia, as well as libraries
such as Eigen and Armadillo allow to directly express instances of
GMCP, without explicit parenthesization. However, with the excep-
tion of Armadillo, such product are always evaluated from left to
right [108].9 Armadillo instead uses a simplified algorithm to solve
the matrix chain problem: For a chain ABCD, the parenthesization
(ABC)D is chosen if ABC is smaller in size than BCD. Otherwise,
A(BCD) is used. Similarly, for a chain ABC, either (AB)C or A(BC)
is chosen, depending on the sizes of AB and BC. Chains with more
than four matrices are broken down into chains of length n 6 4.
This happens in a deterministic way that depends on how expression
templates are constructed in Armadillo. Using this method, not all
parenthesizations can be found; (AB)(CD) is not possible. However,
parenthesizations found by this algorithm have the advantage that
they have good caching behavior: Every binary product uses the result

8 Since Linnea directly applies factorizations to inverted matrices with other properties,
this is not a limitation.

9 This can be easily tested by comparing the time necessary to evaluate M0 · · ·Mk−1x
and yM0 · · ·Mk−1, with Mi ∈ Rn×n, x ∈ Rn×1 and y ∈ R1×n.
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1 for l ∈ {1, . . . ,n− 1}:
2 for i ∈ {0, . . . ,n− l− 1}:
3 j := i+ l

4 for k ∈ {i, . . . , j− 1}:
5 c := 2 · sizes[i] · sizes[k+ 1] · sizes[j+ 1]
6 cost := costs[i][k] + costs[k+ 1][j] + c
7 if cost < costs[i][j]:
8 costs[i][j] := cost
9 solution[i][j] := k

Figure 5.2: Pseudocode of the matrix chain algorithm.

of the previous one. As an example, consider A((BC)D), which results
in the following sequence of kernels:

M1 := BC

M2 :=M1D

M3 := AM2

5.6.2.2 The Standard Matrix Chain Algorithm

The matrix chain problem can be elegantly solved with a dynamic
programming approach, both in a top-down and a bottom-up fash-
ion [25]. Here, we briefly explain the bottom-up version, as it is the
foundation for the algorithm presented in this section.

We use the chain X := ABCDE as an example. The algorithm pro-
ceeds by finding the optimal parenthesization for parts of this chain
of increasing length, using the optimal solutions for sub-chains. Let us
assume the algorithm already computed all solutions for sub-chains of
length up to three. The next step consists of computing solutions for
sub-chains of length four. M[0,4] = ABCDE has two such sub-chains,
M[0,3] = ABCD and M[1,4] = BCDE. Let us illustrate the step for
ABCD: There are three different ways to write this chain as a product
of two shorter chains, or, to put it differently, three ways to split M[0,3]
into M[0,k]M[k+1,3], namely for k ∈ {0, 1, 2}: A(BCD), (AB)(CD) and
(ABC)D. The algorithm assigns a cost to all those products, and stores
the best solution together with its cost. The cost for A(BCD) is the cost
of computing M[0,0] = A, plus the cost of M[1,3] = BCD, plus the cost
of the product of A and the result of BCD. The cost of M[0,0] is known
to be zero, and cost(M[1,3]) was already computed in a previous step
because the length of M[1,3] is three. The same is done for (AB)(CD),
(ABC)D, as well as all possible ways to split M[1,4]. At this point, the
algorithm uses all the results from the previous steps to find the best
way to express ABCDE as a product of two shorter parts.

The algorithm is shown in Fig. 5.2. The following arrays are used,
where solution and costs have size n×n, sizes is of size n+ 1:
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1 for l ∈ {1, . . . ,n− 1}:
2 for i ∈ {0, . . . ,n− l− 1}:
3 j := i+ l

4 for k ∈ {i, . . . , j− 1}:
5 expr := tmps[i][k] · tmps[k+ 1][j]
6 kernel := match(expr)
7 cost := costs[i][k] + costs[k+ 1][j] + kernel.cost
8 if cost < costs[i][j]:
9 tmps[i][j] := create_tmp(expr)

10 tmps[i][j].properties := infer_properties(expr)
11 kernels[i][j] := kernel
12 costs[i][j] := cost
13 solution[i][j] := k

Figure 5.3: Pseudocode of the GMC algorithm.

solution The entry solution[i][j] stores the integer k which specifies the
optimal split for M[i,j]. This array has the exact same role as the
s array in [25].

costs The value of costs[i][j] is the minimal cost for the computation
of the sub-chain M[i,j]. The entries costs[i][i] are initialized to
0, while all other fields are initialized with ∞. This array has
exactly the same role as the m array in [25].

sizes This array contains the operand sizes. sizes[0] contains the num-
ber of rows of M[0]. For i > 0, sizes[i] stores the number of
columns of M[i−1].

5.6.2.3 Extension to Unary Operators

In its standard version, the matrix chain algorithm only works with
binary, non-commutative operators. To extend it to unary operators,
we observe that compositions of binary and unary operators on two
operands can still be seen as (an extended set of) binary operators. In
fact, as long as it is possible to assign a cost to those compositions
of operations, the dynamic programming approach remains appli-
cable. The algorithm, however, becomes more complex because in
addition to the parenthesization, it also has to identify which kernels
can be applied and when. To solve this problem, the GMC algorithm
works on symbolic expressions. The pseudocode of the algorithm
is shown in Fig. 5.3. Instead of the one-dimensional array sizes, we
now use the n× n array tmps, which is used to store intermediate
operands representing sub-chains. In the following, consider the chain
M = A−1BCT as an example. tmps[i][j] contains the intermediate that
represents M[i,j]. The entry tmps[i][i] is initialized with the matrix
M[i]. For example tmps[0][0] is A−1. When the algorithm terminates,
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tmps[1][2] contains an intermediate M12 that represents BCT . The sym-
bols representing those operands are used to create the expressions
that have to be computed. For i = j = 0, k = 2, expr is the expression
tmps[0][0] · tmps[1][2] = A−1M12, which corresponds to the parenthe-
sization A−1(BCT ). New intermediates are created by the function
create_tmp (line 9), which creates an operand with a unique name
and correct sizes.

To select a suitable kernel, our algorithm relies again on pattern
matching as offered by MatchPy (line 6). The subset of kernels that is
used in the GMC algorithm is constructed automatically from the set of
all kernels available in Linnea by selecting those kernels that compute
operations of the form f1(A) · f2(B), with f being the transposition,
inversion, or the combination of both, and operands A and B. If more
than one kernel matches the target expression, the algorithm described
in Sec. 5.5 is used to select the best one.

Since the selection of kernels in the GMC algorithm uses the same
techniques as the remainder of Linnea, namely symbolic expressions
and pattern matching, the algorithm inherits some of Linnea’s features.
Specifically, the algorithm makes use of matrix properties (line 10; see
also Ch. 6) and supports all cost functions that satisfy the requirements
described in Sec. 4.5.

To store the solution, in addition to the solutions array—which
contains the information on the parenthesization—it is necessary to
also keep track of the kernel used for the operation. In the standard
matrix chain algorithm, this is not necessary because the kernel is
always the same. For this purpose, we introduce the n×n kernels array,
whose entry kernels[i][j] contains the kernel that is used to compute
the intermediate tmps[i][j]. In the end, the kernels are combined to the
solution sequence (see Sec. 5.6.2.5).

complexity The functions used in the GMC algorithm and their
complexity are described below. For considerations regarding the time
complexity, it is important to note that the size of the expression
tree representing expr is limited. The most complex expressions have
the form f1(A) · f2(B). Thus, those trees have at most five nodes and
three levels. The same is true for the size of the patterns, as kernels
that compute more complex expressions than f1(A) · f2(B) are not
applicable.

match The complexity of syntactic pattern matching with discrimi-
nation nets does not depend on the number of patterns and is
bounded by the size of the patterns, which in our case is constant.
It follows that the complexity of pattern matching is O(1).

create_tmp This function creates a symbolic intermediate matrix that
represents the result of computing M[i,j]. For example, for an
outer product abT , with a ∈ Rn and b ∈ Rm, an intermediate
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matrix T ∈ Rn×m will be created. This function creates a sym-
bolic object with a unique name and correct sizes. The size is
determined by traversing the expression tree, that is bounded in
its size by a constant, so this function is in O(1).

infer_properties Since the size of the expression trees is limited by a
small constant, this function has a complexity of O(p), where p
is the number of properties. Those properties are then also used
for the constraints of the patterns that represent kernels.

The loop body is executed O(n3) times, where n is the length of the
matrix chain (see [25]). Thus, the complexity of the entire algorithm
is O(n3 + n3p). This could be further reduced to O(n3 + n2p) by
inferring properties outside of the k loop only for the intermediate
that might be used in the solution.

completeness We stress that the GMC algorithm might deliver
a solution even if one or more sub-chains are not computable either
because no suitable kernel is found, or because the operation is not
allowed (see Sec. 4.4). Let us assume we are given the matrix chain
X := A−1B−1C, and no kernel is available that computes X−1Y−1,
so A−1B−1 can not be computed. In this case, the cost of comput-
ing A−1B−1 is considered to be ∞. However, this chain can still be
computed by solving two linear systems:

T := B−1C

X := A−1T .

In general, the GMC algorithm will find a solution if there is at least
one parenthesization such that all exposed binary operations can be
computed.

5.6.2.4 Additional Extensions

In Linnea, the GMC algorithm is extended with some additional
features which are described in the following. As explained there,
two of those extensions may prevent the algorithm from finding the
optimal solution. In Linnea, we use those extensions because their
benefits outweigh their shortcomings. In addition, since the GMC
algorithm is only used to find a first solution quickly, optimality is not
crucial.

decomposition of expressions The underlying idea of the
GMC algorithm that compositions of binary and unary operators on
two operands can be seen as an extended set of binary operators can
be taken even further: If there is no single kernel to compute a given
operation M[0,k]M[k+1,n−1], we use a much simplified version of the
search graph used in Linnea to decompose those expressions into a
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sequence of up to two unary operations and one binary operation.
With this extension, the kernels array may contain sequences of kernels.
While this extension does make the algorithm more expensive, it does
not affect its asymptotic complexity: The graphs have at most five
nodes, and pattern matching, which as discussed above has a constant
cost, is performed only once per node.

scalars While matrix multiplications is not commutative, scalars
in matrix products do commute. This includes subexpressions that
form scalars, for example inner products such as xTy and xTAy. It
is easy to see that the placement even of a single scalar in a matrix
chain can affect the optimal solution: Consider the chain αMD, with
M,D ∈ Rn×n, where D is diagonal. Both parenthesizations α(MD)

and (αM)D have the same cost of 2n2 FLOPs; n2 FLOPs for the
product of a full and a diagonal matrix, and another n2 FLOPs for
the multiplication of a full matrix with a scalar. By making use of
the commutativity of α and rewriting this chain to MαD, it can be
computed with n2 + n FLOPs: n FLOPs for the multiplication of a
diagonal matrix with a scalar, and again n2 FLOPs for the product of a
full and a diagonal matrix. In practice, whenever possible, operations
with scalars should be performed as part of compute bound operations.
However, since the resulting operations are ternary operations, as for
example GEMM that computes αAB, or TRSM that computes αA−1B,
they are not supported by the GMC algorithm. Even though the
solution might be suboptimal, the GMC algorithm can be applied to
matrix chains that contain scalars as long as there are binary kernels
for operations with scalars, for example αA.

transposed kernels It is possible to use transposed kernels (see
Sec. 5.4) in the GMC algorithm. If a transposed kernel is used, a trans-
posed intermediate operand is stored in the tmps array. Theoretically,
the use of transposed kernels can cause the algorithm to produce a
suboptimal solution. The reason is that the algorithm does not con-
sider the cost of computing the full chain if the last kernel (the kernel
stored in kernels[0][n]) is a transposed kernel; the cost of the remaining
transposition is not counted. Depending on the cost function, the cost
of computing the full chain, that is, including the final transposition,
might be higher than the cost of a different sequence that does not
end with a transposed kernel. Accounting for the cost of the final
transposition in the algorithm is not possible because it is not know if
this transposition will be computed as a single operation, or instead
as part of another kernel. If the transposition is computed as part of
another kernel, it usually does not negatively affect the solution for
the full expression.
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1 def construct_solution(i, j):
2 if i 6= j:
3 yield from construct_solution(i, solution[i][j])
4 yield from construct_solution(solution[i][j]+1, j)
5 yield kernels[i][j]

Figure 5.4: Function to construct the solution. yield and yield from behave as
the corresponding Python keywords.

5.6.2.5 Construction of the Solution

Retrieving the sequence of kernels that was identified as the optimal
solution is done by calling construct_solution(0,n− 1), where n is the
length of the chain. The function construct_solution is shown in Fig. 5.4.
The complexity of this function is O(n). The kernels are returned in an
order that respects dependencies. However, in some cases, kernel calls
can be reordered. This is for example the case for the chain (AB)(CD),
where AB and CD can be computed independently.

5.6.3 Limitations

As a tradeoff for finding solutions quickly, without the exploration
of a large search space, the constructive algorithms come with some
limitations. The first one is that both algorithms can only use a limited
set of kernels; neither algorithm can make use of kernels that combine
addition and matrix multiplication, such as the GEMM kernel that
computes AB+C, or SYR2K. This is not a limitation for Linnea since
those kernels are used during the exhaustive application of kernels
through pattern matching. The second limitation is that those algo-
rithms do not make use of common subexpressions. However, during
the construction of the search graph, the constructive algorithms are
applied both to expressions that still contain common subexpressions,
as well as to expressions where common subexpressions were elimi-
nated.

5.7 factorizations

Some parts of this
section have been
published in [8] and
[9].

In contrast to other languages and libraries, in the input, Linnea does
not distinguish between the explicit inversion of a matrix and the
solution of a linear system. Whenever possible, inversion is avoided
in favor of a linear system; matrices are explicitly inverted only if
this is unavoidable, for example in expressions such as A−1 + B.
Even though LAPACK offers kernels that encapsulate a factoriza-
tion followed by a linear system solve (e.g., GESV), Linnea ignores
those kernels and applies factorizations directly. For instance, the
expression X := A−1B is not computed with a single operation
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X← A−1B. Instead, the LU factorization is applied to A, resulting in
X := (PTLU)−1B. This expression is then simplified to X := U−1L−1PB

and computed from right to left. The motivation for the applica-
tion of factorizations is that it might enable other optimizations
which are not possible when using a ‘black box’ kernel such as
GESV. As an example, consider the generalized least squares problem
b := (XTM−1X)−1XTM−1y (example problem a.2). This problem can
be computed efficiently by applying the Cholesky factorization to
M, resulting in b := (XTL−1L−TX)−1XTL−1L−Ty. In this expression,
the subexpression XTL−1 or its transpose L−TX appears three times
and only needs to be computed once. If either XTM−1 or M−1X were
computed with a single kernel, this redundancy would not be exposed
and exploited. Furthermore, the use of the Cholesky factorization
allows to maintain the symmetry of XTM−1X.

Linnea uses the following factorizations: Cholesky, LU, QR, sym-
metric eigenvalue decomposition and singular value decomposition.
LDLT is currently not supported, because with the current LAPACK
interface, it is not possible to separately access L and D; they can only
be used in kernels to directly solve linear systems or invert matrices.

5.7.1 Application

The application of factorizations introduce several challenges that do
not exist with other kernels. Kernels which compute more or less
complicated operations can only be applied to matching subexpres-
sions. Since the factorizations used in Linnea only take one matrix
as input, they can be applied to every matrix in an expression that
has the required properties. As a result, the number of factorizations
that can be applied to a given expression is usually much larger than
the number of factorizations that can be expected to lead to a good
solution. As an example, consider the expression X := S−1A, where
S is SPD, and A is square and has full rank. Since S is SPD, all five
factorizations used in Linnea can be applied to it; three factorizations
can be applied to A. Considering that A does not have to be factored
to find a solution for this expression, there are 5 · 4 = 20 different
combinations of factorizations that can be applied. Clearly, most of
those combinations do not lead to a good solution for this expression.
There is for example no reason to factor A at all, and there is no reason
to apply the more expensive LU factorization to S if the Cholesky
factorization can be used instead.

If an operand is factored, it is often advisable to apply factorizations
to all occurrences of that operand. For instance, in case of the least
squares problem b := (XTX)−1XTy, the numerical most stable solution
is obtained by applying the QR factorization to all three occurrences of
X. There are exceptions, however: In the expression A+A−1, where A
is a full matrix, it is necessary to factor the matrix A on the right, but
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detrimental to factor it on the left. This leads to the question of which
occurrences of an operand should be factored if it appears multiple
times.

In order to address those challenges, we define a number of rules
for the application of factorizations that aim to capture the intuition
of a human expert. The goal is to find a good balance between the
exhaustive application of factorizations, and the targeted application
in response to the structure of an expression. While the targeted
application significantly reduces the size of the search space, there
is the danger that it prevents finding unexpected solutions that were
not considered in the design of the rules. For this reason, the rules
are relatively general; rather than enforcing a behavior that leads to
known, good solutions, they mostly prevent cases that are likely to
lead to suboptimal solutions.

Those rules are:

1. Matrices are only factored if they are not triangular, diagonal or
orthogonal. The reason is that linear systems and explicit inver-
sions with triangular and diagonal matrices can be computed
directly. For orthogonal matrices, the inversion is replaced with
transposition (see Sec. 7.1.1), thus there is no need to solve linear
systems with or compute the explicit inversion of orthogonal
matrices.

2. Matrices that are defined by a previous assignment (instead
of being a known input operand) can only be factored once a
sequence of kernels has been generated for the right-hand side
of this assignment, that is, once this right-hand side consists of a
single symbol. An example of such a matrix is X in

X := AB

Y := X−1C.

The reason is that otherwise, in the sequence of kernels those
matrices are factored before they have been computed.

3. If there are multiple occurrences of a matrix within an expression
and this matrix is factored, the same factorization is applied to all
occurrences that are factored. As an example, b := (XTX)−1XTy,
it is not allowed that the QR factorization is applied to one occur-
rence of X, while the singular value decomposition is applied to
another. The reason is that multiple factorizations make an algo-
rithm more expensive, so it is less likely to be a good algorithm.
In addition, if the same factorization is used for all occurrences,
some of the factors may cancel out.

4. Matrices that appear directly inside an inverse (A in A−1) are
always factored. Matrices that appear inside inverted subexpres-
sion (A and B in (AB)−1) are factored, but the case where they
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are not factored is also considered. The intuition is that in the
first case, a factorization is necessary to find a solution, while in
the second case, it is not.

5. If a matrix is factored, all of its occurrences are factored, in-
cluding those that are not located within an inverse. In order
to account for cases such as A+A−1, an exception is made for
occurrences that are not located within an inverse and are un-
likely to interact with other occurrences that are located within
inverses. Specifically, this includes terms in a sum where the
term does not contain any occurrences of the matrix within an
inverse, and assignments where the right-hand side does not
contain any occurrences of the matrix within an inverse.

6. Some factorizations rule out others: If the Cholesky factorization
can be applied to a matrix, the LU factorization is not applied.
If the symmetric eigenvalue decomposition can be applied, the
singular value decomposition is not applied.

Factorizations are applied in all combinations that satisfy the rules
above.

5.7.1.1 Implementation

The implementation of the rules consists of three parts: 1) The selection
of sets of matrices that are factored at the same time, 2) the selection
of the occurrences of those matrices in the expression to which a
factorization is applied, and 3) the actual application of factorizations.

selection of matrices In a first step, with the exception of
matrices that have not been computed yet (rule 2), all those matrices
are collected that 1) appear within an inverse operator, and 2) have
properties that make a factorization necessary (rule 1). In the following,
the set that contains those matrices is calledO. For instance, in problem
a.8,

δX :=
(
B−1 +HTR−1H

)−1
HTR−1

(
Y −HXb

)
O is {B,H,R}. The set O is then divided into two disjoint subsets, F
and Fopt: The set F contains all matrices that appear at least once
directly inside an inverse; those matrices have to be factored. The
set Fopt contains the remaining matrices O \ F which may optionally
be factored (rule 4). In case of example problem a.8, those sets are
F = {B,R} and Fopt = {H}. Factorizations are applied to all sets of
matrices F∪ F ′opt with F ′opt ⊆ Fopt.

selection of occurrences In addition, the occurrences of all
matrices in O are divided into groups of occurrences that are unlikely
to interact with one another. Specifically, occurrences are placed in
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different groups if they are located in different assignments, and if
they are located in the same assignment, but in different terms of a
sum (rule 5). As an example, consider the expression

X := AT1BA2 +A
−1
3

Y := A−1
4 B.

The subscripts are used to distinguish the occurrences of A. Those oc-
currences are divided into three groups: {1, 2}, {3}, and {4}. Occurrence
4 is in its own group because it is located in a different assignment
than all other occurrences. The remaining occurrences are divided
into the groups {1, 2} and {3} because they appear in different terms
of a sum. All groups that do not contain any occurrence within an
inverse are discarded and not considered for the application of factor-
izations. In case of the expression above, the group {1, 2} is discarded;
factorizations are only applied to the occurrences 3 and 4.

application If a matrix is factored, the same factorization is
applied to all remaining occurrences (rule 3). If multiple matrices
are factored at the same time, new expressions are generated for all
possible combinations of factorizations that can be applied to the
different matrices. Per matrix that is factored, only one invocation
of the factorization kernel is generated, even if multiple occurrences
of the matrix are factored. This can be seen as a form of common
subexpression elimination.

successor generation order The order in which factoriza-
tions are applied is determined as follows: The algorithms starts with
the application of factorizations only to those matrices that need to be
factored. If multiple factorizations can be applied to a given matrix,
they are applied in the order of increasing cost. Thus, the order is:

1. Cholesky or LU factorization.

2. QR factorization.

3. Symmetric eigenvalue or singular value decomposition.





6
M AT R I X P R O P E RT I E S

Linnea’s input language makes it possible to annotate matrices with
properties. However, for the generation of algorithms, not only is it
important to know the properties of the input matrices, it is at least
equally important to know the properties of expressions that contain
those operands, as well as the properties of intermediate operands
as the computation unfolds. Properties are important both to select
the best kernel for a given operation, as well as to rewrite expressions.
Consider for instance the generalized least squares problem b :=

(XTM−1X)−1XTM−1y. Since X has full rank and more rows than
columns, and M is symmetric positive definite, it can be inferred
that XTM−1X is symmetric positive definite, irrespective of how it is
computed. This knowledge then allows one to solve the linear system
(. . .)−1XTM−1ywith a Cholesky factorization, as opposed to the more
expensive LU factorization.

In order to be able to make use of properties, Linnea needs to be able
to infer the properties of an expression from the properties provided
by the user. This inference is implemented with sets of inference rules
that describe how properties of an operand imply other properties,
and how properties propagate through expressions. In contrast to
most languages and libraries for linear algebra, the inference is a
purely symbolic process that does not rely on inspecting the operands
at run-time. In this chapter, we describe the inference of properties in
Linnea in detail.

definitions In the following, we formally describe properties in
terms of logical predicates that are either true or false for a given
operand or expression. For instance, if the expression AB is lower
triangular, the predicate LowerTriangular(AB) is true. The definitions
of all properties currently supported as input by Linnea are shown
in Tab. 6.1. In addition, there are some properties that are only used
internally; they are shown in Fig. 6.2. They are not part of the language
because they can always be inferred from the input, either from other
properties, or the operand sizes. How the size of an expression is
computed is described in Sec. 6.4. Expressions can have multiple prop-
erties as long as their mathematical definitions do not contradict one
another. A square matrix can be for example both SPD and diagonal.

87
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Table 6.1: Definitions of properties supported by Linnea. Let A ∈ Rm×n be
a real matrix. The elements of this matrix are denoted as aij with
i ∈ {0, . . . ,m− 1} and j ∈ {0, . . . ,n− 1}. For scalars, α is used.

Property Definition

diagonal aij = 0 if i 6= j
lower triangular aij = 0 if i < j

upper triangular aij = 0 if i > j

unit diagonal aij = 1 if i = j (requires upper or lower
triangular)

symmetric m = n and aij = aji
SPD m = n and xTAx > 0 for all x ∈ Rn with

x 6= 0
SPSD m = n and xTAx > 0 for all x ∈ Rn with

x 6= 0
orthogonal m = n and ATA = AAT = I

orthogonal columns m > n and ATA = I

orthogonal rows n > m and AAT = I

permutation m = n and there is exactly one 1 in each
row and column, all other entries are 0

identity aij = 1 for i = j and aij = 0 for i 6= j
zero aij = 0 for all i, j

positive α > 0 (only for scalars)

full rank A has full rank

non-singular m = n and A has full rank

Table 6.2: Definitions of properties that are only used internally. Let m and n
be the number of rows and columns of an expression, respectively.

Property Definition

square m = n 6= 1
column panel m > n and n 6= 1
row panel m < n and m 6= 1
matrix m > 1 and n > 1

vector m = 1 and n > 1, or m > 1 and n = 1

scalar m = n = 1

triangular matrix is upper or lower triangular

constant operand is constant; including the iden-
tity and zero matrix, as well as constant
scalars
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6.1 inference

In the simplest case, we are concerned with the following problem:
Given a linear algebra expression where the properties of the operands
that appear in this expression are known, infer some or all of the
properties of the entire expression.

As an example, one instance of this problem is the subexpression
λ1Il +W

T
1AA

TW1 in example problem a.17, where it is known that
the matrices A and WK both have more rows than columns and full
rank, Il is the identity matrix, and the scalar λ is positive. The question
now is if the expression is for example SPD.

To solve this problem, we use inference rules that describe the
relationships between different properties. In this chapter, we describe
those inference rules as first-order logic formulas. Inference rules are
universally quantified over all variables; the domain of discourse is
the set of all expressions T(Σ,X). In order to simplify the presentation,
we omit the quantifiers. The rule ∀A(SPD(A)→ Symmetric(A)) is for
instance written as SPD(A)→ Symmetric(A).

The inference problem stated above can be broken down into two
subproblems; the inference of the properties of a single operand, and
the inference of the properties of an expression.

6.1.1 Properties of Operands

Operands that are annotated with properties usually posses additional
properties that can be inferred from the known ones. As an example,
since a permutation matrix is a special case of an orthogonal matrix,
all permutation matrices are also orthogonal. As a second example,
a matrix that is both diagonal and square is also symmetric. From
the perspective of the user, if they already specified that a matrix is
a permutation matrix, the information that it is also orthogonal is
redundant. For this reason, we do not expect the user to annotate
operands with such redundant properties. However, those properties
are still needed internally, for example when expressions are simpli-
fied: When Linnea attempts to simplify Q−1 to QT , it is only tested if
Q is orthogonal, not if it is a permutation matrix. From a mathematical
perspective, testing that Q is orthogonal is sufficient; it is assumed that
Q is correctly identified as orthogonal even if the user did not explic-
itly specify this property.1 As a result, Linnea needs to be able to infer
properties of an operand that follow from other known properties.

We distinguish between two types of inference rules that are relevant
for this problem:

1. Inference rules of the form P(A) → Q(A), where both P(A)

and Q(A) are predicates over the same operand, as for example

1 This is a design decision in Linnea. The intention is to make the use of properties
throughout Linnea as simple and intuitive as possible.
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matrix

square full rank triangular

row panel

column panel

symmetric

non-singular

orthogonal
columns

orthogonal
rows

lower
triangular

upper
triangular

unit
diagonal

SPSD orthogonal scalar diagonal constant

SPD permutation positive identity zero

Figure 6.1: Partial order of matrix properties. More general properties are
placed towards the top, more specific properties towards the
bottom.

SPD(A) → Symmetric(A). Those rules follow from the defini-
tions of the properties and encode that a property is a special
case of another. Those rules can also be represented by a partial
order on all properties. A graphical representation of this partial
order is shown in Fig. 6.1.

2. Inference rules of the form
∧
i Pi(A)→ Q(A), where

∧
i Pi(A) is

a conjunction of two or more predicates. An example of such a
rule is Diagonal(A)∧ Square(A)→ Symmetric(A). Again, those
rules follow from the definitions of properties, but in this case
they describe how combinations of two or more properties imply
another property.In this thesis,

properties are used
both as an adjective
(‘M is square’) and

as a mathematical
object, which is used

as a noun (‘M has
the property square’,
or ‘square ∈ P’). In
order to distinguish

the adjective from
the mathematical

object, a sans-serif
font is used for the

mathematical object:
‘M has the property

square’.

representation Before we can discuss how the properties of
operands are inferred, we first need to describe how properties are
represented. In Linnea, properties are represented by labels, and each
operand has a set of such labels: If the label for a property is in the
set, it means that the operand has the respective property. The reverse
does not need to hold, though: An operand may has a property that
is not in its property set. This can be the case if there exist properties
that can be inferred from other properties in the set. As an example,
let D be a matrix with the property set {diagonal, square}. While D is
also symmetric, this property is not contained in the set.
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6.1.1.1 Implications P(A)→ Q(A)

Implications of the form P(A) → Q(A) are incorporated by making
use of the transitivity of the partial order defined by those rules. For
each property, we precompute all properties that are implied by it. For
instance, from the implications

Identity(A)→ Diagonal(A)

Diagonal(A)→ LowerTriangular(A)

Diagonal(A)→ UpperTriangular(A),

the rule

Identity(A)→ Diagonal(A)∧ LowerTriangular(A)

∧ UpperTriangular(A)

is derived.2 Whenever the property identity is added to the property set
of an operand, for example because the user specifies it, all properties
on the right-hand side of this rule are added to the set too. As a result,
in the majority of cases, it is sufficient to test if an operand has a
property by testing if the property is in its property set.

6.1.1.2 Implications
∧
i Pi(A)→ Q(A)

Implications of the form
∧
i Pi(A)→ Q(A) are used in the backward

direction: To determine if Q(A) is true, it is checked if all Pi(A) are
true.

As an example, let us assume that there is an operand D which has
the property set {diagonal, square}. To identify if D is symmetric, it is
first checked if the property is contained in the set; this is not the case
here. Thus, as a second step, we look at all rules with the right-hand
side Symmetric(A); one such rule is Diagonal(A) ∧ Square(A) →
Symmetric(A). Now, it is checked if the left-hand side of this rule
is true for D. Since D is both diagonal and square, it is inferred that D
is symmetric. To cache the result of this inference, the property sym-
metric is then added to the property set of D. If necessary, additional
rules of the form

∧
i Pi(A)→ Q(A) are evaluated recursively to check

if the left-hand side of the initial rule is true.

6.1.2 Properties of Expressions

The inference of properties of expressions is not as structured as that
of operands; properties and mathematical operations can interact in
many different ways. Some examples follow:

1. The inverse of a lower triangular matrix is lower triangular.

2 In the interest of brevity, Triangular(A) and Matrix(A) were excluded from this
example.
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2. The transpose of a lower triangular matrix is upper triangular.

3. The product of two orthogonal matrices is orthogonal.

4. An expression A is symmetric if it is equal to its transpose, that
is, if A = AT holds.

5. An expression ATSA is SPD if A has full rank and at least as
many rows as column, and S is SPD.

As a result, inference rules have the form ψ → P(t), where ψ is an
arbitrary formula, and P(t) is a predicate over an expression t. For the
examples above, the rules are:

LowerTriangular(A)→ LowerTriangular
(
A−1

)
LowerTriangular(A)→ UpperTriangular

(
AT
)

Orthogonal(A)∧ Orthogonal(B)→ Orthogonal(AB)

A = AT → Symmetric(A)

rows(A) > cols(A)∧ FullRank(A)

∧ SPD(S)→ SPD
(
ATSA

)
rows(A) and cols(A) are functions that return the number of rows and
columns of A, respectively. Those rules are again used in the backward
direction, to traverse the expression tree from the root to the leaves.
As an example, we use the expression QT1Q2, where both Q1 and Q2
are orthogonal, and we try to determine if QT1Q2 is orthogonal. The
inference rules for this property are:

Orthogonal(A)→ Orthogonal
(
AT
)

(6.1)

Orthogonal(A)→ Orthogonal
(
A−1

)
(6.2)

Orthogonal(A)→ Orthogonal
(
A−T

)
(6.3)

Orthogonal(A)∧ Orthogonal(B)→ Orthogonal(AB) (6.4)

Since the root node of the expression tree of QT1Q2 is a product,
rule (6.4) has to be applied with A = QT1 and B = Q2. Thus, it
needs to be checked if Orthogonal

(
QT1
)

and Orthogonal(Q2) are true.
Orthogonal(Q2) is true because Q2 is known to be orthogonal; for
Orthogonal

(
QT1
)
, rule (6.1) has to be applied with A = Q1. Since

Q1 is orthogonal, Orthogonal(Q1) is true as well. As a result, by
determining that Orthogonal

(
QT1Q2

)
is true, we have inferred that

QT1Q2 is orthogonal.
In Linnea, the rules for the inference of properties of expressions are

implemented as (in some cases mutually) recursive functions, one for
each property. Similar to the example above, those functions traverse
the expression tree from the root to the leaves.

For rules where the left-hand side ψ only consists of a conjunction
of predicates, the implementation is straightforward. As an example,
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1 def is_orthogonal(expr):

2 if isinstance(expr, Symbol):

3 return infer_property_symbol(expr, ORTHOGONAL)

4 if isinstance(expr, Times):

5 return all(map(is_orthogonal, expr.operands))

6 if isinstance(expr, (Transpose, Inverse,

InverseTranspose)):

7 return is_orthogonal(expr.operand)

8 return False

Figure 6.2: Implementation of the function is_orthogonal.

the code of the function that infers the property orthogonal is shown in
Fig. 6.2. If expr is a symbol, that is, a matrix, vector, or scalar, a function
is called that implements the inference of properties of operands as
described in Sec. 6.1.1 (lines 2 and 3). In lines 4 and 5, a rule for
products with an arbitrary number of arguments is implemented; it is
a generalization of rule (6.4) which follows from the associativity of
matrix multiplication. The rules (6.1), (6.2), and (6.3) are implemented
in lines 6 and 7. If expr is an addition, none of the rules are applicable
and the function returns False.

For those rules where the left-hand side ψ is more complex, we
implemented some auxiliary functions, for example one to test if an
expression is the transpose of another, and one to determine if a prod-
uct is SPD. The code of the latter is shown in Fig. 6.3. It implements
the following rules:

Positive(α)∧ SPD(A)→ SPD(αA) (6.5)

rows(A) > cols(A)∧ FullRank(A)→ SPD
(
ATA

)
(6.6)

rows(A) > cols(A)∧ FullRank(A)∧ SPD(S)→ SPD
(
ATSA

)
(6.7)

The function begins with separating scalars from matrices and vec-
tors (line 2). The reason is that scalars commute in matrix products,
and treating scalars separately simplifies the implementation of the
remainder of this function. In line 3, it is checked if the product of all
scalars is positive; if this is not the case, rule (6.5) cannot be satisfied
and False is returned. The remainder of the function consists of a
case distinction based on the number of remaining arguments in the
product:

1. If there are no arguments left, expr only consists of scalars and
hence cannot be SPD (lines 6 and 7).

2. If there is one argument, it is checked if this argument is SPD
(lines 8 and 9).

3. If the number of arguments is divisible by two, the arguments
are split into two parts of equal length. It is checked if the left
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1 def is_SPD_product(expr):

2 scalars, non_scalars = expr.split_operands()

3 if scalars and not is_positive(Times(*scalars)):

4 return False

5 length = len(non_scalars)

6 if length == 0:

7 return False

8 elif length == 1:

9 return is_SPD(non_scalars[0])

10 elif length % 2 == 0:

11 left = Times(*non_scalars[:length//2])

12 right = Times(*non_scalars[length//2:])

13 return left.columns >= left.rows and is_full_rank(

left) and left.transpose_of(right)

14 else:

15 left = Times(*non_scalars[:length//2])

16 right = Times(*non_scalars[length//2+1:])

17 middle = non_scalars[length//2]

18 return left.columns >= left.rows and is_full_rank(

left) and is_SPD(middle) and left.transpose_of(

right)

Figure 6.3: Implementation of the function is_SPD_product.

part has at least as many columns as rows, if it has full rank, and
if it is equal to the transpose of the right part (lines 10–13). This
corresponds to rule 6.6.

4. If the number of arguments is not divisible by two, the arguments
are split into three parts: a left and right part of equal length,
and a remaining argument in the middle. It is checked if the
left part has at least as many columns as rows, if it has full
rank, and if it is equal to the transpose of the right part. For the
argument in the middle, it is checked if it is SPD (lines 14–18).
This corresponds to rule (6.7).

6.2 intermediate operands

Since expressions can contain intermediate operands, the actual infer-
ence of properties in Linnea is more complicated than the problem
discussed so far.

The problem with intermediate operands can be illustrated well
with the expressions ADAT , where A is a full and D a diagonal
matrix. Let us assume that a kernel is applied that computes M1 ←
DAT , such that the expression becomes AM1. Intuitively, it is clear
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that AM1 is symmetric, since ADAT is symmetric. It is however
not possible to infer this from AM1: Mathematically, the properties
of the intermediate M1 are determined by the expression that was
computed to obtain it; in this case DAT . However, by itself, DAT and
consequently M1 do not have any properties that allow to infer that
AM1 is symmetric.

For the application of kernels, this problem can be solved by making
use of the table of intermediate operands (Sec. 4.2.1). Due to the
constraint for the application of kernels that input arguments can only
be single operands, not arbitrary expressions (see Def. 4.5), arguments
of a kernel are either input operands to the program, or intermediate
operands. For input operands of the program, the properties are
known; for intermediate operands, the properties can be inferred from
the equivalent expression stored in the table of intermediate operands.
In case of ADAT , this means that AM1 as a whole can only be an
argument of a kernel if it was already computed by another kernel;
in that case, an intermediate operand was generated for it. Let M2 be
this intermediate operand. The equivalent expression of M2 is ADAT ,
from which it can be inferred that M2 is symmetric.

In conclusion, for the application of kernels, the inference of proper-
ties of expressions that contain intermediate operands is avoided by
inferring the properties of the resulting intermediate operand from its
equivalent expression instead of the expression that is computed.

6.3 user-specified properties of expressions

The table of intermediate operands can also be used to annotate entire
subexpressions (instead of individual operands) with properties that
cannot be inferred from the subexpression.3 As an example, consider
application problem a.16,

Bk :=
k

k− 1
Bk−1

(
In

−ATWk
(
(k− 1)Il +W

T
kABk−1A

TWk
)−1

WT
kABk−1

)
.

Since Bk−1 is SPD and k is larger than 1, the subexpression (k −

1)Il +W
T
kABk−1A

TWk is SPD as well. However, it is currently only
possible to specify that k is positive, not that it is larger than 1. Thus,
Linnea is not able to infer that the subexpression is SPD. For the
application of kernels, this problem can be solved with the table
of intermediate operands as follows: When the user specifies that
(k− 1)Il +W

T
kABk−1A

TWk is SPD, before the algorithm generation
starts, an entry for this expression is added to the table of intermediate
operands. The intermediate operand that is created for this expression
is annotated with the property SPD. Following again from Def. 4.5,

3 This feature is not supported in the input language yet.
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the subexpression (k− 1)Il +W
T
kABk−1A

TWk can only be one of the
input operands of a kernel once it has been fully computed; if this is
the case, the subexpression has been replaced with its intermediate
operand. Thus, if the subexpression is the input operand of a kernel,
the property SPD is read off the intermediate, even though it cannot
be inferred from the expression.

This approach has some limitations, though. In theory, it should be
sufficient to specify that k− 1 is positive, since this is the missing piece
of information that prevents Linnea from inferring the property SPD.
In practice, this does not solve the problem due to how the table of
intermediate operands works: While the table would contain an entry
for k− 1 that is annotated with the property positive, this entry would
not be considered when determining the properties of (k − 1)Il +

WT
kABk−1A

TWk. To consider this entry, it would be necessary to infer
the properties of the expression sIl +WT

kABk−1A
TWk, where s is the

intermediate operand for k− 1 that is annotated with the property
positive. However, this does not happen because the expressions stored
in the table do not contain any intermediates; the intermediates are
replaced with the expressions that they represent when the entry is
created.

6.4 size of expressions

Some of the properties used in Linnea are based on the size of an
expression, that is, the number of rows and/or columns. To infer
those properties, Linnea contains functions to compute the size of
expressions. Similar to the inference of properties, the size of an
expression is computed by traversing the expression tree. With the
exception of products, the rules are trivial:

1. The number of rows (columns) of a sum M1 + . . .+Mi is the
number of rows (columns) of M1.

2. The number of rows (columns) of MT is the number of columns
(rows) of M.

3. The number of rows and columns of M−1 and M−T is the
number or rows of M.

For a product of matrices M1 · · ·Mi, the number of rows of the entire
expression is the number of rows of M1, and the number of columns
is the number of columns of Mi. However, care has to be taken for
products that contain scalars or inner products. For example, in case of
αAB, the number of rows is not determined by the left-most operand,
which is a scalar, but instead by the matrix A. For the expression
vT1Av2B, where v1 and v2 are vectors, the number of rows is equal to
the number of rows of B.
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1 @property

2 def rows(self):

3 n = 0

4 for op in self.operands:

5 if op.rows == 1:

6 if op.columns != 1:

7 # row vector

8 n += 1

9 else:

10 if n == 0:

11 # column vector or matrix

12 return op.rows

13 if op.columns == 1:

14 # column vector

15 n -= 1

16 return 1

Figure 6.4: Python code for the computation of the number of rows of a
product, implemented as a method of the Times class.

The number of rows of a product that may contain scalars or inner
products is computed with the algorithm in Fig. 6.4. The idea is to
traverse the operands from left to right and keep track of whether the
current operand is part of an inner product. The beginning of an inner
product is marked by a row vector, the end by a column vector. The
variable n is used to keep track of inner products; it is incremented
whenever a row vector is encountered (line 8), and decremented when
a column vector is encountered (line 15). Since instead of a boolean
variable, an integer is used, the algorithm works even for arbitrarily
nested inner products. If n is zero and the current operand is a column
vector or matrix, the number of rows of that operand is the number of
rows of the product (line 12). Since the loop body does not contain a
case for scalars (that is, the number of rows and columns are one), they
are simply ignored and do not affect n. If the entire product consists of
scalars, line 16 is reached and one is returned. If the product starts with
a row vector that is not part of an inner product and thus the number
of rows of the product is one, n never becomes zero and one is returned
in the last line. The number of columns is computed analogously by
traversing the operands in reversed order and switching rows and
columns.

6.5 conclusion and future work

While the inference of properties in Linnea is very advanced compared
to other languages and libraries, it is still rudimentary compared to
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the analysis a mathematician would carry out. In order to improve
the inference of properties in Linnea, it is necessary both to introduce
a more expressive language for the description of properties, as well
as to extend the algorithms for the inference to be able to deal with a
richer set of properties and inference rules.

At present, properties are limited to predicates over operands and
expressions. In a more expressive language, properties could provide
details that go beyond simple predicates, for example the possible
range of values of a scalar instead of the property positive, or the
range of eigenvalues instead of the property SPD. For matrices with
block structure, a hierarchical description could be used to specify the
properties of different parts of a matrix.

A disadvantage of the rule-based approach for the inference of
properties is that the addition of new properties can require a large
number of additional rules. As an example, consider the properties
upper and lower bidiagonal, and tridiagonal. The product of two ma-
trices is tridiagonal either if 1) one matrix is diagonal and one matrix
is tridiagonal, or if 2) one matrix is upper and one matrix is lower
bidiagonal. Since it does not matter which matrix is the left and which
one is the right operand in the product, there are four cases that have
to be checked. For products of more than two matrices, there are even
more cases. At least for some properties, including bidiagonal and
tridiagonal, the inference of properties can be implemented with an
alternative approach that does not rely on rules for many different
combinations of properties. This approach is based on the observation
that a relatively large number of common properties can be described
in terms of a generalized notion of bandwidth. In App. c, we dis-
cuss how this notion of bandwidth can be used for the inference of
properties.

However, additional properties are only useful if there are kernels
that allow to make use of them.
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R E W R I T I N G E X P R E S S I O N S

The ability to use algebraic identities to rewrite expressions is one Several of those
identities are axioms
of the algebra that is
used in Linnea.

of the main features that distinguish Linnea from other languages
and libraries for linear algebra. Those identities are used for dif-
ferent purposes, and in different parts of the algorithm generation.
The challenge with using algebraic identities to rewrite expressions
is related to the fact that they can and in some cases need to be
applied in both directions. For instance, when the Cholesky factor-
ization is applied to the SPD linear system S−1A, in the resulting
expression (LTL)−1B, the inverse has to be distributed over LTL be-
fore the expression can be computed (see also Sec. 4.4). This amounts
to the application of the identity (XY)−1 = Y−1X−1, where X and
Y have to be square, from left to right. On the other hand, for the
expression A−1B−1C, where all matrices are square and full, the op-
timal sequence of kernels is obtained by making use of that same
equality, but from right to left, to rewrite the expression to (BA)−1C.
In example problem a.11, the optimal solution for the expression
yk := H†y+ (In −H†H)xk is found by applying the law of distribu-
tivity, in this case both YX+ZX = (Y +Z)X and XY +XZ = X(Y +Z),
to rewrite the expression to yk := H†(y−Hxk) + xk (this example is
discussed in detail on page 147).

Clearly, a brute-force application of all identities in both directions
is impractical: Using both directions leads to infinite loops, and iden-
tities such as X = (XT )T and X = XI, where I is the identity matrix,
lead to arbitrarily large expressions that are not expected to result in
good algorithms. To prevent loops and arbitrarily large expressions,
in Linnea the use of those identities is structured into a set of func-
tions that rewrite expressions in a targeted fashion. While the same
identities can be used in multiple functions and in both directions,
per function only one direction is used. Those functions are used to
generate a number of representations of expressions that are explored
systematically during the algorithm generation.

In this chapter, we first describe the different functions that are used
to rewrite expressions in Sec. 7.1, followed by the representations that
are generated with those functions in Sec. 7.2. In Sec. 7.3, we discuss
why we do not use term rewriting systems to rewrite expressions.
Two special cases of rewriting expressions are presented thereafter:
Rewriting sequences of assignments (Sec. 7.4), and highly problem-
specific rewritings we refer to as tricks (Sec. 7.5). Sec. 7.6 concludes
this chapter. The elimination of common subexpressions, which can be
seen as a special case of rewriting expressions, is discussed in Ch. 8.

99
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7.1 rewrite functions

The identities that are used in Linnea are organized into four func-
tions: One to simplify expression (simplify, Sec. 7.1.1), two to apply
the law of distributivity in different directions (to_SOP, Sec. 7.1.2,
and to_POS, Sec. 7.1.3), and one that pushes up the inversion oper-
ator (push_up_inv, Sec. 7.1.4). Those functions are discussed in the
following.

7.1.1 Simplification

Simplifications cover all algebraic identities that, in the intuitive sense
of the word, make expressions simpler, that is, identities that can be
used to obtain a more compact, concise representation of an expression.
In many cases, simplifications help to avoid unnecessary computations.
The simplifications are described below:

constant folding Subexpressions consisting of constant scalars
are evaluated and replaced with their value. Matrix products contain-
ing the zero matrix or the scalar 0 become the zero matrix, and scalar
products containing 0 become 0. The commutativity of scalars in ma-
trix products is considered, that is, the expression 2A3B is simplified
to 6AB. Neutral elements in all operations and types of expressions are
removed. That includes the square identity matrix and the scalar 1 in
matrix products, the zero matrix in matrix sums, 1 in scalar products,
and 0 in scalar sums.

symbolic addition of terms Terms that appear multiple times
in sums are added up, including the case when one or both of the
terms are multiplied with a scalar. As examples, for an arbitrary expres-
sion A, A+A becomes 2A, −1.5A+A becomes −0.5A, and αA+βA

becomes (α+β)A, where α and β are arbitrary scalar expressions.

canceling out inverted expressions In products, for arbi-
trary expressions A, subexpressions of the form A−1A and AA−1

are removed. If the product does not contain any other arguments,
an identity matrix is inserted. In addition, ATA is removed if A has
orthogonal columns, and AAT is removed if A has orthogonal rows.

distributing inversion and transposition Both the inver-
sion and transposition operators are pushed down as far as possible,
that is, transposition is distributed over products and sums, and in-
version is distributed over products whenever possible. The inversion
operator can only be distributed over square matrices, or products
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of non-square matrices that from a square matrix. As an example,
consider the product

A B C

with A ∈ Rn×m, B ∈ Rm×n, C ∈ Rn×n, and m > n. While both A
and B are not square, their product is, so distributing the inversion
over this product results in C−1(AB)−1.

Nested transposition and inversion is removed. In addition, inver-
sion and transposition is combined to a single inversion-transposition
operator, that is, both (A−1)T and (AT )−1 become A−T . Transposition
is removed from symmetric matrices, and inversion is replaced with
transposition in case of orthogonal matrices.

grouping scalars Scalars in matrix products are moved to the
left. This is done because MatchPy does not support making use of the
commutativity of scalars in matrix products. For instance, MatchPy
does not find a match for a kernel that computes the scalar product γδ
in the product αAβ, but it does find a match if the product is rewritten
to αβA.

7.1.2 Conversion to Sum of Products

The conversion to a sum of products consists in in the application of
the law of distributivity, that is, the identities YX+ZX = (Y +Z)X and
XY + XZ = X(Y + Z), from right to left. Intuitively, all products that
contain sums are multiplied out. For instance, A(B+CT )D becomes
ABD+ACTD. The only exception are scalar sums, that is, expressions
such as (α+β)A, where α and β are scalars and A is a matrix; such
expressions are not rewritten to αA+βA.

7.1.3 Conversion to Product of Sums

The conversion to a product of sums is the opposite of the conversion
to a sum of products; the identities YX+ ZX = (Y + Z)X and XY +

XZ = X(Y +Z) are used from left to right. Intuitively, the conversion
consists in factoring out common factors of terms in a sum. As a result,
ABD+ACTD is rewritten toA(B+CT )D. In contrast to the conversion
to a sum of products, different results can be obtained depending on
the order in which those identities are used, or equivalently depending
on the order in which operands are factored out on the left- and right-
hand side of a product. This is illustrated well by the expression
AC+AD+BC. When operands are first factored out on the left-hand
side, A(C+D) +BC is obtained; starting on the right-hand side yields
(A+B)C+AD. In both resulting expressions, no further operands can
be factored out. In addition, in expressions with more than two terms
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that have a factor in common, the resulting expression can depend on
whether the common factor is factored out in all terms, or only in a
subset of the terms.

Example 7.1. As an example, we use the sum1

AA+AB+AC+BA+BB.

Factoring out both A and B to the left in all terms results in

A(A+B+C) +B(A+B). (7.1)

However, it is also possible to factor out A only in the terms AA and
AB, resulting in

AC+A(A+B) +B(A+B).

At this point, (A+B) can be factored out on the right, which yields

AC+ (A+B)(A+B). (7.2)

Both in (7.1) and (7.2), no further factors can be factored out. �

As a tradeoff between the exhaustive exploration of all possible
product of sums and a reduction of the size of the search space, in
Linnea we only consider two different product of sums representations:
One is obtained by first factoring out all operands to the right side,
and then to the left, the other one by first factoring out to the left, and
then to the right.

If a term only consists of a single matrix that is factored out, that
matrix is replaced with an identity matrix. As a result, the product
of sums representation of A+AB is A(I+B). In the conversion to a
product of sums, no inverted operands are introduced; while it would
be possible to also factor out B in A(I+B), resulting in AB(B−1 + I),
it seems unlikely that such an expression leads to good algorithms.

7.1.4 Pushing up the Inversion

As demonstrated at the beginning of this chapter, it is necessary to use
the identity (XY)−1 = Y−1X−1 in both direction. The direction from
left to right is already part of simplify. In push_up_inv, this identity
is used from right to left to push up the inversion operator in products.
It is applied whenever there are two or more adjacent arguments in a
product that are inverted.

An exception is made when inverted operands are the result of a fac-
torization. As an example, consider again the SPD linear system S−1B.
After the application of the Cholesky factorization, this expression is
simplified to L−TL−1B. If the inversion was pushed up, one would
again obtain (LLT )−1B, which cannot be computed (see Sec. 4.4). As a
consequence, for such expressions there is no reason to push up the
inversion in the first place.

1 Recall that matrix powers are not supported by Linnea yet.
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1 def to_SOP(expr):

2 if isinstance(expr, Times) and any(isinstance(op, Plus)

and not is_scalar(op) for op in expr.operands):

3 factors = []

4 for op in expr.operands:

5 if isinstance(op, Plus) and not is_scalar(op):

6 factors.append(op.operands)

7 else:

8 factors.append([op])

9 return Plus(*(to_SOP(Times(*product)) for product in

itertools.product(*factors)))

10 elif isinstance(expr, Operator):

11 return type(expr)(*map(to_SOP, expr.operands))

12 else:

13 return expr

Figure 7.1: Python code of the function to_SOP.

7.1.5 Implementation

The basic idea for the implementation of all functions that rewrite
expressions is the same: The expression tree is traversed recursively,
either in the top-down or bottom-up direction; at every node, the nec-
essary steps are carried out to rewrite the expression in the intended
way.

As an example, the code for to_SOP is shown in Fig. 7.1. The ex-
pression tree is traversed recursively from the top to the bottom; only
if the current node is a product and contains at least one argument
that is a sum (line 2), the actual conversion to the sum of products
takes place. In a first step, the arguments are collected in a nested list:
for arguments that are sums, all summands are stored in one sublist,
while all other arguments are put in their own lists. For instance, for
the product A(B+CT )D, the list [[A], [B,CT ], [D]] is constructed (lines
3–8). Then, the product function from the Python standard library
module itertools is used to construct the cartesian product of all
sublists; for [[A], [B,CT ], [D]], it is [[A,B,D], [A,CT ,D]]. This new list
then directly corresponds to the product of sums representation of
the input expression; the inner lists correspond to the products, the
outer list corresponds to the sum. Thus, for A(B+CT )D, the output is
ABC+ACTD. In line 9, this expression is constructed from the nested
list. In addition, to continue the traversal of the expression tree, to_SOP
is immediately applied to the new products. If the current node is any
other operator, for example addition or transposition, to_SOP is ap-
plied to all of its arguments (lines 10–11). Since expressions in Linnea
are immutable, a new expression has to be constructed. If the current
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node is a matrix, vector or scalar, nothing needs to be done (lines
12–13). The condition not is_scalar(op) in lines 2 and 5 ensures that
scalar sums are not considered for the conversion to a sum of products,
that is, (α+β)A is not rewritten to αA+βA.

The simplify function on the other hand traverses the expression
tree from the bottom to the top. Different simplifications are carried
out depending on the type of the current node: For instance, if the
current node is a product, scalars are collected and grouped, while
the matrices are scanned for subexpressions such as A−1A. In order
to push down transposition and inversion, auxiliary functions exist
that transpose and/or invert an expression; if a subexpression such as
(A+BT )T is encountered, the transpose function is applied to A+BT ,
resulting in AT +B.

7.2 representations

The rewrite functions are used to obtain four different representations
of expressions.

1. The normal form, which consists of fully simplified expressions
represented as a sum of products. It is obtained by applying
simplify, to_SOP, and again simplify to an arbitrary expression.
The first application of simplify is necessary for example for
the expression (A+B)TC; in order to convert this expression to
a sum of products, it is necessary to first distribute the transpo-
sition over the sum, resulting in (AT +BT )C = ATC+BTC. The
second application is necessary for cases such as AB+ (A+C)B;
after the conversion to a sum of products, in the resulting expres-
sion AB+AB+CB, the two occurrences of AB can be added up
to 2AB. The normal form is discussed in more detail in Sec. 7.2.1.

2. An expression in the sum of products representation with in-
version pushed up. It is obtained by applying push_up_inv to
expressions in normal form.

3. Two different product of sums representations. They are obtained
by applying to_POS to expressions in normal form.

A graph of how the rewrite functions are used to rewrite expressions
into different representations is shown in Fig. 7.2. Clearly, those four
representations are only a subset of all possible representations that
can be obtained with the available rewrite functions. As an example,
it would be possible to apply push_up_inv to both product of sums
representations. The four representations were chosen as a tradeoff
between the exhaustive exploration of a large number of representa-
tions and a faster algorithm generation. It should be noted that the
different representations do not need to be distinct. For instance, in
case of the expression ABT +C, which is in normal form, neither the
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any

normal form (SOP)

POS left

SOP with inversion pushed up

POS right

simplify

to_SOP

simplify

to_POS

(left first)

push_up_inv

to_POS

(right first)

Figure 7.2: A visualization of how the the rewrite functions are used to
rewrite expressions into different representations.

conversion to a product of sums, nor pushing up the inverse changes
the expression. As a result, in this case all four representations are the
same.

During the algorithm generation, the representations are explored
systematically: By default, to ensure that equivalent nodes can be
merged, expressions are stored in the normal form. Before the applica-
tion of a generation step, the other representations are constructed on
demand. Given sufficient time, every generation step is applied to ev-
ery representation. The four representations are used in the following
order:

1. Product of sums (left first),

2. product of sums (right first),

3. sum of products with inversion pushed up, and

4. normal form.

A representation is skipped if it is identical to one that was already
used. The reason for beginning with the product of sums is that it
reduces the number of expensive matrix-matrix multiplications: While
AB + AC requires two matrix-matrix multiplications, A(B + C) re-
quires only one. Pushing up the inversion operator allows to decrease
the number of matrix factorizations, in favor of matrix-matrix mul-
tiplications: While A−1B−1C requires two factorizations, (BA)−1C
requires only one. After the application of a generation step, expres-
sions are converted back to the normal form: simplify pushes the
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inverse back down, and to_SOP converts the product of sums repre-
sentation back to a sum of products.

7.2.1 Normal Form

As a normal form for linear algebra expression, the sum of products
was chosen because it can easily be made unique by sorting arguments.
Arguments in sums are sorted automatically in MatchPy expressions,
and scalars in products are sorted by the simplify function. In contrast,
as discussed in Sec. 7.1.3, many expressions have multiple product
of sums representations. Since expressions are converted between
different representations during the algorithm generation, the choice
of the normal form does not influence the quality of the generated
code.

Recall that as mentioned in Sec. 4.2, this normal form is not a
true normal form in the sense that there is no guarantee that all
algebraically equivalent expressions have the same normal form. For-
tunately, this only has the effect that merging branches, which is a
performance optimization, is less effective in those cases.

7.3 a comment on term rewriting systems

The application of algebraic identities to rewrite an expressions can
naturally be described and implemented as a term rewriting system,
that is, a set of rewrite rules (Def. 3.6). In Linnea, relevant rewrite rules
could be XI → X or (XY)T → YTXT , where X and Y match matrices
and I is the identity matrix. Based on those examples, it should be
clear that rewrite rules can naturally be constructed from algebraic
identities. In this case, the rules originate from the identities XI = X
and (XY)T = YTXT . However, it is important to note that the identities
by themself do not prescribe the direction of the rewrite rules; the
rules X→ XI and YTXT → (XY)T are equally valid. In addition, term
rewriting systems do not prescribe in which order the rules should be
applied.

There are both theoretical and practical limitations that make the
use of term rewriting systems difficult. Those limitations are discussed
in this section.

theoretical limitations Term rewriting systems are especially
useful if they have two properties: Termination and confluence. A term
rewriting system is said to be terminating if no infinite sequence of
rewrite steps can exist, and it is confluent if, for a given initial expres-
sion, the same result is obtained no matter in which order the rules are
applied. A term rewriting system with those two properties defines
a normal form for expressions [5, Sec. 2.1]: All expressions that are
algebraically equivalent are rewritten to the same normal form. As a
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result, such a term rewriting system solves the word problem; the prob-
lem of identifying whether or not two expressions are algebraically
equivalent. For many algebras, this problem is undecidable [5, Sec. 4.1].
While we do not have a proof that the word problem is undecidable
for the algebra used in Linnea, given the complexity of the algebra, it
seems likely that this is the case. If the word problem is undecidable
for the algebra used in Linnea, there cannot exist a confluent and ter-
minating term rewriting system that converts expressions to a normal
form.

Another indication that such a term rewriting system may not exist
is given by the Knuth-Bendix completion algorithm. Given a set of
algebraic identities2, the Knuth-Bendix completion algorithm can be
used to construct a confluent and terminating term rewriting system
[81].3 Internally, this algorithm relies on a process called unification (a
generalization of pattern matching, see [5, Sec. 10.1]). For operations
that are associative but not commutative, such as matrix multiplication,
unification is infinitary, which means that is has an infinite number
of solutions [64]. As a result, the Knuth-Bendix completion algorithm
constructs an infinite number of rewrite rules and does not terminate.

As mentioned before, in Linnea the normal form is only used as a
performance optimization; it is not required for the correctness of the
generated algorithms. Thus, one could attempt to manually construct
a term rewriting system that may not be confluent: To benefit from
the performance optimization, it would be sufficient if most (but not
all) equivalent expressions are converted to the same normal form,
as long as the term rewriting system is terminating. However, even
constructing a term rewriting system that is only terminating can still
be a problem; while there are several tools that attempt to determine if
a given term rewriting system is terminating (for an overview, consider
the participants of the Termination Competition [47]), this problem is
again undecidable [5, Sec. 5.1.1].

practical limitations Irrespective of properties such as con-
fluence and termination, in our experience it is difficult to manually
construct a term rewriting system that reliably converts an expression
to a desired representation. Due to the complexity of the algebra,
there are many special cases that have to be considered. While the
same special cases have to be considered in the rewrite functions, the
advantage of a function that traverses the expression tree is that it is
possible to make assumptions about the parts of the expression tree
that were already traversed. Those assumptions allow to simplify the
implementation. Rewrite rules that can be applied anywhere in an

2 In addition to the set of identities, completion requires a so called reduction order,
that is, a total order on terms that prescribes the direction in which expressions are
rewritten. Several different types of reduction orders exist [28]. Finding a suitable
reduction order can be difficult.

3 Several extensions of this algorithm exist. For an overview, consider [30].
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expression need to work irrespective of the state of the surrounding
expression. As a result, a larger number of rules can be necessary
to account for all cases. Finally, we observed that in comparison to
dedicated functions, term rewriting systems are slow.

7.4 rewriting sequences of assignments

In addition to rewriting expressions, there are cases where it is advan-
tageous to rewrite sequences of assignments.

Example 7.2. Let us assume that in example problem a.2,

b :=
(
XTM−1X

)−1
XTM−1y,

the Cholesky factorization is applied to M. In the resulting expression,
the common subexpression XTL−1 is detected and extracted into a
separate assignment, which yields

M1 := X
TL−1

b :=
(
M1M

T
1

)−1
M1L

−Ty.

When XTL−1 is computed with a transposed kernel (Sec. 5.4), the first
assignment becomes M1 :=M

T
2 . By itself, this assignment introduces

an explicit transposition. However, this explicit transposition can be
avoided by replacing all occurrences of M1 in the second assignment
with MT

2 and removing M1 :=M
T
2 . This step results in

b :=
(
MT
2M2

)−1
MT
2L

−Ty. �

In addition to assignments of the form X := YT , it is also beneficial
to remove assignments X := X and X := Y, where X and Y are inter-
mediate operands. In case of X := Y, this is again done by replacing
all occurrences of X in the subsequent assignments with Y.4 While
those assignments do not introduce unnecessary operations, they can
prevent expressions that are otherwise equivalent from being merged.
All three types of assignments discussed here appear after a subex-
pression is placed in a separate assignment, either as part of common
subexpression elimination (Ch. 8) or the application of tricks (Sec. 7.5).
Assignments of the form X := X appear once the expression that was
placed in a separate assignment is fully computed. For instance, in
the example above, M1 := MT

2 becomes M1 := M1 if the explicit
transposition M1 ←MT

2 is computed. Assignments of the form X := Y

can arise in cases where the right-hand side does not have a unique

4 Assignments of the form X := Y effectively rename an operand. If there is such an
assignment, this means that there also is a kernel call Y ← . . . on the path leading
to the current node. However, in the subsequent assignments, the same operand
is denoted with X. While it would be possible to introduce X := Y as a renaming
of a variable in the generated code, we chose to substitute X in the subsequent
assignments.
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normal form and Linnea is unable to detect that X and Y represent
the same expression.5 In all cases, those assignments are immediately
removed when they appear, which is usually after the application of
kernels.

At present, the substitution and removal of assignments is only
done when the left-hand side is an intermediate operand and limited
to those three cases discussed here. The substitution of arbitrary
assignments is discussed as part of future work (Sec. 7.6.1).

7.5 tricks

For some problems, a good solution can sometimes be found by rewrit-
ing an expression in a way that is not possible with the mechanisms
described in this chapter. Those rewritings may require human in-
tuition, or insights into linear algebra too deep to be easily found
automatically. In Linnea, we refer to such rewritings as tricks. In addi-
tion, there are some rewritings that simply do not fit into any of the
functions that rewrite expressions, or they are too specific to warrant
their own function or representation.

Example 7.3. An example of how such a trick can be used to find
a better algorithm is the computation the expression X := ATA +

ATB+BTA. A more complicated version of this expression appears
in a material science application [29]. In its original form, two O(n3)

operations are required to compute the expression: SYRK and SYR2K.
However, the expression can be rewritten such that the call to SYRK
becomes unnecessary:

X := ATA+ATB+BTA

=
1

2
ATA+ATB+

1

2
ATA+BTA

= AT
(
1

2
A+B

)
+

(
1

2
AT +BT

)
A

= AT
(
1

2
A+B

)
+

(
1

2
A+B

)T
A.

At this point, the common subexpression Y := 1
2A+ B, which is an

O(n2) operation, only needs to be computed once. The remaining
expression X := ATY + YTA can be computed with a single call to the
SYR2K kernel. �

In order to support tricks, as a proof of concept Linnea provides a
framework that allows to implement almost arbitrary rewritings. This
framework is designed to be as general and flexible as possible. It is
independent of the functions that rewrite expressions and the different

5 Since assignments of the form X := Y imply X = Y, those assignments could poten-
tially be used to improve merging branches in the search graph in cases where Linnea
is not able to detect that X and Y represent the same expression.
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representations: Instead, it is used as a generation step that is applied
to every representation. Within this framework, the implementation
of a trick consists of two parts: 1) A pattern to detect when the trick
can be applied, and 2) a callback function that takes the expression,
the position where the match was found, and the substitution as
input. The callback function then returns the modified expression
and optionally a sequence of kernels. While tricks are usually only
applicable in special cases, thanks to efficient many-to-one pattern
matching, Linnea can identify such cases with only minimal impact
on the overall performance. The order in which tricks are applied is
arbitrary and depends on the order in which MatchPy finds matches
for the different patterns.

There is only one requirement for tricks: In order to prevent loops
and ensure that the tricks actually have an effect on the generated
algorithms, they have to modify the expression such that the con-
version to normal form does not undo the trick. This can usually be
achieved either by the immediate application of kernels, or by extract-
ing part of the expression into a new assignment. For instance, in
case of X := ATA+ATB+ BTA, it is not sufficient to simply rewrite
the expression as X := AT (12A+ B) + (12A+ B)TA; the conversion to
normal form rewrites this expression back into its original representa-
tion. Instead, either one immediately generates a sequence of kernels
that computes 12A+B, or 12A+B is extracted into a new assignment,
resulting in

Y :=
1

2
A+B

X := ATY + YTA.

Other possible applications of tricks include the introduction of ZZT

in the Genome-Wide Association Studies [39, Sec. 3.1], factoring out
A in order to reduce the bandwidth of the linear system in example
problem a.5 [31, Sec. 4.2], and the application of Sherman-Morrison-
Woodbury formulas [61].

As an additional advantage, the framework for tricks can be used
to add new features, that would otherwise require to make significant
changes to the structure of Linnea with relatively little effort. As a
result, this framework can be used to conveniently test features, such
as algorithms for the application of kernels or additional rewritings; if
they prove to be beneficial, they can still be properly integrated into
the structure of Linnea.

7.6 conclusion and future work

Through different means, Linnea is able to make use of the algebraic
identities that are most relevant for the quality of the generated algo-
rithms in both directions: Associativity and commutativity are covered
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by 1) associative-commutative pattern matching (Sec. 3.3), which is
used for the exhaustive application of kernels, and 2) the constructive
algorithms for the application of kernels (Sec. 5.6). Distributivity is
used when rewriting expressions between the sum of products and
product of sums representations. The transposition and inversion op-
erator is pushed down by simplify, and inversion is pushed up by
push_up_inv. While transposition is not pushed up, the same effect is
achieved in a more targeted fashion through the application of trans-
posed kernels (see Sec. 5.4). Even though many identities are used
in both directions, the organization of those identities into rewrite
functions prevents loops and the generation of arbitrarily large expres-
sions. Additional ways of rewriting expressions can be implemented
as tricks.

It is important to note that the use of algebraic identities affects
the numerical stability of the generated algorithms. Ideally, in order
to consider the stability for the selection of the optimal solution, it
should be part of the cost function. Unfortunately, as discussed in
Sec. 4.5, incorporating the numerical stability into the cost function is
a difficult problem.

7.6.1 Future Work

There are several ways in which Linnea’s ability to rewrite expressions
can be further improved in order to generate better algorithms. Two
examples follow.

At present, Linnea does not maintain the original representation
of the input problem as provided by the user in case it is different
from the four representations that are used internally. One such case
is application problem a.15:

Xk+1 := S
(
STAS

)−1
ST

+
(
In − S

(
STAS

)−1
STA

)
Xk

(
In −AS

(
STAS

)−1
ST
)

The problem is that this particular product of sums representation
is different from the two product of sums representations that are
considered by Linnea. However, this representation is the one that
leads to the best solution. While it would be possible to increase
the number of product of sums representations that are explored, a
better approach with a smaller impact on the size of the search space
might be to make sure that the original representation is used in the
algorithm generation. The challenge with maintaining the original
representation of the input expression is that it is not clear how to
enable merging branches in this case, because merging requires to
convert expression to the normal form.

Maintaining the original representation allows the user to influence
which representations are used during the algorithm generation. At
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present, this can only be achieved by placing subexpressions into sep-
arate assignments. In case of example problem a.15, a better solution
is found by placing the common subexpression (In −AS(STAS)−1ST )

in a separate assignment; in the resulting expression

M :=
(
In −AS(STAS)−1ST

)
Xk+1 := S

(
STAS

)−1
ST +MTXkM,

the conversion to a product of sums has no effect.
In this example, the extraction of a subexpression into a separate as-

signment allows to overcome a current limitation of Linnea because it
affects the algorithm generation. In general, the fact that the extraction
and conversely the substitution of assignments in the input does affect
the algorithm generation can be seen as a limitation in itself. This is
demonstrated with the second example; it consists of problem a.12.
In the article where this problem is described [55], it appears in two
different variants: The first variant consists of the two assignments:

Λ := S
(
STAWATS

)−1
ST

Xk+1 := Xk +WA
TΛ(In −AXk). (7.3)

The second variant only consists of one assignment; compared to
the first variant, Λ in the second assignment is substituted with the
right-hand side of the first assignment, and the first assignment is
removed:

Xk+1 := Xk +WA
TS
(
STAWATS

)−1
ST (In −AXk). (7.4)

Linnea is able to find a better solution for this second variant because
1) an additional occurrence of the common subexpression ATS can be
eliminated, 2) the common subexpression WATS can be eliminated,
and 3) a better parenthesization is possible. If Λ is an output operand
that needs to be computed explicitly, the assignment to Λ cannot be
removed. However, even in that case it is still beneficial to substitute
Λ in the second assignment and compute this expression as

Λ := S
(
STAWATS

)−1
ST

Xk+1 := Xk +WA
TS
(
STAWATS

)−1
ST (In −AXk). (7.5)

Again due to common subexpression elimination and a better paren-
thesization in the second assignment, this third variant (7.5) requires
only about 1.7 times as many FLOPs as the second variant (7.4); in
comparison, the first variant (7.3) is about 10 times as expensive as the
second one (7.4).6

Instead of requiring the user to manually change the input expres-
sion, Linnea could automatically explore whether it is beneficial to

6 Based on the best solutions that are found within 30 minutes.
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substitute assignments. The challenge is that the substitution of assign-
ments can conflict with other optimizations; substituting assignments
might undo a trick, and if there are multiple occurrences of the vari-
able that is substituted, it is the opposite of common subexpression
elimination. As a result, care has to be taken to avoid loops. In ad-
dition, the substitution of assignments can significantly increase the
size of an expression. Finally, in order to know whether or not a sub-
stituted assignment can be removed, it needs to be possible for the
user to specify whether this assignment is only used for convenience,
to simplify the description of the input expression, or because the
left-hand side of the assignment is an output operand that explicitly
needs to be computed. This could be implemented by adding a special
property to the input language for the operand on the left-hand side
of those assignments that can be removed.

In order to increase the flexibility of Linnea, it would be possible to
expose the number of different representations that are explored as
a parameter to the user. With such a parameter, the user could chose
between a faster generation time and the exploration of a larger search
space.





8
C O M M O N S U B E X P R E S S I O N E L I M I N AT I O N

Linear algebra expressions that appear in application problems fre-
quently contain common subexpressions, that is, a subexpression that
appears multiple times. In those cases, the algorithms for the applica-
tion of kernels as described in Ch. 5 generate a sequence of kernels
that computes this subexpression more than once. As an example,
consider the expression

X := ABC

Y := ABD,

where all matrices are square. This expression contains the common
subexpressionAB. One possible sequence of kernels for this expression
is

M1 ← AB

X←M1C

M1 ← AB

Y ←M1D.

Clearly, the second kernel call M1 ← AB is redundant and can be
removed.

Several algorithms exists for the detection and elimination of redun-
dant computations in a sequence of operations. This includes standard
common subexpression elimination, partial redundancy elimination,
and global value numbering [96, Chap. 13]. For Linnea, those algo-
rithms have the disadvantage that their ability to detect a common
subexpression depends on the sequence of kernels: Another sequence
that computes the expression shown above with the same cost as the
first one is

M1 ← BC

X← AM1

M2 ← BD

Y ← AM2.

In this sequence, AB is effectively still computed twice, but existing
algorithms are not able to detect this redundancy. By itself, this de-
pendency on the sequence of kernels is not a fundamental limitation
for Linnea because the exhaustive application of kernels eventually
generates every sequence, including those where the redundancy can
easily be detected and removed. Thus, after the construction of the

115
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search graph, existing common subexpression elimination algorithms
could simply be applied as a post-processing step on the sequences
of kernels. In practice however, due to pruning only a subset of all
sequences is explored. Recall that pruning is designed to only remove
sequences that are known to be suboptimal. If the elimination of
common subexpressions is performed on the sequences of kernels,
pruning can prevent finding the optimal solution when a suboptimal
sequence only becomes optimal through the elimination of common
subexpressions. In addition, this approach has the disadvantage that
it is not possible for the search algorithm to influence how the elimi-
nation of common subexpressions is combined with other generation
steps.

To avoid the adverse effect of pruning on the elimination of common
subexpressions, we developed an approach that does not operate on
the sequence of kernels: Instead, the idea is to rewrite the input
expression.1 For instance,

X := ABC

Y := ABD

can be rewritten to

M1 := AB

X :=M1C

Y :=M1D.

In the sequence of kernels generated for this expression, AB is com-
puted only once. In the following, we refer to such a rewriting as the
replacement of a common subexpression.

This approach has several advantages: It allows to reason about
common subexpressions and their elimination in a way that is not
possible otherwise. This reasoning can be used to integrate the search
for a good replacement, that is, a replacement that leads to a good
sequence of kernels, into the graph search of Linnea. In addition, it
is possible to ensure that common subexpression elimination takes
place already for the solutions found with the constructive algorithms.
This is especially advantageous because the replacement of common
subexpressions reduces the complexity of the input expression, such
that a first solution is found more quickly.

In the domain of linear algebra, the detection of common subex-
pressions is more difficult compared to scalar expressions because

1 Alternatively, it would also be possible to eliminate common subexpressions with
pattern matching: Whenever a match for a given kernel is found, all other occurrences
of the operation computed by this kernel are replaced too. This approach is mention
in Sec. 4.6, and it is used in CLAK [38]. It has the drawback that it depends on
the (arbitrary) order in which matches for kernels are found. Thus, similar to the
algorithms that operate on the sequences of kernels, with this approach the search
algorithm cannot influence the elimination of common subexpressions.
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Table 8.1: All common subexpressions and their number of occurrences in
the expression Xk+1 := Xk +WA

TS(STAWATS)−1ST (In −AXk).
Individual operands are not considered.

subexpression occurrences

AT 2

ST 2

ATS 3

WAT 3

WATS 3

AWATS 2

(STAWATS)−1ST 2

of transposition and inversion.2 The reason is that expressions such
as ABT and BAT can and should be considered as two occurrences
of the same common subexpressions because one is the transpose of
the other, that is ABT = (BAT )T . Similar, AS and SAT are a common
subexpression if S is symmetric.

Compared to existing algorithms for common subexpression elim-
ination that operate on sequences of operations, the replacement of
common subexpressions in expressions introduces several new chal-
lenges:

multiple subexpressions Especially when considering trans-
position and inversion, the number of common subexpressions in a
given expression can be relatively large. A good example is application
problem a.12 when written as a single assignment,

Xk+1 := Xk +WA
TS
(
STAWATS

)−1
ST (In −AXk),

where the matrix W is SPD. All common subexpressions (excluding
individual operands) are shown in Tab. 8.1. For those with more than
two occurrences, such as ATS, it is possible that the best sequence
of kernels is found by replacing only a subset of occurrences. The
application of factorizations further increases the number of common
subexpressions.

overlapping subexpressions With large numbers of common
subexpressions, it can happen that some occurrences overlap. This
can happen both between different common subexpressions, such as

2 This is a general problem that also applies to the detection of common subexpressions
in sequences of kernels.
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WAT and ATS in example problem a.12, but also for occurrences of
the same one: One such example is WATS in

2︷ ︸︸ ︷
Xk+1 := Xk +WA

TS
(
STAWATS

)−1
ST (In −AXk).︸ ︷︷ ︸ ︸ ︷︷ ︸

1 3

The occurrence labelled with 3 overlaps with the transposed occur-
rence 2, STAW. If some occurrences overlap either with occurrences
of the same or a different common subexpression, it might still be
possible to replace a subset of occurrences. Finally, there are cases
where some common subexpressions are fully subsumed by others:
All occurrences of both WAT and ATS are part of the occurrences of
WATS. In those cases, it may not be necessary to replace WAT or ATS
if WATS is replaced.

selection of replacements Not all common subexpressions
should be replaced, either because the replacement may not be ben-
eficial in terms of performance or numerical stability. Consider the
assignments

x := ABv

y := ABw

as an example. In order to compute the common subexpression AB, an
O(n3) matrix-matrix product is necessary. However, both assignments
can be computed with O(n2) FLOPs by evaluating the products from
right to left, only using matrix-vector products. An example of a
common subexpression that should not be replaced in the interest of
numerical stability is (AWAT )−1 in example problem a.4. In order to
compute the resulting expression

M :=
(
AWAT

)−1
xf :=WA

TM(b−Ax)

xo :=W
(
ATMAx− c

)
,

it is necessary to explicitly invert AWAT ; the original expression can
be computed by solving a linear system instead. Alternatively, it would
also be possible to only replace AWAT instead of (AWAT )−1. Finally,
simply replacing the largest common subexpression is not guaranteed
to lead to the best solution. For instance in case of example problem
a.4, the optimal solutions is found by first replacing WAT ; for problem
a.12 as shown above, replacing ATS leads to the best sequence of
kernels.

As can be seen from the proof in Sec. 4.6.3, the problem of finding an
optimal sequence of kernels in the presence of common subexpressions
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is NP-complete. For this reason, in Linnea we do not exhaustively
explore all possible replacements of common subexpressions. Instead,
heuristics are used to select only those that are most likely to lead
to a good sequence of kernels. For the selection, we focus on the
relationships between different common subexpressions and their
occurrences.

In this chapter, we introduce a formalism that makes it possible
to describe and reason about overlapping common subexpressions
(Sec. 8.1). This formalism is used as a heuristic to select which common
subexpressions are replaced. The actual algorithm for the detection,
selection, and replacement of common subexpressions is presented in
Sec. 8.2.

8.1 preliminaries

In this section, we introduce the formalism that is used in Linnea to
reason about common subexpressions. As part of this formalism, we
define some properties of common subexpressions that are used as
heuristics to decide when to replace them.

We begin with the description of the common subexpressions in an
expression. For this description, paths as defined in Def. 3.3 are not
sufficient to identify every subexpression in the presence of associative
operators. As an example, a+ b is a subexpression of a+ b+ c, but
when represented as a variadic function, there is no single node in
the expression tree that represents this subexpression. As a result,
there is also no single path that identifies this subexpression. While
it is possible to rewrite the variadic addition a+ b+ c as two binary
additions (a+ b) + c in order to introduce such a node, this rewriting
introduces a dependency between the path to a subexpression and the
representation of the expression. In addition, it becomes impossible to
simultaneously also refer to another subexpression such as b+ c. To
solve this problem, we define positions on expressions, which consist
of sets of paths. In the simplest case, a position p contains a single
path π. In this case, the position p behaves exactly the same as the
path π. If a position p contains more than one path, it identifies a
subset of the operands of an associative function. As an example, for
t = ABTC+D+E in Fig. 8.1, the position of the subexpression ABT is
{11, 12}. For functions f(t1, . . . , tn) that are only associative, all paths in
a position are adjacent, in order to reflect the fact that only sequences
of adjacent subexpressions ti form valid subexpressions. While {11, 12}
describes a valid subexpression of ABTC+D+E, {11, 13} does not. For
functions that are associative and commutative, the paths do not have
to be adjacent; {1, 3} is a valid position that identifies the subexpression
ABTC+ E.
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Definition 8.1 (Position). Given an expression t ∈ T(Σ,X), a position is
a set of paths p ⊂ Paths(t). The set of positions of t, Pos(t), is defined
as:

1. If t ∈ X ∪ Σ(0), then Pos(t) := {{ε}}, where ε denotes the empty
sequence.

2. If t = f(t1, . . . , tn), and

a) f is not associative, then

Pos(t) :=
n⋃
i=1

{{iπ1, . . . , iπk} | {π1, . . . ,πk} ∈ Pos(ti)}

∪ {{ε}}

b) f is associative but not commutative, then

Pos(t) :=
n⋃
i=1

{{iπ1, . . . , iπk} | {π1, . . . ,πk} ∈ Pos(ti)}

∪ {{ε}}∪ PosA

where PosA is the set of all sets that contain sequences of
adjacent integers from {1, . . . ,n}, that is

PosA := {{i, i+ 1, . . . , i+ l− 1} |

for all i ∈ {1, . . . ,n− l+ 1}, l ∈ {2, . . . ,n− 1}}

c) f is associative and commutative, then

Pos(t) :=
n⋃
i=1

{{iπ1, . . . , iπk} | {π1, . . . ,πk} ∈ Pos(ti)}

∪ {{ε}}∪ PosAC

where PosAC is the set of all subsets of {1, . . . ,n} with at
least two and at most n− 1 elements, that is

PosAC := {P | for all P ⊂ {1, . . . ,n} with 2 6 |P| 6 n− 1}

The subexpression at p ∈ Pos(t), denoted by t|p, is defined as:

1. If p = {π}, then t|p := t|π.

2. If p = {τi1, . . . , τin} with i1, . . . , in ∈ N, i1 < . . . < in and
t|τ = f(t1, . . . , tk), then t|p := f(ti1 , . . . , tin). �

As an example, the set of all position of ABTC+D+ E in Fig. 8.1 is

Pos(t) =
{
{ε}, {1}, {11}, {12}, {121}, {13}, {2}, {3},

{1, 2}, {1, 3}, {2, 3}, {11, 12}, {12, 13}
}

.
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+
ε

×
1

A
11

T
12

B
121

C
13

D
2

E
3

Figure 8.1: Expression tree for ABTC+D+ E. Nodes are labelled with their
paths.

In the definition of positions, for t = f(t1, . . . , tn) where f is associa-
tive (and optionally commutative), we exclude the position {1, . . . ,n}
from Pos(t). This ensures that positions are unique. If we included
this position, for an expression t ′ with π ∈ Paths(t ′) and t ′|π = t, it
would be possible to refer to t in two different ways: With the position
{π} containing a single path, or with a set of paths {π1, . . . ,πn}, one
path for every ti in f. By excluding {1, . . . n}, the latter is not possible.

Definition 8.2 (Common Subexpression). Given an expression t ∈
T(Σ,X), a common subexpression of t is a set of positions P ⊂ Pos(t)
with |P| > 1, such that for all p1,p2 ∈ P with p1 6= p2, t|p1 = t|p2
holds. The set of all common subexpressions of an expression t is
denoted by CSE(t). �

For an expression t and a common subexpression P ∈ CSE(t), we
refer to a position p ∈ P as an occurrence of the common subexpression
in t. In the following, if it is clear from the context, we usually refer
to a common subexpression P ∈ CSE(t) by one of its occurrences t|p,
p ∈ P, instead of the set of positions P.

Transposed (and similarly, inverted) common subexpressions can
be incorporated with an equivalence relation on expressions. As an
example, let t1 ∼ t2 be the relation t1 = t2∨ t1 = tT2 . The definition of
common subexpressions can be extended to take into account such an
equivalence relation as follows:

Definition 8.3 (Common Subexpression under Equivalence). Given an
expression t ∈ T(Σ,X), a common subexpression of t under an equivalence
∼ is a set of positions P ⊂ Pos(t), such that for all p1,p2 ∈ P, t|p1 ∼ t|p2 .
The set of all common subexpressions that are equivalent under ∼ of
an expression t is denoted by CSE∼(t). �

As shown earlier, it is possible for different occurrences of one or
more common subexpressions to overlap with one another. Whether
two occurrences overlap can be tested using positions.
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Definition 8.4 (Overlapping Positions). Let t ∈ T(Σ,X) be an expres-
sion, p1,p2 ∈ Pos(t) be two positions, and l1 and l2 be the lengths of
the paths in p1 and p2, respectively. p1 and p2 overlap if and only if

1. l1 = l2 and p1 ∩ p2 6= ∅, or

2. l1 > l2 and the common prefix π of length l2 of the paths in p1
is contained in p2, or

3. l1 < l2 and the common prefix π of length l1 of the paths in p2
is contained in p1. �

Example 8.1. Let t = ABTC+D+ E, p1 = {12, 13} and p2 = {121},
such that t|p1 = BTC and t|p2 = B. Then, l1 = 2 and l2 = 3. The
common prefix of length l1 = 2 of the paths in p2 is 12. Since 12 ∈ p1,
p1 and p2 overlap. �

A common subexpression P ∈ CSE∼(t) is said to be replaceable if
for all p1,p2 ∈ P with p1 6= p2, p1 and p2 do not overlap. If a common
subexpression is not replaceable, it might be possible to make it
replaceable by only considering a subset P ′ ⊂ P of its occurrences.

Similar to the overlap relation, we define a relation among subex-
pressions to test whether one is contained within the other.

Definition 8.5 (Subexpression Relation on Positions). Let t be an
expression, p1,p2 ∈ Pos(t) be two positions, and l1 and l2 be the
lengths of the paths in p1 and p2, respectively. The occurrence at
position p1 is a subexpression of the occurrence at p2, denoted by
p1 @ p2, if

1. l1 = l2 and p1 ⊂ p2, or

2. l1 > l2 and the common prefix π of length l2 of the paths in p1
is contained in p2. �

Example 8.2. Let t = ABTC+D, p1 = {11, 12} and p2 = {1}, such that
t|p1 = AB

T and t|p2 = AB
TC. Then, l1 = 2 and l2 = 1. The common

prefix of length l2 = 1 of the paths in p1 is 1. Since 1 ∈ p1, p1 is a
subexpression of p2. �

Using this subexpression relation on positions, we can formalize
what it means for a common subexpression to be subsumed by an-
other. The subsume relation forms a partial order on all common
subexpressions of an expression. It can be used as a heuristic to de-
cide which common subexpressions to replace as follows: A common
subexpression is only used if it is maximal according to the partial
order, that is, it is only used if it is not subsumed by any other common
subexpression.

Definition 8.6 (Subsume Relation). Given an expression t ∈ T(Σ,X)
and two common subexpressions P1,P2 ∈ CSE∼(t), P1 subsumes P2
if for every p2 ∈ P2, there is a p1 ∈ P1 such that p2 @ p1. In the
following, we also write P2 @ P1 if P1 subsumes P2. �
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Example 8.3. We use problem a.5,

x := (A−TBTBA−1 + RTLR)−1A−TBTBA−1y, (8.1)

as an example. To reduce the length of paths throughout this example,
we consider the right-hand side of (8.1) as ε. We look at three common
subexpression: A−TBTBA−1, BTB and A−TBT . Their positions are
shown, from left to right, in (8.2), (8.3), and (8.4), respectively.

p1 = {111} p2 = {2, 3, 4, 5} (8.2)

q1 = {1112, 1113} q2 = {3, 4} (8.3)

r1 = {1111, 1112} r2 = {1113, 1114} r3 = {2, 3} r4 = {4, 5} (8.4)

1. A−TBTBA−1 subsumes BTB because q1 @ p1 and q2 @ p2.

2. A−TBTBA−1 subsumes A−TBT too because r1 @ p1, r2 @ p1,
r3 @ p2 and r4 @ p2.

3. BTB and A−TBT are not comparable according to the subsume
relation because none of their positions are comparable. �

In practice, using the subsume relation as a heuristic is insufficient
because it does not consider how many occurrences of a common
subexpression can actually be replaced. For instance, in case of exam-
ple problem a.12, written as a single assignment,

Xk+1 := Xk +WA
TS
(
STAWATS

)−1
ST (In −AXk),

the common subexpression ATS would not be used because it is
subsumed by WATS. However, while both appear three times, only
for the former, all occurrences can be replaced at the same time; two
occurrences of WATS overlap with one another. Thus, in addition
to the subsume relation, we also take into account the number of
replaceable occurrences, that is, the maximal number of occurrences
that do not overlap with one another.

Definition 8.7 (Maximal-Replaceable CSE). Given an expression t ∈
T(Σ,X) and a set of positions P ⊂ Pos(t), let |P|R ∈ N be the the
size of the largest subset P ′ ⊆ P such that for all p1,p2 ∈ P ′, p1
and p2 do not overlap. A common subexpression Q ∈ CSE∼(t) is
maximal-replaceable if for all common subexpressions Q ′ ∈ CSE∼(t)

with Q @ Q ′, |Q|R > |Q ′|R holds. �

Intuitively, |P|R is the maximal number of occurrences that can be
replaced at the same time. A common subexpression is maximal-
replaceable if increasing the size of the subexpression always reduces
the number of replaceable occurrences. Conversely, a common subex-
pression is not maximal-replaceable if it is possible to increase its size
and keep the number of replaceable occurrences constant. If |P|R = 1,
there are no two occurrences that can be replaced at the same time;
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WATS 2

WAT 2 ATS 3 AWATS 1

(STAWATS)−1ST 1

Figure 8.2: The subsume relation of the common subexpressions in example
problem a.12. The common subexpressions at the bottom are sub-
sumed by the ones at the top. Nodes are labelled with their |P|R;
blue nodes are maximal-replaceable. As explained in Sec. 8.2.1,
single transposed operands are not considered for replacement;
for this reason, AT and ST are not included in this graph.

such common subexpressions are not considered for replacement. As
an example, consider again

Xk+1 := Xk +WA
TS
(
STAWATS

)−1
ST (In −AXk).

A visualization of the subsume relation of the common subexpres-
sions in this expression is shown in Fig. 8.2. The common subexpres-
sion WAT is not maximal-replaceable because it can be replaced two
times, as often as the common subexpression WATS that subsumes
it. ATS on the other hand is maximal-replaceable; while it is also
subsumed by WATS, all of its three occurrences can be replaced at
the same time. WATS is not subsumed by AWATS because the left-
most occurrence of the former is not contained in any occurrence
of the later. Thus, since WATS is not subsumed by any other com-
mon subexpression, it is maximal-replaceable. Even though according
to the definition, (STAWATS)−1ST is maximal-replaceable too, nei-
ther (STAWATS)−1ST nor AWATS are considered for replacement
because both can only be replaced once.

8.2 the algorithm

The common subexpression elimination algorithm in Linnea consists
of three parts; the detection of common subexpressions, the selection
of those common subexpressions that are replaced, and the actual
replacement. As the equivalence relation t1 ∼ t2 on expressions, we
use t1 = t2 ∨ t1 = tT2 ∨ t1 = t−12 ∨ t1 = t−T2 to account both for
transposed and inverted occurrences.

8.2.1 Detection

The detection of common subexpressions can be thought of as group-
ing the positions of equivalent subexpressions. This is implemented as
the construction of a mapping from expressions to lists of positions. In
this mapping, equivalent subexpressions are mapped to the same list.
As an example, the mapping for the expression ABT +CBAT is shown
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CB
[
{21, 22}

]
ABT

[
{1}, {22, 23}

]
BAT

CBAT
[
{2}
]

ABT +CBAT
[
{ε}
]

Figure 8.3: The mapping for the detection of common subexpression in
ABT +CBAT . Entries for single operands are not included.

1 cses := dict() # dictionary initialization
2 for P in Pos(s):
3 t := s|P
4 subexpr := None
5 for t ′ in [t, tT , t−1, t−T ]:
6 if t ′ in cses:
7 subexpr := t ′

8 break
9 if subexpr is None:

10 cses[t] := [P] # add entry t 7→ [P]

11 else:
12 cses[t] := cses[subexpr] # add reference from t to list of positions
13 cses[t].append(P) # append P to list of positions

Figure 8.4: Pseudocode of the algorithm for the detection of common subex-
pressions.

in Fig. 8.3. The pseudocode of the algorithm that constructs the map-
ping is shown in Fig. 8.4. The algorithm proceeds as follows: Given
an expression s, all subexpressions t = s|P, P ∈ Pos(s) are constructed
(lines 2–3). For every t, it is tested whether any equivalent expression
of t, that is, tT , t−1, or t−T , is in the mapping (lines 5–8). If there is no
entry yet, an entry added that maps t to a list containing its position
P (lines 9–10). If there is an entry t ′ 7→ l, where t ′ is equivalent to t,
then an entry is created that maps t to l (line 12), and P is added to
the existing list l (line 13). All lists that contain at least two positions
that do not overlap form a common subexpression.

The complexity of this algorithm is determined by the number of
positions |Pos(s)|. In the worst case, with functions that are associative
and commutative, the number of positions can be exponential in the
number of nodes in the expression tree of s (see Def. 8.1).

Subexpressions that should not be considered for the elimination
of common subexpressions are already excluded from this mapping.
Those subexpressions are

1. single operands, because they do not require any computation,
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2. transposed operands, because many kernels support transposed
input operands, and replacing transposed operands introduces
explicit transposition,

3. inverted expressions that appear in products, because they in-
troduce explicit inversion when a linear system could be solved
instead, and

4. expressions that only consist of operands resulting from the
application of a factorization, because kernels are not applied to
such expressions (see Sec. 4.4).

Equivalence relations can lead to the detection of spurious common
subexpressions that are not replaceable. This problem can be illus-
trated with the expression t = (AB)−1C. Since t|{1} = (AB)−1 is the
inverse of t|{11} = AB, according to Def. 8.3 this expression contains
the common subexpression {{1}, {11}}. To avoid the detection of such
common subexpression, one could exclude subexpressions from the
mapping that have the inversion (or transposition) operator at their
root. As a result, in the previous example, t|{1} = (AB)−1 would not
be added to the mapping. While the exclusion of such subexpressions
prevents that (AB)−1 is detected as a common subexpression, it does
not prevent that AB is detected as part of another common subex-
pression as long as t|{11} = AB is added to the mapping. In Linnea,
excluding such subexpressions is not necessary because the transpo-
sition is always distributed, such that transposition only appears on
single operands, and both transposed operands as well as inverted
expressions are already excluded from the mapping.

8.2.2 Selection

The selection of common subexpressions consists of two phases: In
the first phase, we select all the maximal-replaceable ones. In the
second phase, for the remaining common subexpressions, subsets of
replaceable occurrences are selected.

In order to identify maximal-replaceable common subexpressions,
|P|R needs to be determined. This is be done as follows: In a first step,
a graph is constructed where each position in P is represented by a
node, and two nodes are connected with an edge if the positions do
not overlap. |P|R is then given by the size of a maximum clique of the

A maximum clique
is a clique with the

largest possible
number of nodes in a

given graph. A
clique is maximal if

its size cannot be
increased. While all

maximum cliques are
also maximal, the

reverse does not hold
in general.

graph.While the problem of finding cliques in a graph is NP-complete
[46], in practice, those graphs usually have less than ten nodes. To find
cliques, the algorithm by Bron and Kerbosch is used [19]. An example



8.2 the algorithm 127

1 2

3 4

Figure 8.5: Compatibility graph of the common subexpression Bk−1ATWk.

of the graph for the common subexpression Bk−1ATWk in example
problem a.16,

Bk :=
k

k− 1

(
(Bk−1

−

2 4︷ ︸︸ ︷ ︷ ︸︸ ︷
Bk−1A

TWk
(
(k− 1)Il +W

T
kABk−1A

TWk
)−1

WT
kABk−1

)
︸ ︷︷ ︸ ︸ ︷︷ ︸

1 3

,

here with Bk−1 multiplied in, is shown in Fig. 8.5. This graph con-
tains two maximum cliques; {1, 2, 4} and {1, 3, 4}. It follows that |P|R of
Bk−1A

TWk is 3.
For the selection of the subsets of replaceable occurrences, we use

again the graph of positions: A subsets of replaceable occurrences
corresponds to a clique in the graph of positions. In Linnea, we only
consider maximal cliques. In the example, the two maximum cliques
{1, 2, 4} and {1, 3, 4} are also the only maximal cliques.

8.2.3 Replacement

For each common subexpression that is replaced, a new intermediate
operand is generated that represents the replaced expressions. The
intermediate operand is added to the table of intermediate operands,
such that the properties of the intermediate operand can be inferred
from the common subexpression (see Sec. 6.2). In sequences of multiple
assignments, the new assignment is placed directly above the first
assignment that contains an occurrences.

With transposed and inverted common subexpressions, there is the
choice of which occurrences are considered as the original, and which
ones are considered to be transposed and/or inverted. For instance,
in X := ABT +CBAT , one could either consider ABT as the original
occurrence, and BAT as the transposed one, or vice versa. If ABT is
considered as the original, the replacement yields

M := ABT

X :=M+CMT .

Alternatively, one obtains

M := BAT

X :=MT +CM.

In Linnea, one alternative is chosen arbitrarily.
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successor generation order To determine the order in which
the different replacements are returned, we use two criteria:

1. The overall number of operands that is replaced, that is, the
number of occurrences times the number of operands per occur-
rence.

2. The number of occurrences that is replaced.

All common subexpression that are considered for replacement are
sorted by the overall number of operands in decreasing order. To break
ties, the number of occurrences is used; common subexpressions with
a larger number of occurrences are given precedence.

While the cost of computing a common subexpression might be
an obvious criterion, it is difficult to use in practice. The problem
is that this cost is not known at the time of the replacement; it is
necessary to find a sequence of kernels that computes the common
subexpression first. In addition, if the replaced common subexpression
contains others that might be replaced later, the cost depends on the
replacement of other common subexpressions.

8.3 conclusion

The presented algorithm for the elimination of common subexpres-
sions, especially the selection process, is designed to be flexible and
modular. The implementation in Linnea is only one of many alter-
natives; it was chosen because in combination with Linnea’s search
algorithm, it produces good results for the example problems used in
the experiments.

The algorithm is designed to replace one common subexpression at
a time; to replace multiple common subexpressions in one expression,
we rely on the fact that in the graph search, common subexpression
elimination is applied repeatedly. Alternatively, one could also replace
multiple common subexpressions at once. This can be done by con-
structing graphs of positions for multiple common subexpressions; for
example pairs of two common subexpressions, or even all common
subexpressions in an expression. In that case, care has to be taken
because it is possible that cliques contain only one occurrence of a
common subexpression. The replacement of multiple common subex-
pressions at once might be useful when the common subexpression
elimination algorithm is applied to an expression only once.

In situations where the exploration of a search space is not possible,
the selection can be adapted to only select one common subexpression.
In that case, as a heuristic one could rank common subexpressions by
their cost of computation, or the memory required for the result.
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Some of the material
presented in this
chapter has been
published in [6], [8],
and [9].

A path in the search graph is only a symbolic representation of an
algorithm; it still has to be translated to actual Julia code. Most im-
portantly, all operands are represented symbolically, with no notion
of where and how they are stored in memory. During the code gener-
ation, operands are assigned to memory, and it is decided in which
storage format they are stored.

Many BLAS and LAPACK kernels overwrite one of their input
operands. As an example, the GEMM kernel αAB+ βC writes the
result into the array containing C. While overwriting input operands
can be used to reduce the amount of memory used, as a consequence
the code cannot be in SSA form; a conversion out of SSA form is
necessary. In order to make use of the kernels’ ability to overwrite
input operands, a naive conversion of the individual calls is not suf-
ficient. A call such as M ← αAB+ βC can be translated to code by
allocating memory for the output operand M, copying C to M, and
using M instead of C as an argument. However, if C is not used again
later, neither the allocation nor the copy is necessary; they can both
be avoided by passing the original C and allowing M to overwrite it.
A conversion out of SSA form that is able to avoid those unnecessary
allocations and copies requires a liveness analysis to determine when
operands can be overwritten.

Some kernels use specialized storage formats for matrices with
properties. For instance, the GETRF kernel that computes the LU fac-
torization only stores the upper, non-zero part of the upper triangular
matrix U. Those storage formats have to be considered when gen-
erating code: While specialized kernels for triangular matrices only
access the non-zero entries, a more general kernel would read from
the entire array. Thus, it has to be ensured that operands are always in
the correct storage format, if necessary through a conversion.

In addition, specialized storage formats make it possible that an
array contains multiple operands. Some kernels make use of this
option for their output. GETRF for example stores both L and U in
the array that contained its input operand.1 If multiple operands are
stored in the same array, care has to be taken to ensure that an operand
is not accidentally overwritten. Most of the challenges related to
storage formats can be avoided by always converting operands to full
matrices, where all entries are represented explicitly. This approach is

1 Some kernels also require that multiple input operands are stored in the same array.
One such example is the GETRS kernel that uses the result of a LU factorization to
solve a linear system. As mention in Sec. 5.7, such kernels are not used in Linnea, so
it is not necessary to support this case.

129
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implemented by the majority of other languages and libraries for linear
algebra. However, it has the disadvantage that is requires additional
copies and memory. For instance, in case of the LU factorization, the
conversion of all operands to full matrices almost triples the amount
of required memory: After the call to GETRF, L and U are stored in
a single array of size n× n; the permutation matrix P is stored as
a one-dimensional vector of size n. As full matrices, the amount of
memory required by those operands increases from n2 +n to 3n2.

The goal of the code generation in Linnea is to perform the con-
version out of SSA form while avoiding copies and storage format
conversions as much as possible. It should be noted that while Linnea
currently only generates Julia code, the approach described in this
chapter is not specific to any particular language.

memory model Linnea operates on a continuous amount of mem-
ory which is populated with memory locations that are allocated and
freed2 as necessary. A memory location is a consecutive piece of mem-
ory that contains one or more operands. In case of Julia, memory
locations are typically arrays. Their physical location during the exe-
cution is determined by the Julia runtime environment. It is assumed
that all operands are available in memory and do not have to be read
from or written to files.

organization of this chapter This chapter is structured as
follows: In Sec. 9.1, the algorithm for the code generation is outlined.
Storage formats and storage format conversions are discussed in more
detail in Sec. 9.2. This chapter concludes with some possible directions
for future work in Sec. 9.3.

9.1 translation to memory-ir

In order to generate the code, the symbolic representation of an al-
gorithm is translated to an augmented representation that considers
the location of operands in memory, their storage formats, as well as
memory operations such as copies and storage format conversions.
In the following, we refer to this representation as the Memory-IR
(M-IR). The grammar of the M-IR is shown in Fig. 9.1. In addition to
the kernel calls, the M-IR includes the following memory operations:

(1) The allocation of an uninitialized memory location. As an ex-
ample, for a matrix of size 100× 100, this operation translates
to Array{Float64}(undef, 100, 100) in Julia.

(2) The allocation of a memory location that is initialized with
a constant operand. In the case of a square identity matrix

2 Since Julia uses garbage collection, memory locations are freed automatically.
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code = { kernel | mem_op };

mem_op = ml "= alloc(" int "," int ")"; (1)

| ml "=" const; (2)

| "copy(" ml "," ml ")"; (3)

| "convert(" ml "," format "," format ")"; (4)

| ml "= convert(" ml "," format "," format ")"; (5)

const = "Identity(" int "," int "," format ")";

| "Zero(" int "," int "," format ")";

| number;

Figure 9.1: Grammar of the M-IR in extended Backus–Naur form. The non-
terminal kernel represents a kernel call, ml is a memory location,
int is a positive integer, format is a storage format as shown in
Tab. 9.1, and number is a floating-point number.

of size 100 which is stored as a full matrix, this operation is
translated to Array{Float64}(I, 100, 100).

(3) The creation of a copy of an operand. Since this operation
does not allocate a new memory location for the copied
operand, it needs to be preceded by an allocation. This oper-
ation is implemented with the BLAS COPY kernel.

(4), (5) The conversion of the storage format of an operand, either
in-place (4) or out-of-place (5). convert takes as arguments
both the input and the output storage format. Out-of-place
conversions allocate memory for the output operand; an
additional allocation operation is not necessary.

The idea for the conversion to M-IR is to traverse the sequence
of kernels, assign symbolic operands to memory locations, and add
memory operations as necessary. During the translation, a mapping
µ : Σ(0) → ML is used to assign all live symbolic operands (Σ(0)) to
their memory locations (ML). A second mapping ρ : Σ(0) → SF as-
signs symbolic operands to their storage formats (SF). Both mappings
are updated during the translation to reflect the current state of the
memory during the execution of the code. µ is used to assign memory
locations to the arguments of kernels, while ρ is used to determine
if storage format conversions are necessary. In order to determine if
the modification of an operand in a given memory location may affect
another operand in the same memory location, for each memory loca-
tion there is a list of the operands it currently contains. The translation
algorithm performs the following steps:

1. In order to determine if and when operands can be overwritten, a
liveness analysis is performed on the symbolic representation of
the algorithm. Since this representation is in SSA form and does
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not contain any control flow statements3, the liveness analysis is
trivial: The kernels are traversed in reverse order. If an operand
shows up as the input of a kernel for the first time, that is its last
use. If an operand shows up as the output, that is its definition.

2. µ and ρ are initialized with the input operands of the algorithm.
Since constant operands are not considered part of the input,
but instead created when necessary, they are not added to µ and
ρ in this step. At present, it is assumed that all input matrices
are stored as full matrices.

3. The sequence of kernels is traversed. In order to generate mem-
ory operations and update µ and ρ, the algorithm inspects the
input and output operands of each kernel.

For input operands, there are two cases to consider:

a) If the storage format of an input operand of a kernel is
not compatible with the required storage format, a storage
format conversion is generated. The storage format in ρ is
updated. If the conversion has to be done out-of-place, µ is
updated with the new location. Storage formats as well as
storage format conversions are discussed in more detail in
Sec. 9.2.

b) For input operands that are constant (for example the iden-
tity matrix), one of the following two actions is performed:
If the operand is overwritten by the kernel, a new memory
location is allocated that is initialized with the operand,
and the new operand is added to µ. Alternatively, if the
operand is not overwritten, the constant operand is passed
directly. Constant operands are directly generated in the
required storage format.

For output operands, there are three cases:

a) For output operands that do not overwrite an input operand,
a new memory location is allocated and the operand is
added to µ.

b) For output operands that would overwrite an input operand
that is still needed (its liveness extends past the current
kernel), the memory location containing the operand that
would be overwritten is copied. After the generation of the
copy operation, µ is updated with the new location of the
copied operand or operands. The existing memory location
is used for the output operand.

3 While the code snippets for operations not supported by BLAS and LAPACK may
contain loops, those snippets are implemented so that they can be treated as a single
kernel.
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c) For output operands that overwrite an input operand that
is not needed anymore (its liveness ends at the current
kernel), no memory operations need to be generated. The
output operand is added to µ.

In all three cases, the storage formats of the output operands
are added to ρ. After all input and output operands of a kernels
are inspected, µ is used to replace the symbolic operands in the
kernel call with their memory locations, and all input operands
whose liveness ends at the current kernel are removed from µ

and ρ.

Example 9.1. As an example for the translation to M-IR, we use the
artificial input problem

X := αAB+ 3I

Y := CDE+ LX.

All matrices have size 1000×1000. L is lower triangular, I is the identity
matrix; all other matrices are full. Let

X← αAB+ 3I

M1 ← DE

M2 ← LX

Y ← CM1 +M2

be a sequence of kernels generated for this problem. The code for this
algorithm in M-IR is shown in Fig. 9.2. The comments in lines 1, 6,
11, 17, and 21 show the state of µ, the remaining comments show the
operations computed by the kernels. Since all operands are stored as
full matrices throughout the algorithm, storage format conversions
are not necessary.

ll. 1–4 The constants 3 and I are not considered to be part of the
input to the algorithm, and they are initially not contained
in µ. Instead, they are only instantiated and added to µ
when they are needed. Since the first GEMM call overwrites
the memory location that contains I on input with its
output X, I has to be stored in a memory location; 3 can
instead be passed directly.

ll. 6–9 The second GEMM call only computes the product of D
and E; since beta is set to zero, nothing is overwritten. In
this case, an empty memory location is allocated for the
output M1.

ll. 11–15 The TRMM call that computes LX overwrites the memory
location that contains X, ml7, with its output M2. However,
since X is an output of the algorithm, its liveness does
not end at this kernel. Thus, the memory location ml9 is
allocated, and X is copied to it.
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1 # {α 7→ ml0,A 7→ ml1,B 7→ ml2,L 7→ ml3,C 7→ ml4,D 7→ ml5,E 7→ ml6}

2 ml7 = Identity(1000, 1000, full)

3 # X← αAB+ 3I

4 gemm!(’N’, ’N’, ml0, ml1, ml2, 3.0, ml7)

5

6 # {L 7→ ml3,C 7→ ml4,D 7→ ml5,E 7→ ml6,X 7→ ml7}

7 ml8 = alloc(1000, 1000)

8 # M1 ← DE

9 gemm!(’N’, ’N’, 1.0, ml5, ml6, 0.0, ml8)

10

11 # {L 7→ ml3,C 7→ ml4,X 7→ ml7,M1 7→ ml8}

12 ml9 = alloc(1000, 1000)

13 copy(ml7, ml9)

14 # M2 ← LX

15 trmm!(’L’, ’L’, ’N’, ’N’, 1.0, ml3, ml7)

16

17 # {C 7→ ml4,X 7→ ml9,M1 7→ ml8,M2 7→ ml7}

18 # Y ← CM1 +M2

19 gemm!(’N’, ’N’, 1.0, ml4, ml8, 1.0, ml7)

20

21 # {X 7→ ml9, Y 7→ ml7}

Figure 9.2: Example of the M-IR.

ll. 17–19 Since the liveness of M2 ends at the final GEMM call, it
can safely be overwritten with the output Y.

l. 21 At the end of the algorithm, X is stored in memory location
ml9, and Y is stored in ml7. �

code generation for kernels calls Most BLAS and LA-
PACK kernels require arguments that go beyond the mathematical
input operands. For instance, a call to the TRSM kernel that solves the
upper triangular linear system 2U−TB has only three mathematical
input operands; 2, U, and B. However, as Julia code, the same call is
written as trsm!(’L’, ’U’, ’T’, ’N’, 2.0, ml0, ml1), where ml0

and ml1 are memory locations that contain the input operands U
and B. The first four arguments determine the specific operation that
this call to TRSM computes. For example, ‘U‘ specifies that an upper
triangular systems is solved. Those arguments can be ignored for the
purpose of this chapter; they were set during the generation of the
patterns that represent the operations computed by a kernel from the
description of kernels through partial function application (see App. b,
especially App. b.1.8). Only a few of the BLAS and LAPACK wrappers
in Julia expose arguments for operand sizes and strides. One such case
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Table 9.1: Description of the storage formats supported by Linnea. Matrices
are of size m×n.

storage format description

full All entries are represented explicitly.

upper_triangular/
lower_triangular

Upper/lower triangular matrix, stored
in a two-dimensional array of size m×n.
Only the non-zero upper/lower triangu-
lar half is represented explicitly.

upper_triangular_ud/
lower_triangular_ud

As above, except that the elements on
the diagonal are 1, and the diagonal is
not represented explicitly.

symmetric_upper/
symmetric_lower

Symmetric matrix stored in a two-dimen-
sional array of size m×n. Only the up-
per/lower triangular half is represented
explicitly.

diag_vec Diagonal matrix, stored as a one-dimen-
sional array of size min(m,n) that only
contains the diagonal elements.

perm_vec Permutation matrix, stored as a one-di-
mensional array that contains a permu-
tation of the integers {1, . . . ,n}.

ipiv Permutation matrix, stored as a one-di-
mensional array as produced by the LU
factorization kernel GETRF.

is the DOT kernels with the signature dot(n, X, incx, Y, incy); n
is the length of the vectors X and Y, and incx and incy are their strides.
The kernel description allows to specify how to set such arguments
based on the mathematical input operands, in this case X and Y. Those
arguments are then set automatically during the translation to M-IR
when µ is used to replace the symbolic operands.

9.2 storage formats

The storage formats supported by Linnea are shown in Tab. 9.1. During
the translation to M-IR, storage format conversions are added when
necessary. To avoid unnecessary conversions, Linnea implements a
mechanism to reason about them: A compatibility relation on the
storage formats is defined that forms a partial order. Given two storage
formats x and y, x is considered to be compatible with y if 1) all values
that are explicitly represented in x are also explicitly represented in
y, and 2) those values are stored in the same positions (relative to
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1 output = zeros(Float64, m, n)

2 for i = 1:min(m, n);

3 output[i, i] = input[i];

4 end;

Figure 9.3: Code snippet for the storage format conversion from diag_vec to
full.

the first element of the memory location) in both formats.4 It should
be noted that the values in a given storage format do not need to be
actual elements of the matrix. As an example, the perm_vec format is
a permutation of the integers {1, . . . ,n}, even though the permutation
matrix that is represented only has elements that are either 0 or 1.
The input operands of all kernels are annotated with the required
storage formats (see App. b.1). If the format of the input operand is
compatible with the required one, no conversion is necessary; only if
it is not, a conversion is selected returns a compatible format. To this
end, Linnea contains a collection of storage format conversions. Due
to the transitivity of the compatibility relation, it is not necessary to
provide conversions for all pairs of formats; if no conversion to the
required format is available, a conversion to a different compatible
format can be used instead.

As an example for how the compatibility relation is used, consider
the TRSV kernel that accesses only the lower triangular half of the
input matrix A. In this case, we say that TRSV requires A to be in
the lower_triangular format. If a matrix that is stored as full is
passed to TRSV, no storage format conversion is necessary because
lower_triangular is compatible with full. The reverse does not hold:
If a kernel requires a full matrix, it is not possible to use one that is
stored as lower_triangular; it is necessary to set the upper half to
zero first. There are also cases where two storage formats for a given
property are not compatible in either direction: One such example are
diagonal matrices, which can be stored as full and diag_vec. As a
result, storage format conversions are necessary in both directions.

Storage format conversions are implemented as code snippets in
Julia. In some cases, the conversion can be done with an existing
function. For instance, the conversion from full to diag_vec is imple-
mented with the diag function. The conversion in the other direction
is implemented with the code shown in Fig. 9.3.

We distinguish between two different types of conversions: In-place
and out-of-place. Whenever possible, storage format conversions are
done in-place. This may not be possible if 1) the amount of memory
used changes, for example when converting between diag_vec and

4 In an object-oriented language, a storage format could also be represented by a
class. Different storage formats are compatible if the classes implement compatible
interfaces.
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full, or 2) when the conversion would overwrite another operand
that is still needed. The latter can happen after factorizations such
as LU, when both L and U are stored in the same memory location.
To save implementation effort, storage format conversion that can
be done in-place are only implemented as in-place conversions; if it
is necessary to perform the conversion out-of-place, the operand is
copied first.

During the translation to M-IR, storage format conversions are se-
lected as follows: Given the format of the input operand and the
required format, all conversions with the input format as their source
format are checked. The first conversion that has a target format that
is compatible with the required format is used. Once a conversion is
selected, the necessary memory operations are generated: Since the
allocation of the new location is part of out-of-place conversions, no al-
location operation is necessary. For in-place conversions, there are two
cases to consider: 1) If no other operand is stored in the memory loca-
tion, the conversion is done in place; no additional memory operation
are necessary. 2) If another operand is stored in the same location, the
conversion is done out-of-place. In this case, a new memory location
is allocated, the operand that needs to be converted is copied to the
new location, and the conversion is performed on the new location. In
all cases, ρ is updated with the new storage format. If applicable, µ is
updated with the new memory location of the converted operand.

Example 9.2. We demonstrate how storage formats are considered in
the translation to M-IR with the expression X := ATA+BD. All matri-
ces have size 1000× 1000. With the exception of D, which is diagonal,
all matrices are full. As a sequence of kernels for this expression, we
use

M1 ← ATA

M2 ← BD

X←M1 +M2.

The code in M-IR is shown in Fig. 9.4.

l.5 The product ATA is computed with the SYRK kernel; the
result M1 is stored in the symmetric_lower format.

ll.9–11 The DIAGMMR kernel is a code snippet that computes
the product XY, where Y is diagonal. Y has to be stored in
the diag_vec format, that is, as a one-dimensional vector
that only contains the elements on the diagonal. Since D is
initially stored as a full matrix, a storage format conversion
is introduced. This conversion has to be done out-of-place,
so D is moved from ml1 to the new location ml4.

ll.15–17 The AXPY kernel that is used to compute the sum M1 +

M2 requires both operands to be stored as full matrices.
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1 # µ = {A 7→ ml2,B 7→ ml0,D 7→ ml1}

2 # ρ = {A 7→ full,B 7→ full,D 7→ full}

3 ml3 = alloc(1000, 1000)

4 # M1 ← ATA

5 syrk!(’L’, ’T’, 1.0, ml2, 0.0, ml3)

6

7 # µ = {B 7→ ml0,D 7→ ml1,M1 7→ ml3}

8 # ρ = {B 7→ full,D 7→ full,M1 7→ symmetric_lower}

9 ml4 = convert(ml1, full, diag_vec)

10 # M2 ← BD

11 diagmmr(ml0, ml4) # overwrites ml0

12

13 # µ = {M1 7→ ml3,M2 7→ ml0}

14 # ρ = {M1 7→ symmetric_lower,M2 7→ full}

15 convert(ml3, symmetric_lower, full)

16 # X←M1 +M2

17 axpy!(1.0, ml0, ml3)

18

19 # µ = {X 7→ ml3}

20 # ρ = {X 7→ full}

Figure 9.4: Example for an algorithm in M-IR with storage format conver-
sions.

Thus, the symmetric matrix M1 is converted to the full

storage format. This conversion can be done in place, so
M1 remains in memory location ml3. �

9.2.1 Auxiliary Storage Formats

In addition to the ones in Tab. 9.1, Linnea uses a small number of
auxiliary storage formats that do not describe actual formats; instead
they describe some special cases where a single fixed storage format
is not sufficient. As an example, as_overwritten describes that an
output operand has the same storage format as the input operand
that was originally stored in the same memory location. It is used for
instance for the output of the TRTRI kernel that computes the inverse
of a triangular matrix. The symmetric_triangular format is used for
symmetric input matrices that can either be stored as symmetric_upper
or symmetric_lower. It is used for kernels such as SYMM and SYRK.
As a final example, the explicit_diagonal format is used for the
input operand A in a kernel that computes A +D, where A is a
general and D a diagonal matrix. Since this kernel only modifies the
diagonal of A, the only requirement for the storage format of this
matrix is that the diagonal is represented explicitly. This is the case for
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full, upper_triangular, lower_triangular, symmetric_upper, and
symmetric_lower.

The auxiliary formats are integrated into the partial order in a
way such that in most cases, no special treatment is necessary in
the algorithm for the selection of storage format conversions. As an
example, symmetric_upper and symmetric_lower are compatible with
symmetric_triangular.

9.3 future work

At present, the translation to M-IR is rather basic; the sequence of ker-
nels is considered to be fixed, and memory operations are generated
by a greedy algorithm. As a result, there are several opportunities to
improve the quality of the generated code:

1. In some cases, it might be possible to avoid copying operands by
reordering kernel calls. In addition, with a suitable cost function,
reordering kernels calls and memory operations could be used
to improve the caching behavior of the code [103].

2. It is not possible for the user to specify the storage formats of the
input and output operands, nor which operands can or cannot
be overwritten. Instead, it is assumed that all input and output
operands are stored as full, and that input operands can always
be overwritten. Depending on the use case, those assumptions
can lead to unnecessary memory operations. Those operations
could be avoided by allowing the user to specify the storage
formats of input and output operands, whether operands can be
overwritten, and which output operands should be overwritten
by which input operands.

3. The algorithm for the translation to M-IR is currently not able to
take advantage of kernels that compute the same mathematical
operation but use different storage formats. Especially if the set
of supported storage formats is extended, considering storage
formats for the selection of kernels could help to avoid some stor-
age format conversions. While it might be difficult to incorporate
storage formats into the algorithm generation, the replacement
of mathematically equivalent kernels that use different storage
formats could potentially be implemented as an optimization on
the M-IR.

4. Only a subset of the storage formats used by BLAS and LAPACK
is supported. Additional storage formats include a packed for-
mat for triangular and symmetric matrices that store a n× n
matrix in an array of size n(n+ 1)/2, and storage formats for
tridiagonal and banded matrices that only store the non-zero
diagonals.
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5. There are a few kernels whose interface is not compatible with
the current memory model; the most notable examples are the
GEQRF kernel that computes the QR factorization, and the
ORMQR kernel that computes a product with the matrix Q
resulting from GEQRF. The problem is twofold: 1) Parts of Q are
stored in two memory locations. However, since µ is a surjective
mapping of operands to memory locations, it is currently not
possible that parts of one operand are stored in different memory
locations. 2) There is no storage format conversion in LAPACK
to convert an orthogonal matrix that is stored as full to the
storage format of Q. This is a problem because storage formats
are not considered for the selection of kernels. If the ORMQR
kernel was used in Linnea, it would always be selected for
the multiplication with an orthogonal matrix because it is the
cheapest kernel for this operation, even if that matrix was not
the result of a QR factorization and consequently not stored
in the required storage format. In that case, however, it would
not be possible to convert Q to the required format. In order
to use GEQRF and ORMQR, and extended memory model is
necessary, and storage formats need to be considered for the
selection of kernels. At present, to circumvent this problem, the
qr! function is used which provides a higher-level interface to
the QR factorization.

As mention earlier, the code generation described in this chapter is
not specific to Julia. However, the Julia language has some properties
that simplify minor aspects of the code generation. In order to support
lower-level languages such as C, some extension are necessary:

1. In Julia, all function arguments can be passed directly,5 whereas
the C interface of BLAS and LAPACK usually requires pointers
to the actual arguments. As a result, auxiliary variables need to
be created for all arguments, including those that determine the
functionality of kernels.

2. Some LAPACK kernels require additional memory as a work-
space, which needs to be passed to the kernel in the form of an
array. The optimal size of this array can be computed with a call
to the same kernel with special arguments. While in Julia, this
additional kernel call takes place in the LAPACK wrappers, in C
it needs to be added to the generated code.

3. Since there is no garbage collection in C, memory locations need
to be freed whenever the liveness of an operand ends.

Finally, in Julia, most storage format conversions and code snippets for
operations not supported by BLAS and LAPACK can be implemented

5 Julia implements pass-by-sharing.
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efficiently with relatively little effort. In many cases, existing Julia
function can be reused, and simple operations as well as loops are
vectorized almost automatically. Implementing the same functionality
with comparable performance in C requires more effort.

Many challenges discussed in this chapter are caused by the fact
that the storage formats required by kernels are mostly fixed. Thus, the
code generation could be simplified either with kernels that support
multiple formats, or with the automatic generation of kernels for a
given combination of formats. The latter is implemented by TACO
for dense and sparse tensor operations [80]. Likewise, the selection
of storage format conversions could be simplified by their automatic
generation, similar to the approach presented in [22] for sparse tensors.
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E X P E R I M E N T S

Most of the material
presented in this
chapter has been
published in [9]. In
addition, some of the
material has been
published in [8].

To evaluate Linnea, we perform four different types of experiments.1

1. We assess the quality of the code generated by Linnea2 by com-
paring against Julia3, Matlab4, Eigen5, and Armadillo6 (Sec. 10.2).

2. We then investigate the generation time with and without merg-
ing branches, as well as the fraction of the search space that is
explored (Sec. 10.3).

3. We evaluate the quality of FLOPs as a cost function (Sec. 10.4).

4. We conclude by investigating the influence of the hardware in
the three experiments above (Sec. 10.5).

For all but Matlab, we linked against the Intel MKL implementation
of BLAS and LAPACK (MKL 2020.1.217); Matlab instead uses MKL
2019.0.3. For the execution of generated code, all reported timings
refer to the minimum of 20 repetitions, each on cold data, to avoid
any caching effects. The generation time was obtained from one single
repetition. Unless noted otherwise, the generation time was limited to
30 minutes.

The measurements for experiments 1. to 3. were taken on a dual
socket system, featuring two Intel Xeon E5-2680 v3 (Haswell architec-
ture) with 12 cores each, a clock speed of 2.5 GHz and 64 GB of RAM.
Hyper-Threading and Turbo Boost were disabled on this machine, and
we had exclusive access to the machine when the experiments were
conducted. The parallel experiments were run with 24 threads. The
measurements for experiment 4. were taken on a dual socket Intel
Xeon Platinum 8160 (Skylake architecture) with 24 cores each, a base
clock speed of 2.1 GHz and 192 GB of RAM. Hyper-Threading was
disabled, while Turbo Boost was enabled.7 In addition, we did not
have exclusive access to the machine. The parallel experiments were
run with 12 threads on a single NUMA region. All experiments were
performed using double precision.

1 The code for the experiments is available at https://github.com/HPAC/linnea/tree/
master/experiments.

2 Executed with Python version 3.9.1.
3 Version 1.5.3.
4 Version 2020a.
5 Version 3.3.9.
6 Version 10.2.x.
7 The maximal Turbo Boost clock speed depends on the number of cores that are used:

If one core is active, it is 3.7 GHz; if all 24 cores are active, it is 2.8 GHz.
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test problems We use two different sets of test problems, one
consisting of expressions coming from applications, and a synthetic
one. The first set consists of a collection of 25 problems from real
applications, from domains such as image and signal processing,
statistics, and regularization. Those problems are shown in App. a; in
those problems, the operand sizes are selected to reflect realistic use
cases. The second set consists of 100 randomly generated linear algebra
expressions, each consisting of a single assignment. The number of
operands in each expression is chosen uniformly between 4 and 7.
Operand dimensions are chosen uniformly between 50 and 2000 in
steps of 50. We set square operands to have a 75% probability to have
one of the following properties: diagonal, lower triangular, upper
triangular, symmetric, or symmetric positive definite. To introduce
realistic common subexpressions, some expressions contain patterns
of the form XXT and XMXT , where X is a subexpression with up to
two matrices, and M is a symmetric matrix.

Both sets of tests problems have somewhat different characteristics.
For the application problems, we intentionally selected the largest and
most complex problems we could find; in our experience, average
problems are simpler. In comparison, the random problems usually
consist of smaller expressions and exhibit less structure.

In some of the figures in this chapter, the test problems are sorted by
their computational intensity. The intensity is computed as the number
of FLOPs performed by the optimal sequence of kernels divided by the
amount of data that this sequence of kernels operates on. The amount
of data is computed as the number of double precision elements
of unique operands that appear in the problem. For the number of
elements, properties are considered. As an example, the number of
elements of a diagonal matrix of size n×n is counted as n.

10.1 libraries and languages

For each library and language, two different implementations are
used: naive and recommended. The naive implementation is the one
that comes closest to the mathematical description of the problem.
It is also closest to the input to Linnea. As examples, in Tab. 10.1
we provide the implementations of A−1BCT , where A is symmetric
positive definite and C is lower triangular. Since documentations
almost always discourage the use of the inverse operator to solve
linear systems, we instead use dedicated functions, for example A\B,
in the recommended implementations. The different implementations
are described below.

julia Properties are expressed via types. The naive implementation
uses inv(), while the recommended one uses the / and \ opera-
tors.
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Table 10.1: Input representations for the expression A−1BCT , where A is
SPD and C is lower triangular. The letters “n” and “r” denote the
naive and recommended implementation, respectively.

Name Implementation

Julia n inv(A)*B*transpose(C)

Julia r (A\B)*transpose(C)

Armadillo n arma::inv_sympd(A)*B*(C).t()

Armadillo r arma::solve(A, B)*C.t()

Eigen n A.inverse()*B*C.transpose()

Eigen r A.llt().solve(B)*C.transpose()

Matlab n inv(A)*B*transpose(C)

Matlab r (A\B)*transpose(C)

matlab The naive implementation uses inv(), the recommended
one the / and \ operators.

eigen In the recommended implementation, matrix properties are
described with views. For linear systems, we select solvers based
on properties.

armadillo In the naive implementation, specialized functions are
used for the inversion of SPD and diagonal matrices. For solve,
we use the solve_opts::fast option to disable an expensive
refinement. In addition, trimatu and trimatl are used for trian-
gular matrices.

10.2 quality of the generated code

In Fig. 10.1, we present the speedups of the code generated by Linnea
over other languages and libraries for both the random and application
test cases. For one and 24 threads, the code generated by Linnea is the
fastest in 94% and 89% of the cases, respectively. If not the fastest, the
code is at most 1.3× and 2.3× slower than the other languages and
libraries. Fig. 10.2 summarizes the results in performance profiles [32].

There is no fundamental difference between the speedups for the
random and the application problems. The most notable difference is
that for the random problems there are more cases where the speedups
are close to 1; the speedups for the application problems tend to be
higher. Specifically, in the single-threaded case the median speedup
of the code generated by Linnea over all other implementations is
1.6× for the random problems, compared to 3.2× for the application
problems. In the multi-threaded case, the medians are respectively
3.1× and 4.7×. In addition, with one thread, the speedups for the
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Figure 10.1: Speedup of Linnea over four reference languages and libraries
for 125 test problems. The test problems are sorted by computa-
tional intensity, increasing from left to right.
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Figure 10.2: Performance profiles: For a given implementation I, and a given
point α on the x-axis, the corresponding value p on the y-axis
indicates the relative number of test problems for which I is at
most a factor of α slower than the fastest of all implementations.
For the other languages and libraries, the execution times of
the naive and recommended implementations were merged; per
example problem, the lower execution time was selected.

random problems have a larger spread (in both directions); with 24
threads, the spread is similar.

To understand where the speedups for the code generated by Linnea
come from, we discuss the details of few exemplary test problems.

distributivity The application problem a.11,

H† := HT
(
HHT

)−1
,

yk := H†y+
(
In −H†H

)
xk,

which is part of an image restoration application [126], illustrates well
how distributivity might affect performance. Due to the matrix-matrix
product H†H, the computation of yk based on the original formulation
of the problem leads to O(n3) FLOPs. Instead, for yk Linnea finds the
solution

v := −Hxk + y

yk := H†v+ xk,

which only uses matrix-vector products (GEMV), and requires O(n2)

FLOPs. This solution is obtained in two steps: First, H†y + (In −

H†H)xk is converted to Linnea’s normal form, returning H†y+ xk −
H†Hxk; then, by factoring out H†, the expression is written back
to a product of sums, resulting in H†(y−Hxk) + xk, which can be
computed with two calls to GEMV. For this problem, this optimization
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yields speedups between 4.2× (Matlab naive) and 7.7× (Eigen naive)
with respect to the other languages and libraries for one thread, and
speedups between 3.4× (Matlab naive) and 32× (Eigen naive) for 24
threads.

associativity With the exception of Armadillo, none of the lan-
guages and libraries we compare with consider the matrix chain
problem (see Sec. 5.6.2). Instead, products are always computed from
left to right. The synthetic test case X := M1M

T
1 (M2 +M3)M4v5v

T
6

is a good example to illustrate the importance of making use of as-
sociativity in products. The operands have the following dimensions:
M1 ∈ R150×450, M2,M3 ∈ R150×900, M4 ∈ R900×100, v5 ∈ R100,
and v6 ∈ R150. All matrices are full. Not only does Linnea successfully
avoid any matrix-matrix products in the evaluation of this problem,
surprisingly Linnea even finds a solution that avoids the sumM2+M3.
As a first step, the matrix-vector product z1 := M4v5 is computed.
Then, Linnea rewrites the resulting X := M1M

T
1 (M2 +M3)z1v

T
6 as

X :=M1M
T
1M2z1v

T
6 +M1M

T
1M3z1v

T
6 , where a second matrix-vector

product z2 :=M3z1 is computed. The resulting expression is rewrit-
ten again to X :=M1M

T
1 (M2z1 + z2)v

T
6 , which is now computed as a

sequence of three more matrix-vector products and one outer product:

z3 :=M2z1 + z2

z4 :=M
T
1z3

z5 :=M1z4

X := z5v
T
6

Despite the rather small operand sizes, the speedups for this test case
are between 7.5× and 17× with one thread, and between 2.9× and 17×
with 24 threads.

common subexpressions Expressions arising in applications
frequently exhibit common subexpressions; one such example is given
by problem a.17,

B1 :=
1

λ1

(
In −ATW1

(
λ1Il +W

T
1AA

TW1
)−1

WT
1A
)

,

which is used in the solution of large least-squares problems [23].
Linnea successfully identifies that the term WT

1A (or its transposed
form (ATW1)

T ) appears four times, and computes it only once. In this
example, these savings lead to speedups between 5.2× and 6.6× with
one thread, and between 3.9× and 20× with 24 threads.

properties Many matrix operations can be sped up by taking
advantage of matrix properties. As an example, here we discuss the
evaluation of application problem a.19, x := (ATA+ α2I)−1ATb, a
least-squares problem with Tikhonov regularization [50], where matrix



10.2 quality of the generated code 149

A is of size 3000× 200 and has full rank. Since A has more rows than
columns and is full rank, Linnea is able to infer that ATA is not
only symmetric, but also positive definite (SPD). Similarly, Linnea
infers that α2I is SPD because 1) the identity matrix is SPD, 2) α2 is
positive and 3) a SPD matrix scaled by a positive factor is still SPD.
Since the sum of two SPD matrices is SPD, ATA+α2I is identified as
SPD. As a result, the Cholesky factorization is used to solve the linear
system. If ATA+α2I had not been identified as SPD, a more expensive
factorization such as LU had to be used. Finally, since Linnea infers
properties based on the annotations of the input matrices, no property
checks have to be performed at runtime; if the input matrices have the
specified properties, all inferred properties hold. Altogether, the code
generated for this assignment is between 1.2× and 5.5× faster than
the other languages and libraries with one thread, and 2.2× and 13×
faster with 24 threads.

Epilog

In general, the speedups of Linnea depend both on the potential for
optimization in a given problem, as well as on the similarity of the
default evaluation strategy of each language and library to the optimal
one.

In case of problem a.19 for example, with one thread, the code
generated by Linnea is 3.4× faster than the recommended Armadillo
implementation, but only 1.2× faster than the naive implementation.
The reason is that for this problem, the parenthesization has the
largest influence on the execution time. While Armadillo does solve
a simplified version of the matrix chain problem, the solve function
used in the recommended implementation (see Tab. 10.1) effectively
introduces a fixed parenthesization. Due to the explicit inversion in
the naive implementation, there is no such fixed parenthesization,
so Armadillo is able to find a solution which is very similar to that
generated by Linnea.

For problem a.6, which is the loop body of a blocked algorithm
for the inversion of a triangular matrix, there is a relatively large
spread between the speedups: The recommended Julia, Matlab, and
Armadillo solutions are respectively around 1.4×, 1.5×, and 3.1×
slower than Linnea, while the recommended Eigen implementation is
12× slower (one thread). In this case, the spread is mostly caused by a
combination of the interface that the different systems offer, and how
they utilize properties. Neither Armadillo nor Eigen have functions
to solve linear systems of the form AB−1, with the inverted matrix
on the right-hand side. Thus, even in the recommended solution, for
X10 := L10L

−1
00 , explicit inversion is used instead. In addition, Eigen is

not able to identify that L00 is lower triangular and instead uses an
algorithm for the inversion of a general matrix, leading to a significant
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Table 10.2: Statistics regarding the size of the generated code. Empty lines
and comments are not counted towards the number of lines of
code.

Average Median Min Max

Lines of code 19.4 19 7 46

Kernel calls 7.3 7 2 21

loss in performance, while Julia, Matlab, and Armadillo correctly
make use of this property .

For expression a.14, all solutions have very similar execution times;
the speedups of Linnea are between 1.3× and 2.2× with one thread.
The cost of computing this problem is dominated by the cost of
computing the value of Xk+1, for which the solution found by all other
languages and libraries is almost identical to the solution found by
Linnea. While Linnea is able to save some FLOPs in the computation of
Λ, those savings are negligible for the evaluation of the entire problem.
With 24 threads, there is a larger spread, with speedups ranging from
1.0× to 16×. This spread is likely caused by the differences in how well
the operations not supported by BLAS and LAPACK are parallelized.

As can be seen in Fig. 10.1, with 24 threads there are a few cases
where the naive and recommended Matlab implementations are up
to 2.3× faster than the code generated by Linnea. In all those cases,
the generated code either contains code snippets for operations not
supported by BLAS and LAPACK or storage format conversions. Most
likely, the suboptimal performance of the generated code is caused by
the fact that those code snippets and storage format conversions are
not sufficiently optimized for the multi-threaded execution.

It is important to note that by changing the operand sizes, in several
cases one can increase or reduce the speedups almost arbitrarily. The
goal of our experiments is to show that there are many cases where
the code generated by Linnea achieves speedups (much) larger than
one, indicating that it finds better algorithms than the other languages
and libraries.

size of the generated code Tab. 10.2 contains some statistics
about the size of the code generated by Linnea. The difference be-
tween the number of kernel calls and the lines of code is caused by
the code for memory allocations, copying operands, storage format
conversions, and the code snippets for operations not supported by
BLAS and LAPACK; while we treat those snippets as one kernel call,
they may consists of multiple lines of code. Considering the relatively
small number of kernels, the manual translation of the generated
code to other languages should be relatively straightforward for an
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Figure 10.3: Code generation time in Linnea. The height of the bars indicates
the time to find S30min. The colors indicate the cost of the current
best solution at any given time, relative to the cost of S30min. The
relative cost is given as the overhead over the best solution, in
percent. Gray indicates that no solution has been found yet. Bars
that are only gray indicate that S1st and S30min coincide.

expert, not least because in the code, each kernel is annotated with
the mathematical operation that it performs.

10.3 generation time and merging

The search algorithm gives Linnea flexibility: A potentially suboptimal
solution can be found quickly, and better ones can be found if more
time is invested. In the following, we distinguish between 1) the time
needed for the construction of the graph, and 2) the time needed to
retrieve the best solution from the graph and to translate this solution
into code. In this section, we use S1st to refer to the solution (that
is, the sequence of kernels) that is found first. As a reference, since
in general the truly optimal solution is not known, we use the best
solution that is found by Linnea within 30 minutes as a proxy. In the
following, we call this solution S30min. Note that S30min may be found
in much less than 30 minutes, and it can coincide with S1st.

Fig. 10.3 reports for all 125 test problems the graph construction
time and the quality of the different solutions found over time. For
all problems, S1st is found in less than one second; for 83% of the
problems, also S30min is found in less than one second. In only five
cases, S30min is found after more than two minutes. In terms of FLOPs,
S1st is within 25% of S30min for 88% of the test problems, and within
1% in 81% of the cases.

Since the application problems usually consists of larger and more
complex expressions than the random problems, the generation time
tends to be larger for the application problems: For the random prob-
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lems, finding S30min takes longer than one second only for 6% of the
cases, compared to 60% for the application problems. Out of the five
cases where finding S30min takes more than two minutes, two are
random problems, while three are application problems.

The average time to retrieve the best sequence of kernels (S30min)
from the graph is 0.06 seconds (maximum 0.6 seconds); the average
time to generate the code is 0.03 seconds (maximum 0.2 seconds).

10.3.1 Impact of Merging Branches

As discussed in Sec. 4.2, in order to reduce the size of the search graph
and thus speed up the algorithm generation, redundant branches
in the derivation graph are merged. To evaluate the impact of this
optimization, we performed the algorithm generation with this opti-
mization enabled and disabled. Since merging branches only reduces
redundancy without eliminating any solutions, given sufficient time,
the same solutions will be found. As the search graph initially contains
very little redundancy, the time to find S1st is mostly unaffected by
the merging. There are, however, notable differences in the time to
find S30min, especially for those problems where the best solution is
not found within a few seconds. Without merging, there are 12 test
problems for which the best solution found with merging is not found
within 30 minutes. In 17 cases, it takes more than twice as long to find
S30min, including 7 cases where it takes at least 10 times longer.

10.3.2 Explored Percentage of the Search Space

The fraction of the search space that is actually explored is reduced
both by pruning, and by limiting the time spent on the search. In order
to give an idea of the effect of pruning and limiting the algorithm
generation time, we performed two different experiments. For those
experiments, the application problems were divided into two sets:
1) Problems where the search terminates within 30 minutes, and 2)
problems where the search does not terminate within 30 minutes. As
a proxy for the size of the search space, the number of nodes of the
search graph is used; the number of sequences of kernels can be larger
than the number of nodes.

The first set is used to assess the effect of pruning on the size of
the search space. For this experiment, pruning was disabled for the
algorithm generation, and the time limit was set to 48 hours. The
results of this experiment are shown in Tab. 10.3. While there are
exceptions, the percentage of the search graph that is pruned tends
to increase with the size of the graph. For large graphs, pruning
decreases the number of nodes by more than 99%. As mentioned at
the beginning of Sec. 4.1, pruning only removes parts of the graph
that are guaranteed to lead to suboptimal solutions.
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Table 10.3: Percentage of the search graph that is explored with pruning
enabled relative to the size of the search graph without pruning.
The † indicates that Linnea did not terminate within 48 hours, the
‡ indicates that Linnea ran out of memory before reaching the
time limit.

Nodes

Problem Pruning No Pruning Explored (%)

a.6 21 21 100

a.18 123 131 94

a.19 39 47 83

a.25 15, 446 22, 885 67

a.11 53 85 62

a.1 17 36 47

a.24 1, 976 6, 878 29

a.3 224 5, 264 4.3

a.2 576 15, 301 3.8

a.21 30, 701 > 1, 584, 319 < 1.9†

a.9 14, 187 > 1, 130, 459 < 1.3‡

a.17 1, 068 90, 521 1.1

a.22 9, 841 > 1, 300, 063 < 0.76†

a.20 6, 239 844, 740 0.74
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Table 10.4: Percentage of the search graph that is explored in 30 minutes
relative to the size of the search graph after 48 hours. The †

indicates that Linnea did not terminate within 48 hours, the ‡

indicates that Linnea ran out of memory before reaching the time
limit.

Nodes

Problem 30 minutes > 48 hours Explored (%)

a.5 57, 689 184, 793 31

a.4 54, 087 199, 209 27

a.7 58, 923 235, 276 25

a.13 47, 521 462, 442 10

a.16 64, 768 > 688, 892 < 9.4†

a.8 89, 434 > 1, 051, 288 < 8.5†

a.10 45, 509 > 584, 790 < 7.8†

a.23 70, 149 > 1, 045, 802 < 6.7†

a.15 39, 023 > 609, 476 < 6.4‡

a.12 46, 246 > 765, 551 < 6.0†

a.14 44, 800 > 928, 947 < 4.8†

The second set of example problems is used to investigate the effect
of limiting the graph search to 30 minutes. For this experiment, the
time limit was again set to 48 hours, but pruning was enabled. The
results are shown in Tab. 10.4. In several cases, the full search space was
not explored even after 48 hours. In case of the most difficult problem,
less than 5% of the search space is explored in 30minutes. Nonetheless,
there are only two cases in which the additional generation time leads
to an improved solution. For problem a.14, the improvement of the
cost is about 0.001%; for problem a.15, the cost is reduced by 29%.

It should be noted that in addition, the size of the search space is
intentionally reduced by decisions such as avoiding the application
of overly general kernels (Sec. 5.5 and Sec. 5.7). The effect of those
decisions is difficult to quantify; we estimate that they decrease the
size of the search space by up to one order of magnitude.

10.4 quality of the cost function

As a cost function, Linnea uses the number of FLOPs. To assess the
accuracy of this function, we modified the pruning (at line 7 in the
algorithm in Fig. 4.2) such that all algorithms with a cost of up to
1.5× of the best solution are generated and run the best 100 of those
algorithms per test problem. In the following, we use SFLOPs to denote
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Figure 10.4: Comparison between Stime and SFLOPs in terms of execution
time (dots) and FLOP count (bars) for 1 and 24 threads. The test
problems are sorted by computational intensity, increasing from
left to right.

the algorithm that minimizes the cost function,8 and Stime for the
algorithm that is actually the fastest among all candidates. For each
test problem, we compare the number of FLOPs and the execution
time of those two algorithms. Example problem a.14 was not used
because the generated code ran out of memory. The results are shown
in Fig. 10.4. In the single-threaded case, except for two problems the
speedup of Stime over SFLOPs is below 1.1×, and in all cases the relative
cost of Stime compared to SFLOPs is below 1.01×. With 24 threads, in
108 cases, Stime performs at most 1% more FLOPs than SFLOPs; there
are only few cases where more FLOPs lead to a significantly lower
execution time. The speedup of Stime over SFLOPs is below 1.5× in

8 If multiple algorithms have the same minimal cost, one of those algorithms is selected
as SFLOPs at random.
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120 cases. It can be concluded that for the kind of problems that
Linnea solves, the number of FLOPs is often a good indicator for the
execution time and never entirely unreliable. This is especially true
when the code is executed with one thread. In addition, it should be
noted that compared to the speedups that Linnea achieves, the loss
of performance due to the inaccuracy of FLOPs as a cost function
is in most cases small. Most of the cases where the cost function is
inaccurate are a result of not considering the efficiency of the kernels.
Two examples where the cost function is particularly off follow.

As a first example, we consider the randomly generated test problem

X :=M1

(
MT
2M3M4

)−1
M5,

with M1 ∈ R650×1250, M2 and M3 ∈ R1700×1250, M4 ∈ R1250×1250,
and M5 ∈ R1250×1550; all matrices are full. As a first step, both Stime

and SFLOPs compute Z1 :=MT
2M3, yielding X :=M1(Z1M4)

−1M5. At
this point, in SFLOPs the LU factorization is applied to both Z1 and M4.
After distributing the inverse, the problem becomes the matrix product
X := M1U

−1
2 L−12 P2U

−1
1 L−11 P1M5. The computation of this product,

which is done from left to right, involves four calls to the TRSM kernel
for the solution of triangular linear systems.9 In contrast, Stime only
uses one LU factorization and two triangular solves, but performs
one additional matrix-matrix product: Instead of factoring Z1 and M4,
those two matrices are multiplied together. After applying the LU
factorization to the result of this product and distributing the inverse,
X := M1U

−1
3 L−13 P3M5 is obtained. This product is again computed

from left to right. This algorithm requires about 4% more FLOPs, but
when executed with 24 threads is 27% faster than the algorithm with
the minimum number of FLOPs. While both the product Z1M4, with
Z1,M4 ∈ R1250×1250, as well as one LU factorization (1250× 1250)
and two triangular solves (with operands of size 650× 1250 and 1250×
1250) require almost the same number of FLOPs, the matrix-matrix
product achieves higher efficiency and is thus faster.

As a second example, we look at the randomly generated problem

X :=M1M
T
2 +M3M

T
3 +M

T
4 +M

T
5 ,

with M1 and M2 ∈ R1100×1800 M3 ∈ R1100×1150, and M4 as well
as M5 ∈ R1100×1100. Matrices M4 and M5 are upper triangular, all
others are full. In SFLOPs, the product M3M

T
3 is computed with the

SYRK kernel that makes use of symmetry. Since only half of the
output matrix is stored, a storage format conversion is necessary
to use this matrix in the following computations. In Stime, the same
product is computed with a call to GEMM. While this choice requires
more FLOPs, it makes the storage format conversion unnecessary. The

9 The actual order of the kernel calls in SFLOPs is slightly different; we are describing
a different order here because it is easier to follow. The solution that uses the order
described here has almost the same execution time as SFLOPs.
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resulting algorithm performs 24% more FLOPs, but is around 27%
faster with 24 threads. Again, this difference is caused by the higher
parallel efficiency of GEMM compared to SYRK for matrices of the
same size, but also by the storage format conversion.

The two examples discussed above are exceptions; for most of our
test cases, the number of FLOPs is quite an accurate cost function.
In general, while FLOPs as a cost function are most likely not good
enough to compete with a human expert who is given sufficient time,
they are good enough to outperform other languages and libraries,
and to find a solution that is close to the optimum in a fraction of the
time a human expert would require. In this regard, Linnea is similar
to other compilers, for example for languages such as C: While the
assembly code generated by those compilers is inferior to assembly
code written by human experts, the increased productivity of the
user usually outweighs the comparably small loss of performance.
In cases where performance is critical, similar to how it is done in
the manual development of code, a user can benchmark different
algorithms generated by Linnea to find the optimal one. In this case,
Linnea still makes it possible to save a significant implementation
effort.

10.5 influence of the hardware

To investigate the influence of the hardware on the experiments dis-
cussed above, we repeated them on the more recent Skylake processor.
The most important difference for the experiments is that on the Sky-
lake processor, Turbo Boost was enabled and the experiments were
run with non-exclusive access to the machine, leading to more noise
in the measurements.

quality of the generated code With one thread, across all im-
plementations the Skylake processor yields a median speedup of 1.4×
over the Haswell processor. In the multi-threaded case, the median
speedup of the execution with 12 threads on Skylake relative to the
execution with 24 threads on Haswell is 1.2×. There are no substantial
differences in the speedups of Linnea over the other languages and
libraries.

quality of the cost function On the Skylake processor, the
quality of the cost function decreases a bit with one thread. Specifically,
the speedups of Stime over SFLOPs are larger compared to Haswell. The
number of cases where the speedup is 1×, that is, Stime and SFLOPs

coincide, is almost unchanged with 31 cases on Haswell and 30 cases
on Skylake. There are 21 cases on Haswell in which the speedup
is above 1.01×, compared to 83 cases on Skylake. In addition, on
Haswell there are only two cases in which the speedup is above 1.1×;
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on Skylake, there are 28 cases. The increased speedups with one thread
are caused by the larger noise on the Skylake processor. In contrast,
in the multi-threaded case there are no noticeable differences because
the use of a single NUMA region on Skylake reduces the interference
caused by other threads.

Despite the difference in the speedups, the relative costs are very
similar on both processors. The reason is that the differences in the
execution time due to the noise are still small compared to the dif-
ferences in the execution time caused by the different costs of the
algorithms.

generation time Both for the time to the best solution, as well as
for the time to the first solution, the Skylake processor yields a median
speedup of 1.3×. However, the faster generation time does not lead to
improved solutions within the time limit of 30 minutes.



11
C O N C L U S I O N

In this thesis, we presented Linnea, a compiler that translates high-
level linear algebra problems to efficient sequences of high-perfor-
mance kernels. With its mathematical input language, Linnea suc-
cessfully combines the ease-of-use of high-level languages with a
performance that comes close to what a human expert can achieve.
This performance is achieved by applying several optimizations that
are not used in other languages and libraries for linear algebra:

1. Algebraic identities such as associativity, commutativity, dis-
tributivity are used to rewrite expressions into different repre-
sentations.

2. Linnea is able to make use of a large number of matrix properties
to select the most suitable kernels. If necessary, the properties
of intermediate operands are automatically inferred from the
properties of the input operands as provided by the user.

3. Common subexpressions are eliminated, including transposed
and inverted occurrences.

4. Instead of using black-box solvers for linear systems, Linnea
directly applies factorization, enabling optimizations that are not
possible otherwise.

5. Linnea uses the full functionality of most kernels. This includes
both the mathematical operations they can compute, as well as
their interface; unnecessary copies are avoided for kernels that
overwrite their input operands, and specialized storage formats
for operands with properties are taken advantage of.

Our experiments on randomly generated and application problems
indicate that Linnea almost always outperforms Matlab, Julia, Eigen,
and Armadillo, both with sequential and parallel execution. With
its custom search algorithm and the use of constructive algorithms,
Linnea is able to find a first solutions for all problems used in our
experiments in less than one second, that is, much faster than a human
expert. Given more time, Linnea finds increasingly better solutions.
While the cost function currently used by Linnea, the number of FLOPs
performed by an algorithm, is relatively simple, our experiments
demonstrate that it is accurate enough to reliably find good solutions
for mid- to large-scale linear algebra problems.
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11.1 future work

In this section, we give an overview of possible directions for future
work. As part of this overview, we point out the challenges with those
extensions and outline some of the steps necessary to implement
them. Two possible directions for future work are discussed in more
detail: The support for variable operand sizes, and a reduction of the
generation time.

11.1.1 Support for Variable Operand Sizes

The fact that Linnea requires the sizes of all input operands to be
fixed is one of the major obstacles for the integration of Linnea into
existing languages such as Julia. The reason is that in most languages,
the size of a matrix is usually not known at compile-time. Support
for variable operand sizes can be added to Linnea as follows: The
current cost function that counts the number of FLOPs is replaced
with a symbolic cost function that describes the cost of a sequence
of kernels as a function of the operand sizes. With the set of kernels
that is currently supported, the number of FLOPs performed by a
sequence can be described as a multivariate polynomial.

The main challenge with such a symbolic cost function is to identify
the optimal solution. Quite likely there is no single best solution for
all operand sizes. Instead, the optimal sequence of kernels depends
on the operand sizes. Thus, it is necessary to solve inequalities over
multivariate polynomials to determine for which operand sizes which
sequence is optimal. Then, case distinctions can be used in the gener-
ated code to select the optimal sequence based on the operand sizes
at runtime.

While the cost of solving such inequalities is exponential in the
number of variables in general [24], in case of Linnea there are several
constraints that may simplify the problem:

1. In application problems, the number of distinct operand sizes
is usually small. Out of the 25 application problems in App. a,
one problem has only one operand size, 18 problems have two
distinct operand sizes, and six problems have three sizes. As a
result, the number of variables in the polynomials is in practice
small.

2. Since kernels have at most cubic complexity, the degree of the
polynomials is at most three.

3. Since many kernels have similar costs, the number of distinct
monomials that can appear in the polynomials is relatively small.

4. Since the variables represent operand sizes, their values are
limited to integers larger or equal to one.
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5. It is not uncommon that there are additional inequalities over
variables that either follow from the application, or from the
expression itself. As an example, in the least squares problem
b := (XTX)−1XTy where X is of size n×m, the linear system
cannot be solved if n < m because XTX is singular in that case.

If solving the polynomial inequalities is still too expensive, or the
number of sequences of kernels is too large, heuristics can be used to
remove sequences that are likely suboptimal. Such heuristics could
for example only consider the asymptotic complexity, or compute the
values of the polynomials at some points.

How a symbolic cost function affects the generation time is an open
question. If there is a large number of solutions that are optimal at
least for some operand sizes, the fraction of the search space that
can be pruned decreases, resulting in a longer generation time. The
generation time will also increase if it is not possible to extend the
constructive algorithms to work with a symbolic cost function.

11.1.2 Reduced Generation Time

While there are already many cases in which Linnea finds the optimal
solution in less than one seconds, there is still potential to decrease
the generation time. To this end, it is important to note that the overall
generation time is closely related to the quality of the solutions that
are found early. The reason is that due to pruning, improving the
early solutions reduces the size of the remaining search space and
thus accelerates the discovery of further improved solutions.

The idea for improving the quality of the early solutions is to first
apply those optimizations that lead to the largest reduction of the
cost; first and foremost, this is the matrix chain algorithm in combi-
nation with the rewriting of expressions to different representations.
While the current successor generation order already gives priority
to the matrix chain algorithm, this prioritization is only applied per
representation. If an expression can be rewritten to different represen-
tations, multiple optimizations are applied to the first representation
before the matrix chain algorithm is applied to the last one. Thus, if
the last representation leads to the optimal solution, this successor
generation order results in an unnecessarily long generation time. In
addition, rewriting the input expressions after every generation step
is not necessary for quickly finding a first solution.

These observations can be used to improve the early solutions as
follows: A simplified, deterministic generation algorithm is used that
only uses constructive algorithms and applies the cheapest necessary
factorizations, without rewriting the expressions between generation
steps. Initially, this simplified algorithm is applied to different repre-
sentations of the input expression to generate a first set of solutions.
In a second phase, common subexpression elimination is performed
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on the different representations of the input expression before the
application of the simplified algorithm. After those steps, quite likely
a solution has been found that has a cost relatively close to that of the
optimal solution. Only then, the remaining optimizations are applied,
and expressions are rewritten between the application of generation
steps.

While the constructive algorithms make it possible to quickly find
good solutions, they have the drawback that they cannot make use
of kernels such as ATB+C. This limitation can be alleviated without
an exhaustive exploration of the full search space by also applying
optimizations on the generated sequences of kernels. Specifically,
peephole optimizations can be used to replace sequences of kernels
that can be computed with a single kernel. As an example, if X is not
used again later, the two kernel calls

X← ATB

Y ← X+C

can be replaced with a single GEMM call that computes ATB+ C.
One of the challenges with such peephole optimizations is that due
to the complexity of BLAS and LAPACK kernels, the number of
sequences of kernels that can be replaced is large. Manually defining
all those sequences is impractical. Fortunately, Linnea can be used
to generate those sequences as follows: As input, all operations that
can be computed with a single kernel are used, for example AB+C

or αABT + βC. Linnea then generates all possible sequences of two
or more kernels that compute those operations. For αABT +βC, two
possible sequences are shown below:

X← BT X← ABT

Y ← αAX Y ← αX

Z← Y +βC Z← Y +βC

Every generated sequence is a pattern that can be replaced with the
operation that was used as input.

Especially for patterns that consist of more than two kernels, the
detection in a sequence of kernels can become difficult because the
kernels in the patterns can appear in different orders and interleaved
with other kernels. For this reason, it might be beneficial to convert
the sequence to a dependency graph and replace the patterns in the
graph, similar to the optimizations performed by DxTer [93].

11.1.3 Other Future Work

There are several other possible directions for future work to extend
the scope and features of Linnea:
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loops It is not uncommon that linear algebra problems involve
loops. They can appear both explicitly, as for example in an iterative
algorithm that repeatedly performs the same operation, or implicitly,
for instance as a sum over a matrix expression such as x :=

∑
iAvi.

With loops, new optimizations such as loop-invariant code motion
become possible. In addition, there can be cases where operations that
appear in a loop can be combined to a single operation. Once such
case is xi := Avi, where both xi and vi change with every iteration. If
those vectors are respectively combined to matrices X and V , where
each column is a vector xi or vi, the loop can be transformed to a
single matrix-matrix product X := AV .

complex linear algebra At present, Linnea only supports real-
valued linear algebra. Adding support for complex linear algebra
is relatively simple; while both the inference of properties as well
as the rewriting of expressions needs to be extended, the necessary
extensions are very similar to existing code and algorithms.

sparse linear algebra Considering that many application prob-
lems involve sparse matrices, support for sparse linear algebra would
be a useful addition to Linnea. The main challenge with sparse linear
algebra is that estimating the cost of the kernels becomes more dif-
ficult. If iterative solvers are used, another challenge consists in the
optimal selection of a preconditioner and iterative solver for a given
linear system, which is known to be a difficult problem [13, 97].

matrix functions The set of operations currently supported by
Linnea is relatively limited. In order to extend the set of problems that
can be solved with Linnea, it would be useful to add matrix functions
such as the logarithm, exponentiation, trace, and determinant. With
matrix functions, new ways of rewriting expressions become possible.
In order to take advantage of those rewritings for the generation of
algorithms, additional rewrite functions, representation, and/or tricks
are necessary.

operands with block structure In several application prob-
lems, operands exhibit block structure. Especially when some blocks
are zero, this structure can be exploited to save computations. In order
to take advantage of the block structure, a mechanism is necessary
to decompose expressions that contain operands with block structure
into sets of expressions that operate on the blocks, similar to how
expressions are decomposed in the FLAME methodology [14, 59]. In
addition, the code generation needs to be updated to support strided
arrays.
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parallelism Linnea is currently limited to a single parallelization
scheme; the sequential execution of multi-threaded kernels. For the
future, we plan to investigate different methods of parallelization,
such as algorithms by blocks, the concurrent execution of kernels,
and offloading to accelerators. These schemes can also be combined,
for instance by allowing the concurrent execution of multi-threaded
kernels. In that case, the cost function could be used to find a good
schedule.

improved cost function There are several ways in which the
cost function can be improved. It could be made more accurate by
integrating the expected efficiency and scalability of kernels, or by
considering caching effects, for example with approaches such as [102]
and [70]. The cost function could also be extended to include for ex-
ample the amount of memory used by an algorithm, or some measure
of the numerical stability. Unfortunately, as discussed in Sec. 4.5, both
performance modeling and prediction as well as automatic stability
analysis are difficult problems.

interface to code generators For problems that are band-
width bound, including small-scale problems, the approach used by
Linnea to break down the input expression into a sequence of kernels
is frequently suboptimal. Instead, fusing operations and avoiding inter-
mediate operands is one of the most important optimizations. Those
optimizations are implemented by code generators such as BTO BLAS
[117] and LGen [121] that target bandwidth bound and small-scale
operations. However, they do not make use of algebraic identities to
rewrite the input expression and explore different algorithms.

The advantages of both approaches can be combined by incorpo-
rating code generators for bandwidth bound operations into Linnea
as follows: Similar to how the constructive algorithms are used for
specific types of subexpressions that fulfill certain criteria, Linnea
could apply code generators to subexpressions that are suitable as
input for those generators, for example sums of an arbitrary number
of matrices.

A second use-case of code generators (that is not limited to band-
width bound operations) is the on-demand generation of kernels, for
example for combinations of properties that are not supported by
BLAS and LAPACK. This can be implemented by defining patterns
for operations such as ATB+C or A−1B, without any constraints re-
garding the properties. Whenever a match for one of those operations
is found, the code generator is used to generate a kernel that is able to
make use of the properties of the input operands.

integration into existing software In order to make Linnea
easily accessible to a broad audience, it would be useful to integrate it
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into existing languages. How this can be achieved highly depends on
the language in question. In case of Julia, Linnea could be integrated in
the form of a package that relies on Julia’s powerful metaprogramming
features. For C++, syntax plugins as described in [42] could be used.
To integrate the optimizations that Linnea applies into a more general
compiler infrastructure, the MLIR framework [86] could be used.
Depending on the target language, it might be beneficial or even
necessary to reimplement Linnea in the corresponding language.

additional output languages and libraries In addition to
generating Julia code that uses BLAS and LAPACK kernels, it would
be useful to support both additional languages, for example C, and
alternative libraries such as BLIS. The overall structure of the code
generation remains the same for C. However, the implementation of
efficient storage format conversions and code snippets for operations
not supported by libraries can be laborious in lower-level languages.
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a
E X A M P L E P R O B L E M S

In this chapter, we list the 25 application problems used in the experi-
ments. The following properties are used: diagonal (DI), lower/upper
triangular (LT/UT), symmetric positive definite (SPD), symmetric pos-
itive semi-definite (SPSD), symmetric (SYM). The identity matrix of
size n× n is denoted by In. Unless otherwise noted, matrices are
assumed to have full rank.

a.1 standard least squares

b :=
(
XTX

)−1
XTy

X ∈ Rn×m; y ∈ Rn; b ∈ Rm;
n = 2500; m = 500

a.2 generalized least squares

b :=
(
XTM−1X

)−1
XTM−1y

M ∈ Rn×n, SPD; X ∈ Rn×m; y ∈ Rn; b ∈ Rm;
n = 2500; m = 500

a.3 optimization [123]

x :=W
(
AT
(
AWAT

)−1
b− c

)
A ∈ Rm×n; W ∈ Rn×n, DI, SPD; b ∈ Rm; c ∈ Rn; x ∈ Rn;
n = 2000; m = 1000

a.4 optimization [123]

xf :=WA
T
(
AWAT

)−1
(b−Ax)

xo :=W
(
AT
(
AWAT

)−1
Ax− c

)
A ∈ Rm×n; W ∈ Rn×n, DI, SPD; b ∈ Rm; c ∈ Rn; xf ∈ Rn; xo ∈ Rn;
n = 2000; m = 1000

a.5 signal processing [31]

x :=
(
A−TBTBA−1 + RTLR

)−1
A−TBTBA−1y
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A ∈ Rn×n; B ∈ Rn×n; R ∈ R(n−1)×n, UT; L ∈ R(n−1)×(n−1), DI;
y ∈ Rn; x ∈ Rn;
n = 2000

a.6 triangular matrix inversion [15]

X10 := L10L
−1
00

X20 := L20 + L
−1
22 L21L

−1
11 L10

X11 := L
−1
11

X21 := −L−122 L21

L00 ∈ Rn×n, LT; L11 ∈ Rm×m, LT; L22 ∈ Rk×k, LT; L10 ∈ Rm×n;
L20 ∈ Rk×n; L21 ∈ Rk×m; X10 ∈ Rm×n; X20 ∈ Rk×n; X11 ∈ Rm×m;
X21 ∈ Rk×m;
n = 2000; m = 200; k = 2000

a.7 ensemble kalman filter [100]

Xa := Xb +
(
B−1 +HTR−1H

)−1 (
Y −HXb

)
B ∈ Rn×n SPSD; H ∈ Rm×n; R ∈ Rm×m SPSD; Y ∈ Rm×N; Xb ∈
Rn×N; Xa ∈ Rn×N;
N = 200; n = 2000; m = 2000

a.8 ensemble kalman filter [100]

δX :=
(
B−1 +HTR−1H

)−1
HTR−1

(
Y −HXb

)
B ∈ Rn×n SPSD; H ∈ Rm×n; R ∈ Rm×m SPSD; Y ∈ Rm×N; Xb ∈
Rn×N; δX ∈ Rn×N;
N = 200; n = 2000; m = 2000

a.9 ensemble kalman filter [100]

δX := X(HX)T
(
R+HX(HX)T

)−1 (
Y −HXb

)
H ∈ Rm×n; R ∈ Rm×m SPSD; Y ∈ Rm×N; X ∈ Rn×n LT; Xb ∈ Rn×N;
δX ∈ Rn×N;
N = 200; n = 5000; m = 1000

a.10 image restoration [126]

xk :=
(
HTH+ λσ2In

)−1 (
HTy+ λσ2(vk−1 − uk−1)

)
H ∈ Rm×n; y ∈ Rm; vk−1 ∈ Rn; uk−1 ∈ Rn; xk ∈ Rn; λ > 0; σ > 0;
n = 5000; m = 1000
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a.11 image restoration [126]

H† := HT
(
HHT

)−1
yk := H†y+

(
In −H†H

)
xk

H ∈ Rm×n; H† ∈ Rn×m; y ∈ Rm; xk ∈ Rn; yk ∈ Rn;
n = 5000; m = 1000

a.12 randomized matrix inversion [55]

Λ := S
(
STAWATS

)−1
ST

Xk+1 := Xk +WA
TΛ (In −AXk)

W ∈ Rn×n, SPD; S ∈ Rn×q; A ∈ Rn×n; Xk ∈ Rn×n; Λ ∈ Rn×n;
Xk+1 ∈ Rn×n;
n = 5000; q = 500

a.13 randomized matrix inversion [55]

Λ := S
(
STATWAS

)−1
ST

Xk+1 := Xk +
(
In −XkA

T
)
ΛATW

W ∈ Rn×n, SPD; S ∈ Rn×q; A ∈ Rn×n; Xk ∈ Rn×n; Λ ∈ Rn×n;
Xk+1 ∈ Rn×n;
n = 5000; q = 500

a.14 randomized matrix inversion [55]

Λ := S
(
STAWAS

)−1
ST

Θ := ΛAW

Mk := XkA− In

Xk+1 := Xk −MkΘ− (MkΘ)
T +ΘT (AXkA−A)Θ

W ∈ Rn×n, SPD; S ∈ Rn×q; A ∈ Rn×n, SYM; Λ ∈ Rn×n, SYM;
Θ ∈ Rn×n; Xk ∈ Rn×n, SYM; Mk ∈ Rn×n; Xk+1 ∈ Rn×n;
n = 5000; q = 500

a.15 randomized matrix inversion [55]

Xk+1 := S
(
STAS

)−1
ST

+
(
In − S

(
STAS

)−1
STA

)
Xk

(
In −AS

(
STAS

)−1
ST
)

A ∈ Rn×n, SPD; S ∈ Rn×q; Xk ∈ Rn×n; Xk+1 ∈ Rn×n;
n = 5000; q = 500
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a.16 stochastic newton [23]

Bk :=
k

k− 1
Bk−1

(
In

−ATWk
(
(k− 1)Il +W

T
kABk−1A

TWk
)−1

WT
kABk−1

)
Wk ∈ Rm×l; A ∈ Rm×n; Bk−1 ∈ Rn×n, SPD; Bk ∈ Rn×n; k > 0;
l = 625; n = 1000; m = 5000

a.17 stochastic newton [23]

B1 :=
1

λ1

(
In −ATW1

(
λ1Il +W

T
1AA

TW1
)−1

WT
1A
)

W1 ∈ Rm×l; A ∈ Rm×n; B1 ∈ Rn×n; λ1 > 0;
l = 625; n = 1000; m = 5000

a.18 tikhonov regularization [50]

x :=
(
ATA+ ΓT Γ

)−1
ATb

A ∈ Rn×m; Γ ∈ Rm×m; b ∈ Rn; x ∈ Rm;
n = 3000; m = 200

a.19 tikhonov regularization [50]

x :=
(
ATA+α2I

)−1
ATb

A ∈ Rn×m; b ∈ Rn; x ∈ Rm; α > 0;
n = 3000; m = 200

a.20 generalized tikhonov regularization

x :=
(
ATPA+Q

)−1 (
ATPb+Qx0

)
P ∈ Rn×n, SPSD; Q ∈ Rm×m, SPSD; x0 ∈ Rm; A ∈ Rn×m; b ∈ Rn;
x ∈ Rm;
n = 3000; m = 200

a.21 generalized tikhonov regularization

x := x0 +
(
ATPA+Q

)−1
ATP(b−Ax0)

P ∈ Rn×n, SPSD; Q ∈ Rm×m, SPSD; x0 ∈ Rm; A ∈ Rn×m; b ∈ Rn;
x ∈ Rm;
n = 3000; m = 200
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a.22 lmmse estimator [77]

xout := CXA
T
(
ACXA

T +CZ
)−1

(y−Ax) + x

A ∈ Rm×n; CX ∈ Rn×n, SPSD; CZ ∈ Rm×m, SPSD; x ∈ Rn; y ∈ Rm;
xout ∈ Rn;
n = 2000; m = 1500

a.23 lmmse estimator [77]

xout :=
(
ATC−1

Z A+C−1
X

)−1
ATC−1

Z (y−Ax) + x

A ∈ Rm×n; CX ∈ Rn×n, SPSD; CZ ∈ Rm×m, SPSD; x ∈ Rn; y ∈ Rm;
xout ∈ Rn;
n = 2000; m = 1500

a.24 lmmse estimator [77]

Kt+1 := CtA
T
(
ACtA

T +Cz
)−1

xt+1 := xt +Kt+1(y−Axt)

Ct+1 := (I−Kt+1A)Ct

A ∈ Rm×n; Ct ∈ Rn×n, SPSD; CZ ∈ Rm×m, SPSD; xt ∈ Rn; y ∈ Rm;
Kt+1 ∈ Rn×m; xt+1 ∈ Rn; Ct+1 ∈ Rn×n;
n = 400; m = 400

a.25 kalman filter [78]

Kk := Pk−1H
T
k

(
HkPk−1H

T
k + Rk

)−1
Pk := (I−KkHk)Pk−1

xk := xk−1 +Kk(zk −Hkxk−1)

Pk−1 ∈ Rn×n, SPD; Hk ∈ Rm×n; Rk ∈ Rm×m, SPSD; xk−1 ∈ Rn;
zk ∈ Rm; Kk ∈ Rn×m; Pk ∈ Rn×n; xk ∈ Rn;
n = 400; m = 400





b
D E S C R I P T I O N O F K E R N E L S

Linnea is build in a way such that the set of available kernels can
easily be extended or changed, both to add kernels for additional
operations, and to generate code with kernels from different libraries.
The challenge with such an extensibility is that the interface of BLAS
and LAPACK kernels is relatively complex, and that many kernels
allow to compute families of related operations. As an example, the
TRSM kernel solves triangular linear systems A−1B or BA−1, where
A can either be upper or lower triangular. As mentioned in Sec. 5.1, in
Linnea each of those operations is represented by a different pattern.

In order to simplify the process of making kernels available to Lin-
nea, Linnea offers a specification language that allows to describe
the full functionality of a kernel such as TRSM in a concise manner,
without the exhaustive enumeration of all distinct operations that can
be computed with a single kernel. Instead, from this specification the
patterns that represent the different operations that can be computed
with a given kernel are generated automatically. This language is
embedded into Python and implemented through Python objects. The
same language can also be used for code snippets that implement
operations not supported by libraries. While this language was devel-
oped for BLAS and LAPACK kernels, it generalizes to a much larger
set of BLAS-like kernels that have a similar interface.

Since kernels for matrix factorizations are quite different from other
kernels, there is a separate description language for factorizations.

The description language for kernels (excluding factorizations) is
described in App. b.1, followed by the language for factorizations in
App. b.2.

b.1 kernels

In this section, we give an overview of the specification language for
kernels. A kernel is described by an instance of the KernelDescription
class. The constructor of this class takes several objects as input that
describe different aspects of the kernel. Those objects are described
below.

b.1.1 Signature

The signature is represented by a Python template string. The argu-
ment names are identified by a prefixed $ symbol. As an example, the
signature of the Julia wrapper for the GEMM kernel is
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gemm!($transA, $transB, $alpha, $A, $B, $beta, $C).

The meaning the arguments as well as their possible values are speci-
fied with other objects that are discussed below. For operations not
supported by libraries, instead of the signature of a function, it is
possible to directly use a code snippet. For instance, the following
code snippet implements the product of a full and a diagonal matrix
where the diagonal matrix is represented as a vector of the diagonal
elements:

for i = 1:size($B, 2);

view($B, :, i)[:] .*= $A;

end;

b.1.2 Operation

The mathematical operation that is computed by a kernel is described
by the Operation class that takes as input a symbolic MatchPy expres-
sion. The operation that the AXPY kernel computes is for example
specified as

Operation(Plus(Times(alpha, x), y)).

The operand names have to be the same names as the corresponding
arguments in the signature. For kernels that allow operands to op-
tionally be transposed, there are placeholder operators. With those
operators, the operation that the GEMM kernel computes is described
as

Operation(

Plus(Times(alpha, Op1(A), Op2(B)), Times(beta, C))).

The placeholder operators Op1 and Op2 are either replaced with the
transposition or identity operator. In case of the latter, this means that
the placeholder is removed. For kernels such as TRSM that allow to
compute different operations, it is possible to use a OperationKV object
that takes as input the name of an argument together with a dictionary.
The dictionary maps argument values to different expressions:

OperationKV("side",

{"L": Times(alpha, Op1(A), B),

"R": Times(alpha, B, Op1(A))}

)

In this case, if the side argument has the value ’L’, the operation
represented by the expression Times(alpha, Op1(A), B) is computed;
if side is set to ’R’, the operation is Times(alpha, B, Op1(A). The
operands that appear in the expressions are symbolic operands that
have to be defined before the definition of the KernelDescription

object. During the generation of the patterns, those operands are
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replaced with variables. Properties that are fixed for all operations
computed by a given kernel are specified by assigning those properties
to the respective operands. For instance, the property symmetric for
the operand A of the SYMM kernel is set with

A.set_property(symmetric).

b.1.3 Variants

The KernelDescription class takes a list of an arbitrary number of
KernelVariant objects. Those objects further describe the family of op-
erations that can be computed by the kernel. There are three different
subclasses of the KernelVariant class:

placeholder operators The OperatorKV class specifies the pos-
sible values of placeholder operators. The constructor of the this class
takes three arguments: The name of the corresponding argument, a dic-
tionary that maps argument values to operators, and the placeholder
operator. For instance,

OperatorKV("transA", {"N": Identity, "T": Transpose}, Op1)

describes that if the value of the argument transA is N, then the
placeholder operator Op1 is replaced with the identity function and
subsequently removed. Alternatively, if transA is T, then Op1 is the
transposition.

default values As mentioned in Sec. 5.1, the pattern matching
implemented in MatchPy is not able to automatically insert the neutral
element of multiplication or addition for a variable that cannot match
anything else. For this reason, the DefaultValueKV class allows to
specify default values for operands. The specification of default values
consists of two parts: The operand, and a list of the default values. An
example for the argument beta of the GEMM kernel is shown below:

DefaultValueKV(beta,

[ConstantScalar(0.0), ConstantScalar(1.0)]).

When the different patterns are generated from a KernelDescription

object, the operand is replaced with a default value, and the resulting
pattern is simplified (see Sec. 7.1.1) For instance, if beta is 0.0, the
pattern for the GEMM kernel is simplified to

Times(alpha, Op1(A), Op2(B))).

For each operand that has default values, one pattern is generated
where the operand is not replaced with a default value.
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properties The PropertyKV class specifies a property of an input
operand in case the property is determined by an argument. In the
pattern generated for the kernel, this property is used a constraint
for the respective operand. The constructor of the PropertyKV class
takes three arguments: The name of the corresponding argument, a
dictionary that maps argument values to properties, and the operand.
As an example, in case of the TRSM kernel,

PropertyKV("uplo",

{"U": upper_triangular, "L": lower_triangular}, A)

describes that if the value of the argument uplo is L, then A needs to
have the property lower_triangular. Alternatively, if uplo is U, then
A needs to have the property upper_triangular.

b.1.4 Input and Output Operands

The input operands are described by a list of InputOperand objects.
The constructor of the InputOperand class takes the operand together
with its required storage format as input. The storage formats are
described in Sec. 9.2. The list of input operands of the SYMM kernel
is for instance

InputOperand(alpha, full)

InputOperand(A, symmetric_triangular)

InputOperand(B, full)

InputOperand(beta, full)

InputOperand(C, full).

Similarly, the output operand is described by the OutputOperand class
that takes the operand as well as its storage format as input. In case of
SYMM, the output operand is described as

OutputOperand(C, full).

If the output operand is also an input operand, this means that the
output of this kernel overwrites the memory location that initially
contains the respective input operand.

b.1.5 Additional Arguments

Argument objects describe additional arguments that are not covered
the objects described so far. There are two different types of arguments.

size The SizeArgument class is used to specify the value of argu-
ments that require the size of an operand. In addition, this class also
defines the values that can be used in the cost function, which is
described below. The SizeArgument class takes three inputs: The name
of the argument, the operand, and an identifier that is either "rows"
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or "columns". Depending on the identifier, respectively the number of
rows or columns of this operand is used as a value for the argument.
As an example, the size arguments of the AXPY kernel are

SizeArgument("n", A, "columns")

SizeArgument("m", A, "rows").

In order to take into account the effect of placeholder operators, it
is possible to use placeholder operators in SizeArgument objects. For
instance, for the GEMM kernel, the following objects are used:

SizeArgument("m", Op1(A), "rows")

SizeArgument("n", Op2(B), "columns")

SizeArgument("k", Op1(A), "columns").

storage format The StorageFormatArgument class is used to
specify the value of arguments that describe the storage format of an
operand. This class requires three inputs: The name of the argument,
the name of the operand, and a dictionary that maps storage formats
to arguments values. For the SYMM kernel, it is used as shown below:

StorageFormatArgument("uplo", A,

{symmetric_lower: "L", symmetric_upper: "U"}).

b.1.6 Cost Function

The cost function is described by a Python function that computes
the cost of a kernel call from the sizes of the input operands. For the
operand sizes, the names can be used that have been defined with
SizeArgument objects. Since the cost functions are relatively simple,
they are usually implemented as lambda functions. The cost function
of the GEMM kernel is for example

lambda m, n, k: 2*m*n*k.

b.1.7 Options

In addition to the specifications described so far, the KernelDescrip-

tion class takes a set of options that influence the generation of the
different patterns. At present, there are two such options:

transpose The transpose option specifies that this kernel should
also be used as a transposed kernel (see Sec. 5.4). With this option,
transposed patterns are generated.

no simplifications The no_simplifications option specifies
that the patterns for this kernel should not be simplified. Usually,
patterns are simplified to remove the identity function introduced
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by placeholder operators, to push down the transpose in case of
transposed kernels, and to remove default values. In some cases,
those simplifications have undesired side effects. For instance, for
the kernel that computes the product of a matrix with a scalar, both
patterns αA and Aα have to be generated. However, as a convention,
scalars in matrix products are always sorted and moved to the left
(see Sec. 7.1.1). Thus, if Aα is simplified, it is converted to αA. The
no_simplifications option exists to avoid that simplifications are
applied in those cases.

Example b.1. As a complete example, the description of the GEMM
kernel is shown in Fig. b.1. The description of a code snipped that
computes the product of a full and a diagonal matrix is shown in
Fig. b.2. �

b.1.8 Generation of Patterns

From the KernelDescription objects, one pattern is generated for
each distinct operation that can be computed with a given kernel.
For the most part, this generation consists of the enumeration of
all combinations of different alternatives specified by KernelVariant

objects. In addition, as a preparation for the code generation, values are
assigned to arguments that determine the operation that is computed.
This process can be thought of as partial function application. As an
example, consider the TRSM with the signature

trsm!($side, $uplo, $transA, $diag, $alpha, $A, $B).

For the operation αA−1B, where A is lower triangular, values are
assigned to the first four arguments, resulting in

trsm!(’L’, ’L’, ’N’, ’N’, $alpha, $A, $B).

While A and B are always set during the code generation, for those
operations where a default value is used for alpha, this argument is
already set during the generation of patterns. That is, for the operation
A−1B, the signature becomes

trsm!(’L’, ’L’, ’N’, ’N’, 1.0, $A, $B).

Since operand sizes and storage formats depend on the actual input
operands to the kernel, the corresponding arguments are always set
during the code generation.

b.2 factorizations

Due to the differences between factorizations and all other kernels, a
separate specification language exists for matrix factorizations. In this
language, factorizations are described by the FactorizationKernel

class.
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1 A = Matrix("A")

2 B = Matrix("B")

3 C = Matrix("C")

4 alpha = Scalar("alpha")

5 beta = Scalar("beta")

6

7 gemm = KernelDescription(

8 OperationKV(

9 Plus(Times(alpha, Op1(A), Op2(B)), Times(beta, C))),

10 [OperatorKV("transA",

11 {"N": Identity, "T": Transpose}, Op1),

12 OperatorKV("transB",

13 {"N": Identity, "T": Transpose}, Op2),

14 DefaultValueKV(alpha, [ConstantScalar(1.0)]),

15 DefaultValueKV(beta,

16 [ConstantScalar(0.0), ConstantScalar(1.0)])

17 ],

18 [InputOperand(alpha, full),

19 InputOperand(A, full),

20 InputOperand(B, full),

21 InputOperand(beta, full),

22 InputOperand(C, full),

23 ],

24 OutputOperand(C, full),

25 lambda m, n, k: 2*m*n*k,

26 "gemm!($transA, $transB, $alpha, $A, $B, $beta, $C)",

27 [SizeArgument("m", Op1(A), "rows"),

28 SizeArgument("n", Op2(B), "columns"),

29 SizeArgument("k", Op1(A), "columns")

30 ]

31 )

Figure b.1: Description of the GEMM kernel.
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1 A = Matrix("A")

2 A.set_property(DIAGONAL)

3 A.set_property(SYMMETRIC)

4 B = Matrix("B")

5

6 diagmmr = KernelDescription(

7 OperationKV(Times(B, A)),

8 [],

9 [InputOperand(A, diag_vec),

10 InputOperand(B, full),

11 ],

12 OutputOperand(B, full),

13 lambda m, n: m*n,

14 """

15 for i = 1:size($B, 2);

16 view($B, :, i)[:] .*= $A[i];

17 end;

18 """,

19 [SizeArgument("m", B, "rows"),

20 SizeArgument("n", B, "columns")

21 ],

22 options={transpose}

23 )

Figure b.2: Description of a code snippet that computes the product of a full
and a diagonal matrix.
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In terms of functionality, the main differences between factoriza-
tions and other kernels are that factorizations have only one input
operand, but multiple output operands, and some factorizations store
multiple output operands in the same memory location. The interface
of factorizations is less uniform and to some extent also more compli-
cated: While most factorizations do have some arguments that affect
their functionality, those arguments are very specific to the different
factorizations. Thus, the semantics of those arguments cannot easily be
described with a small number of relatively general KernelVariant ob-
jects the way it is done for other kernels. As a result, the specification
language for factorizations has a lower level of abstraction, and only
one operation can be described with a FactorizationKernel object.
However, if a factorization kernel should be used in different ways,
it is possible to use the same factorization with different arguments
in multiple objects. This approach can also be used if the properties
of output operands depend on the properties of input operands. An
example of the use of multiple objects for one factorization is provided
at the end of this section.

The input of the constructor of the FactorizationKernel class is
described below. Since the specification of the signature, the input
operands, the arguments, and the cost function is the same as for the
KernelDescription class, the corresponding objects are omitted in
this section.

b.2.1 Pattern

The operand that can be used as input for a factorization is described
by a MatchPy Pattern object. This pattern optionally includes the
constraints regarding the properties of this operand. The pattern used
for the LU factorization is for instance

Pattern(A, PropertyConstraint("A", {NON_SINGULAR})),

where A is a variable that only matches matrices. The PropertyCon-

straint object denotes that A can only match operands that are non-
singular.

b.2.2 Output Expressions

The output of a factorization is described by a symbolic expression.
For the LU factorization, this expression is

Times(Transpose(P), L, U),

where P, L, and U are variables.
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b.2.3 Output Operands

The output operands, that is, the factors produced by the factorization,
are specified by a dedicated OutputOperand class for factorizations.
This class takes five inputs:

1. The output operand.

2. The input operand that is overwritten. If no input operand is
overwritten by a given output operand, this can be None.

3. The size of the output operand, as a tuple of argument names
specified by SizeArgument objects.

4. A list of the properties of the operand.

5. The storage format of the output operand.

Since some factorizations store multiple output operands in the same
memory location, it is allowed that multiple OutputOperand objects
use the same input operand for the operand that is overwritten. The
output operands of the LU factorizations are specified as

OutputOperand(L, A, ("n", "n"),

[LOWER_TRIANGULAR, UNIT_DIAGONAL, NON_SINGULAR],

lower_triangular_ud)

OutputOperand(U, A, ("n", "n"),

[UPPER_TRIANGULAR, NON_SINGULAR],

upper_triangular),

OutputOperand(P, None, ("n", "n"),

[PERMUTATION],

ipiv).

Both L and U overwrite A. This is possible because with the storage
formats lower_triangular_ud and upper_triangular, both operands
occupy disjoint parts of the same memory location.

Example b.2. The description of the GETRF kernel that computes the
LU factorization is shown in Fig. b.3.

The GESVD kernel that computes the singular value decomposition
(U,S,V)← A with A = USV has two arguments that allow to specify
which output operands are computed and where they are stored:
Either U or V can overwrite the input operand A. Depending on the
dimensions of A, either U or V is smaller than A, while the other
one has the same size as A. Thus, it is beneficial to overwrite A with
the operand that has the same size as A. To specify this, multiple
FactorizationKernel objects are necessary, where different values
are used for the arguments jobu and jobvt that determine which
output operand overwrites A. In Linnea, separate objects are used for
m < n, m = n, and m > n, where m is the number of rows and n the
number of columns of A. As an example, for m < n, V overwrites A,
so the output operands are
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1 A = Wildcard.symbol("A", symbol_type=Matrix)

2 P = Wildcard.symbol("P")

3 L = Wildcard.symbol("L")

4 U = Wildcard.symbol("U")

5

6 getrf = FactorizationKernel(

7 Pattern(A, PropertyConstraint("A", {NON_SINGULAR})),

8 InputOperand(A, full),

9 Times(Transpose(P), L, U),

10 [OutputOperand(L, A, ("n", "n"),

11 [LOWER_TRIANGULAR, UNIT_DIAGONAL, NON_SINGULAR],

12 lower_triangular_ud),

13 OutputOperand(U, A, ("n", "n"),

14 [UPPER_TRIANGULAR, NON_SINGULAR],

15 upper_triangular),

16 OutputOperand(P, None, ("n", "n"),

17 [PERMUTATION],

18 ipiv)

19 ],

20 lambda n: 2/3*n**3,

21 "($A, $P, info) = getrf!($A)",

22 [SizeArgument("n", A, "rows")],

23 )

Figure b.3: Description of the GETRF kernel.
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OutputOperand(U, None, ("m", "m"),

[ORTHOGONAL],

full)

OutputOperand(S, None, ("m", "m"),

[DIAGONAL],

diag_vec)

OutputOperand(V, A, ("m", "n"),

[ORTHOGONAL_ROWS],

full)

together with the signature

($U, $S, _) = gesvd!(’S’, ’O’, $A).

For m > n on the other hand, U overwrites A, so the output operands
are

OutputOperand(U, A, ("m", "n"),

[ORTHOGONAL_COLUMNS],

full)

OutputOperand(S, None, ("n", "n"),

[DIAGONAL],

diag_vec)

OutputOperand(V, None, ("n", "n"),

[ORTHOGONAL],

full)

with the signature

(_, $S, $V) = gesvd!(’O’, ’S’, $A).

�
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P R O P E RT I E S B A S E D O N B A N D W I D T H

A relatively large number of common matrix properties can be de-
scribed in terms of a generalized notion of bandwidth. This includes
for instance triangular, tridiagonal, and upper Hessenberg. The idea
is to separately define the upper and lower bandwidth of a matrix
as the number of non-zero off-diagonals above and below the main
diagonal. With this notion of bandwidth, the inference of properties
that can be described in terms of bandwidth can be done as follows:
The properties of the input matrices as provided by the user are trans-
lated to the bandwidth. From the bandwidth of the operands, the
bandwidth of the full expression is computed. Then, the properties
of the expression are determined from its bandwidth. In contrast to a
rule-based approach, the inference of properties based on bandwidth
makes it possible to support a relatively large number of properties
with a single, simple inference method.

In this section, we present this generalized notion of bandwidth and
show how the bandwidth of expressions can be computed. We begin
with the definition of the bandwidth:

Definition c.1 (Bandwidth [51, Section 1.2.1]). Let A ∈ Rm×n be a
matrix. The bandwidth of A is a tuple b = (l,u) with

−n 6 l 6 m− 1 (c.1)

−m 6 u 6 n− 1. (c.2)

A has a lower bandwidth l if i > j+ l⇒ aij = 0 and an upper bandwidth
u if j > i+ u⇒ aij = 0. In the following, the bandwidth of a matrix
A is denoted by B(A). �

Intuitively, l and u specify the number of non-zero off-diagonals
below and above the main diagonal, respectively. For instance, the
matrix× × × 0

0 × × ×
0 0 × ×


has bandwidth (0, 2); × denotes entries with arbitrary values. Tab. c.1
shows a list of properties that can be defined in terms of bandwidth.

The definition of bandwidth intentionally does not require a matrix
to be square. The reason is that this notion of bandwidth naturally
extends to non-square matrices. As a result, it provides an unambigu-
ous generalization of all properties that can be defined in terms of
bandwidth to non-square matrices. In addition, the bandwidth of a

187
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Table c.1: Definition of properties in terms of bandwidth. Let A ∈ Rm×n be
a matrix with B(A) = (l,u).

Property Definition

lower triangular u 6 0

upper triangular l 6 0

diagonal l = 0 and u = 0

zero l+ u+ 1 6 0

lower Hessenberg u 6 1

upper Hessenberg l 6 1

lower bidiagonal l 6 1 and u 6 0

upper bidiagonal l 6 0 and u 6 1

tridiagonal l 6 1 and u 6 1

pentadiagonal l 6 2 and u 6 2

matrix can be negative. Intuitively, a negative bandwidth means that
the matrix is zero on the main diagonal; it allows to describe matrices
that have a non-zero band anywhere, not just around the main diag-
onal. An example of a matrix with negative bandwidth, in this case
(−1, 2), is given below.0 × × 0

0 0 × ×
0 0 0 ×


c.1 computation of the bandwidth

With the introduction of bandwidth, all properties that can be de-
fined in terms of bandwidth can be determined by computing the
bandwidth of an expression once and then checking the conditions in
Tab. c.1. In the following, we describe how the bandwidth is computed
for expressions built from the operations supported by Linnea. Let
A ∈ Rm×n be a matrix with B(A) = b = (l,u), and Ai ∈ Rmi×ni be
matrices with B(Ai) = bi = (li,ui).

addition For sums of matrices, the upper (or lower) bandwidth is
the maximum of the upper (or lower) bandwidth of all summands:

B(A1 + . . .+Ai) =
(
max(l1, . . . , li), max(u1, . . . ,ui)

)
.

It should be noted that this function can return an overapproximation
of the bandwidth if entries cancel out.
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matrix multiplication For the product of two matrices, the
upper (or lower) bandwidth of the product is the sum of the upper
(or lower) bandwidths of the factors. In order to account for the fact
that the bandwidth is limited by the size of the matrix, we define an
auxiliary function that limits the value of a variable v:

limit(v, l,u) :=


u if u < v

v if l 6 v 6 u

l if v < l.

With this function, the bandwidth of a product of two matrices can be
defined as:

B(A1A2) =
(
limit(l1 + l2,−n2,m1 − 1),

limit(u1 + u2,−m1,n2 − 1)
)
. (c.3)

Proof: Let A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n. Without loss of
generality, we assume that the absolute values of all bandwidths
are much smaller than the matrix sizes. Under this assumption, the
bandwidth of C = AB is

B(C) = (lA + lB,uA + uB).

We show that for all i and j, i > j+ lA ⇒ aij = 0 and i > j+ lB ⇒
bij = 0 implies i > j+ lC ⇒ cij = 0 with lC = lA + lB. The element
cij of C is computed as cij =

∑k
λ=1 aiλbλj. Thus, cij = 0 if for all

λ, either aiλ = 0 or bλj = 0. Following from i > j+ lA ⇒ aij = 0,
aiλ = 0 if i > λ+ lA, or equivalently i− lA > λ. Following from i >

j+ lB ⇒ bij = 0, bλj = 0 if λ > j+ lB. Thus, cij = 0 if i− lA > j+ lB,
which is equivalent to i > j+ lA + lB. Analogously, one can show that
uC = uA + uB. �
Unfortunately, this formula can produce an overapproximation of the
bandwidth if it is applied to products of more than two matrices.
Consider as an example the product A = A1A2A3 with

(m1,n1) = (8, 4) b1 = (0, 0)

(m2,n2) = (4, 4) b2 = (2, 0)

(m3,n3) = (4, 4) b3 = (2, 0)

(m,n) = (8, 4).

Since formula (c.3) is only defined for products of two matrices, it is
necessary to introduce parenthesis and compute the bandwidth in two
steps. Due to associativity, there are two alternatives:

1. (A1A2)A3.

Let A ′ = (A1A2). Then (m ′,n ′) = (8, 4) and B(A ′) = (2, 0).
According to formula (c.3), the bandwidth of A = A ′A3 is
B(A) = (4, 0).
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2. A1(A2A3).

Let A ′ = (A2A3). Then (m ′,n ′) = (4, 4) and B(A ′) = (3, 0) since
the upper limit for lA ′ is m ′ − 1 = 3. Intuitively, the entire lower
half of A ′ is already full with lA ′ = 3. With this parenthesization,
the bandwidth of A = A1A

′ is B(A) = (3, 0).

While in this case, the parenthesization A1(A2A3) produces the most
accurate result, this is not a general rule. With the bandwidths

b1 = (7, 3) b2 = (3, 3) b3 = (−3, 3),

the parenthesization A1(A2A3) leads to the bandwidth B(A) = (7, 3),
while the more accurate result B(A) = (4, 3) is obtained with the
parenthesization (A1A2)A3. Formula (c.3) already returns inaccurate
results for products of two matrices if one of them is zero: For a
product of two matrices of size 4 × 4 with bandwidths (2, 2) and
(3,−4), that is, the second matrix is zero, the bandwidth is computed
as (3,−2), which does not indicate that the resulting matrix is zero
too. However, in this case, it can easily be detected that the resulting
matrix must be zero based on the two input matrices. In products of
more than two matrices, the situation is more complicated because the
zero matrix can appear as the result of some intermediate product.

It is an open question whether or not a method can be developed to
accurately compute the bandwidth of products of an arbitrary number
of matrices. However, it is also not clear if the cases described above
actually occur in practice.

scalar multiplication The multiplication of a matrix with a
scalar α 6= 0 does not change the bandwidth:

B(αA) = (l,u).

transposition When a matrix is transposed, upper and lower
bandwidth are switched:

B
(
AT
)
= (u, l).

inversion The upper (or lower) bandwidth of an inverted matrix
is zero if the upper (or lower) bandwidth of the original matrix is zero.
Non-zero elements above (or below) the main diagonal can lead to a
fill-in of the entire upper (or lower) half.1 Thus, for a matrix A ∈ Rn×n

where B(A−1) = (l ′,u ′), the lower bandwidth l ′ is

l ′ =

n− 1 if l > 0

0 if l = 0.

1 In practice, the fill-in depends on the location of the non-zero elements in the original
matrix. If they are close to the main diagonal, in the inverse the magnitude of the
fill-in decreases with increasing distance from the main diagonal.
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l

j

j

l ′

i

(i, j)

A

A ′

Figure c.1: An illustration of the computation of the lower bandwidth l ′

of the submatrix A ′ at position (i, j) from the lower bandwidth
l of the matrix A. As shown above, it holds that l+ j = l ′ + i,
which can be rewritten to l ′ = l+ j− i. The formula for the upper
bandwidth can be derived analogously.

The upper bandwidth u ′ is computed analogously. A matrix with
negative bandwidth does not have full rank and cannot be inverted.

c.2 bandwidth of submatrices

Even though Linnea is not able yet to partition matrices into submatri-
ces, we would like to point out that the bandwidth of a submatrix can
be computed from the bandwidth of the full matrix.

Let A ∈ Rm×n be a matrix with bandwidth (l,u), and A ′ ∈ Rm
′×n ′

be a submatrix of A. The position of A ′ in A is described by the tuple
(i, j) where i and j are respectively the row and column offset of the
top-left corner of A ′ relative to the top-left corner of A. With indices
starting at zero, this offset is equal to the indices of the element aij of
A that is in the top-left corner of A ′. For instance, given a matrix

A =

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

 ,

the submatrix of A at position (1, 2) of size 2× 2 is

A ′ =

(
a12 a13

a22 a23

)

The bandwidth (l ′,u ′) of A ′ with size m ′ ×n ′ is computed as

B(A ′) =
(
limit(l+ j− i,−n ′,m ′ − 1),

limit(u+ i− j,−m ′,n ′ − 1)
)
.

Fig. c.1 illustrates how this formula can be derived. Again, this for-
mula also works with negative bandwidth. Indeed, allowing for the
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bandwidth to be negative is especially useful when computing the
bandwidth of submatrices because it makes it possible to accurately
compute the bandwidth of arbitrary submatrices, including the case
where the submatrix is zero. As an example, let A be the lower trian-
gular matrix

a00 0 0 0

a10 a11 0 0

a20 a21 a22 0

a30 a31 a32 a33


which has the bandwidth B(A) = (3, 0). The submatrix A ′ at position
(0, 1) of size 3× 2 is 0 0

a11 0

a21 a22

 .

The bandwidth of A ′ is B(A ′) = (2,−1). The submatrix A ′′ at position
(0, 2) of size 2×2 is zero. With the formula shown above, its bandwidth
is computed as (1,−2), which indeed implies that A ′′ is zero (see
Tab. c.1).
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