
Can Cloud Computing Reach The TOP500?

Jeffrey Napper∗
Vrije Universiteit,

Amsterdam, The Netherlands
jnapper@cs.vu.nl

Paolo Bientinesi†
RWTH Aachen University, AICES,

Aachen, Germany
pauldj@aices.rwth-aachen.de

ABSTRACT
Computing as a utility has reached the mainstream. Scien-
tists can now rent time on large commercial clusters through
several vendors. The cloud computing model provides flex-
ible support for “pay as you go” systems. In addition to no
upfront investment in large clusters or supercomputers, such
systems incur no maintenance costs. Furthermore, they can
be expanded and reduced on-demand in real-time.

Current cloud computing performance falls short of sys-
tems specifically designed for scientific applications. Scien-
tific computing needs are quite different from those of web
applications—composed primarily of database queries—that
have been the focus of cloud computing vendors.

In this paper we investigate the use of cloud computing for
high-performance numerical applications. In particular, we
assume unlimited monetary resources to answer the ques-
tion, “How high can a cloud computing service get in the
TOP500 list?” We show results for the Linpack benchmark
on different allocations on Amazon EC2.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
linear systems (direct and iterative methods); C.4 [Computer
Systems Organization]: Performance of Systems—per-
formance attributes; G.4 [Mathematics of Computing]:
Mathematical Software—LINPACK

General Terms
Measurement, Performance

∗Support from the XtreemOS project, which is partially
funded by the European Commission under contract #FP6-
033576 is gratefully acknowledged.
†Financial support from the Deutsche Forschungsgemein-
schaft (German Research Association) through grant GSC
111 is gratefully acknowledged.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UCHPC-MAW’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-557-4/09/05 ...$5.00.

Keywords
Cloud Computing, Amazon, HPL

1. INTRODUCTION
Computing as a utility has reached the mainstream: ven-

dors now rent all or portions of physical machines for hourly
periods for web services [11, 8, 5]. The cloud computing
model emphasizes the ability to scale compute resources on
demand. The advantages for users are numerous. Unlike
conventional cluster systems, there is no upfront investment
in infrastructure or people and ongoing expenses are simpli-
fied. Total cost can be close to zero when resources are not
in use. The cloud user can pay costs directly proportional to
need rather than allocating resources according to average
or peak load.

This paper explores whether cloud computing services are
suitable for high-performance computing (HPC) workloads.
In contrast, web service workloads that often have little
intra-cluster communication are the primary users of cur-
rent cloud computing services. However, cloud nodes are
typically configured to run user-provided software so that
cloud computing nodes can just as easily run scientific ap-
plications. The ability to quickly create and scale-up a cus-
tom compute cluster is a boon to individual scientists whose
computing needs can be sporadic. Cloud computing services
can also be used to extend existing clusters for larger prob-
lem sizes [6]. Although cloud providers currently place small
bounds on dynamically allocated resources, trends point to-
ward increasing bounds on these resources over time.

To run scientific applications efficiently, cloud computing
needs to provide resources comparable to current HPC sys-
tems. These systems are ranked by the TOP500 list [13]
that lists the fastest supercomputers worldwide. Expecta-
tions are low that cloud systems built for web service work-
loads (that is, without extremely fast interconnects) can
compare favorably with purpose-built HPC supercomput-
ers even though cloud systems may ultimately provide more
resources. To determine the feasibility of this new platform
for high-performance numerical applications, we benchmark
clusters of up to 128 compute cores using Amazon EC2 web
services [11].

Specifically, we use the High-Performance Linpack (HPL)
implementation [10] of the LINPACK benchmark to evalu-
ate cloud performance on dense linear algebra workloads.
The LINPACK benchmark is based on the solution of a
random dense system of linear equations. The solution is
computed by an LU decomposition with partial pivoting fol-
lowed by backsubstitution. In early versions of the bench-

mark, the size of the system was fixed, initially to 100×100,
and subsequently to 1000×1000. Such a constraint was sub-
sequently released to generate more accurate estimates of
the peak performance for a target computer. We chose the
LINPACK benchmark for several reasons: 1) dense linear
algebra is prevalent in scientific applications, 2) the perfor-
mance of the benchmark scales linearly with the size of the
cluster [2], 3) due to compute-intensive algorithms (n3 com-
putations over n2 data), LINPACK provides a good upper
bound on the expected performance of scientific workloads,
and 4) LINPACK is similarly used by the TOP500 [13] list.

Can the sheer size of a cloud computing cluster help attain
a rank on the TOP500 list at any price? Our results show
that the performance of single nodes available on EC2 is as
good as nodes found in current HPC systems [13]. On the
other hand, the available memory and network performance
are insufficient to maintain high performance when scaling
up the cluster. It appears that regardless of how many nodes
are used, a cluster built out of current EC2 nodes cannot at-
tain a spot on the TOP500 list. While the high-performance
interconnects used in supercomputing systems will protect
their standing in the TOP500 list, the number of nodes avail-
able in a cloud system may allow those without access to
the biggest supercomputers to solve larger problem sizes.
However, these solutions come at the significantly reduced
efficiency (as measured in GFLOP/sec) available in cloud
systems.

In addition to standard metrics such as GFLOP/sec and
efficiency used in HPC, we introduce GFLOP/$ (billions of
floating point operations per dollar) and $/size (dollars to
solve a linear system of given input matrix size) to ana-
lyze in depth the pros and cons of clouds. Cloud comput-
ing makes the total cost of computation explicit—there is
no need to add maintenance and administration costs. The
GFLOP/$ metric allows users similarly to estimate straight-
forward costs for different applications with respect to com-
putational efficiency while the $/size metric estimates costs
with respect to problem size.

2. EXPERIMENT
We perform our experiments on the Amazon Elastic Com-

pute Cloud (EC2) service [11]. Although there are compet-
ing cloud offerings that were publicly available at the time [8,
5], Amazon’s service provides complete control over a node
so that all processors that share memory in the same system
are allocated to the user. Some other services provide pro-
cessors with sizeable memory allocations, but do not guaran-
tee that another processor with access to the same memory
bus is not allocated to a different user.

Nodes allocated through EC2 are called instances. In-
stances are allocated from Amazon’s data centers according
to unpublished scheduling algorithms.1 Data centers are
combined into entities known as an availability zone, Ama-
zon’s smallest logical geographic entity for allocation. These
zones are further combined into regions, which consist of
only the US and Europe at the moment.

After allocation, each instance automatically loads a user-
specified image containing the proper operating system (in
our case Linux) and user software (described below). Images
are loaded automatically by Amazon services onto one or

1Allocations are initially limited to 20 total instances, but
this restriction can be lifted upon request.

more virtualized processors using the Xen virtual machine
(VM) [1]. Each processor is itself multi-core, resulting in a
total of 4 to 8 virtual cores for the instances we reserved.

Tools written to Amazon’s public APIs provide the abili-
ties to allocate extra nodes on demand, release unused nodes,
and create and destroy images to be loaded onto allocated in-
stances. Using these tools and developing our own, we built
images with the latest compilers provided by the hardware
CPU vendors AMD and Intel. We use HPL 2.0 [10] from the
University of Tennessee, compiled with GotoBLAS 1.26 [4]
from the Texas Advanced Computing Center (TACC), and
MPICH2 1.0.8 [7] from the Argonne National Laboratory.
Using our tools we can allocate and configure variable size
clusters in EC2 automatically, including support for MPI
applications.

Although we developed tools to automatically manage
and configure EC2 nodes for our applications, there are also
other publicly available tools for running scientific applica-
tions on cloud platforms (including EC2) [12, 9]. Further,
as the cloud computing platform matures, we expect much
more development for specific applications such as high-
performance computing to reduce or eliminate much of the
initial learning curve for deploying scientific applications on
cloud platforms. Already, for example, public images are
available on EC2 supporting MPICH [3].

Finally, Edward Walker has previously compared EC2
nodes to current HPC systems [14]. Our results are simi-
lar to his for the small clusters of 4 nodes that he used.

2.1 Setup
Our evaluations were carried out using extra-large nodes

of both the standard and high-CPU categories of the Ama-
zon EC2 cloud in January 2009. Both node types cost $0.80
per hour to allocate.2 The extra-large node of the high-CPU
class consists of 2 Intel Xeon quad-core processors operating
at a frequency of 2.3 GHz with a total memory of 7 GB.
Each core is capable of executing 4 floating-point operations
per clock cycle, leading to a theoretical peak performance of
74.56 GFLOP/sec per node. The biggest nodes of the stan-
dard class contain two AMD Opteron dual-core processors
at 2.60 GHz with 15 GB of local memory. Each core per-
forms 2 floating-point operation per second, resulting in a
theoretical peak performance of 20.8 GFLOP/sec per node.

In regards to multithreaded parallelism provided by the
multi-core processors, extensive testing delivered the best
performance when we set the BLAS to use as many threads
as available cores per processor—4 and 2, for the Xeon and
the Opteron, respectively. With these settings and using the
platform-specific libraries and compilers, we reached 76%
and 68% of theoretical peak performance (as measured in
GFLOP/sec) for the Xeon and Opteron, respectively, for
single node performance. We thus believe the configuration
and execution of LINPACK in HPL on the high-CPU and
standard instances is efficient enough to use as an exemplar
of compute-intensive applications for the purposes of our
evaluation.

Both instance types (with Intel or AMD CPUs) execute
the RedHat Fedora Core 8 operating system and the 2.6.21
Linux kernel. The 2.6 line of Linux kernels supports au-
totuning of buffer sizes for high-performance networking,
which is enabled by default. The specific interconnect used

2There are additional costs for bandwidth used into and out
from Amazon’s network.

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10 12 14 16

%
 th

eo
re

tic
al

 p
ea

k

Number of nodes

AMD
Intel

Figure 1: Efficiency as percentage of optimal GFLOP/sec
on clusters of AMD or Intel EC2 instances.

by Amazon is unspecified [14] and multiple instances might
even share a single hardware network card. Therefore, the
entire throughput might not be available to any particular
instance. In order to reduce the number of hops between
nodes, we run all experiments with cluster nodes allocated
in the same availability zone.

2.2 Results
Figure 1 provides for the given cluster size the percent-

age of theoretical peak GFLOP/sec achieved using both the
AMD and Intel CPUs. The problem sizes were increased
as the number of nodes allocated to the cluster increased.
Note that the nodes are configured without swap space. The
problem size was chosen to keep the memory allocation per
processor constant—for every doubling of cluster size, the
problem size is scaled by a factor of

√
2. We did not al-

locate clusters of 16 nodes for the AMD instances because
their larger physical memories allowed them to solve prob-
lem sizes with 8 nodes (120 GB RAM) that required 16 Intel
nodes (112 GB RAM). Furthermore, the performance trends
are already clear.

The data sets for both processor types display a severe loss
in performance stepping up from one to two nodes although
performance of LINPACK should scale linearly [2]. We ran
many different configurations to find the best HPL settings
(number of rows and columns, partitioning block size, panel
factorization algorithm, broadcast algorithm, etc.) and re-
port the peak for each cluster size individually. Settings
are typically different across cluster sizes. Without disk ac-
tivity, the exponential degradation in performance for two
EC2 nodes is easily attributable to the slow interconnect.
The Xeon cluster obtains the same order of magnitude of
GFLOP/sec for different clusters sizes while the Opteron
instances appear to increase GFLOP/sec as the cluster size
increases. However, for the Xeon, the problem of a slow
network is aggravated by the limited memory available: less
than 1GB/core (7GB every two quad-cores). In fact, the
Xeon does not surpass single-node performance (that is, 75
GFLOP/sec) in our experiments until 16 nodes are used (80
GFLOP/sec). Given that the AMD instance scales signifi-
cantly better using (presumably) the same interconnect, we
conclude that the small memory provision represents a lim-
iting factor for the Xeon—especially in the presence of a
slower interconnect.

1e+04

1e+05

1e+06

 0 5 10 15 20

G
FL

O
P/

$

Number of nodes

AMD
Intel

Figure 2: By cluster size. Performance for money spent on
EC2 using AMD and Intel instances by cluster and problem
sizes. The y-axis is log scale.

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

$

Problem size (N) in thousands

AMD
Intel

Figure 3: By problem size. Performance for money spent on
EC2 using AMD and Intel instances by cluster and problem
sizes. The y-axis is log scale.

To evaluate cloud computing as an alternative on-demand
cluster, we present results with respect to costs. One ad-
vantage of cloud computing is the “pay as you go” aspect
wherein instances can be created and deleted on demand.
Figure 2.2 gives the GFLOP/sec per dollar (GFLOP/$) ob-
tained for different cluster sizes and instance types. The
values are measured as the average floating point operations
obtained over large problem sizes divided by the average
compute time used on the cluster per dollar (note: instances
are charged by the hour—we did not quantize the costs for
this figure). Figure 2.2 clearly shows the exponential de-
crease in performance with respect to dollar cost of the clus-
ters. Hence, as we double the cluster size, we receive less
GFLOP/sec in return for money spent. We adjusted for
cluster size so that a perfectly scaled cluster should appear
as a straight line. Although spending extra money on EC2
might still help reach the solution faster, the reverse can also
be true—for a fixed sum, smaller clusters can attain higher
performance.

In our experiments GFLOP/sec increase only marginally
with cluster size. Instead of improved performance, larger
clusters can also be used to solve larger problems without
disk I/O. Figure 2.2 provides the actual costs for solving

linear systems of different sizes. The data represents the ac-
tual costs for the cluster of compute nodes to complete one
specific run of HPL for the peak GFLOP/sec configuration.
The costs of larger problem sizes also increases exponen-
tially, as we expect from Figure 2.2. Users must balance the
problem size solveable by different size clusters with the sig-
nificant cost pressure to keep clusters small for efficiency of
GFLOP/$. Our experiments show that although the AMD
instances can solve larger problems sizes due to the better
provisioned memory, the costs are equivalent to Intel in-
stances that use more nodes to solve the same problem size
faster. Of course, this tradeoff could change as the cluster
sizes increase further.

3. CONCLUSIONS
While cloud computing provides an extensible and power-

ful computing environment for web services, our experiments
indicate that the cloud (or Amazon’s EC2, at least) is not
yet mature enough for HPC computations. We observe that
the GFLOP/sec obtained per dollar spent decrease exponen-
tially with increasing computing cores and correspondingly,
the cost for solving a linear system increases exponentially
with the problem size—very much in constrast to existing
scalable HPC systems.

We do see a future for cloud systems in HPC. The effort
to create customized images will shrink over time as tools
improve. At the moment, clouds can already be used to run
private clusters or extend current HPC systems. However,
we have shown that these clusters are very inefficent com-
pared to current HPC systems. If cloud computing vendors
are serious about targeting the HPC market, different cost
models must be explored. An obvious first step would be
to offer better interconnects or nodes provisioned with more
physical memory to overcome the slower network.

4. REFERENCES
[1] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Timothy L. Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen And The Art Of
Virtualization. In Symposium on Operating Systems
Principles, pages 164-177, Bolton Landing, New York,
October 2003.

[2] Jack Dongarra, Robert van de Geijn, and David
Walker. Scalability Issues Affecting The Design Of A
Dense Linear Algebra Library. In Journal of Parallel
and Distributed Computing, 22(3):523–537, September
1994.

[3] Chris Gemignani and Peter Skomoroch. Elasticwulf:
Beowulf Cluster Run On Amazon ec2. Available on
the WWW, December 2008.
http://code.google.com/p/elasticwulf/.

[4] Kazushige Goto. Gotoblas. Available on the WWW,
May 2008. http:
//www.tacc.utexas.edu/resources/software/#blas.

[5] ServePath Dedicated Hosting. gogrid Cloud Hosting.
Available on the WWW, 2009. http://gogrid.com.

[6] K. Keahey, T. Freeman, J. Lauret, and D. Olson.
Virtual Workspaces For Scientific Applications. In
SciDAC 2007 Conference, June 2007.

[7] Argonne National Laboratory. Mpich2:
High-performance And Widely Portable mpi.

Available on the WWW, October 2008. http:
//www.mcs.anl.gov/research/projects/mpich2/.

[8] xcalibre communications ltd. flexiscale Cloud
Computing. Available on the WWW, 2009.
http://www.flexiscale.com.

[9] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. The Eucalyptus Open-source
Cloud-computing System. In Proceedings of Cloud
Computing and Its Applications [online], October
2008.

[10] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
hpl - A Portable Implementation Of The
High-performance Linpack Benchmark For
Distributed-memory Computers. Available on the
WWW, September 2008.
http://www.netlib.org/benchmark/hpl/.

[11] Amazon Web Services. Amazon Elastic Compute
Cloud (ec2). Available on the WWW, 2009.
http://aws.amazon.com/ec2.

[12] Amazon Web Services. Nimbus Science Clouds.
Available on the WWW, 2009.
http://workspace.globus.org/.

[13] TOP500.Org. Top 500 Supercomputer Sites. Available
on the WWW, November 2008.
http://www.top500.org/.

[14] Edward Walker. Benchmarking Amazon ec2. In
;LOGIN: page 18–23, October 2008.

http://code.google.com/p/elasticwulf/
http://www.tacc.utexas.edu/resources/software/#blas
http://www.tacc.utexas.edu/resources/software/#blas
http://gogrid.com
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.flexiscale.com
http://www.netlib.org/benchmark/hpl/
http://aws.amazon.com/ec2
http://workspace.globus.org/
http://www.top500.org/

	Introduction
	Experiment
	Setup
	Results

	Conclusions
	References

