
The S
ien
e of Deriving Dense Linear Algebra Algorithms �FLAME Working Note #8Paolo Bientinesi y John A. Gunnels z Margaret E. MyersyEnrique S. Quintana-Ort�i x Robert A. van de GeijnySeptember 30, 2002Abstra
tIn this paper we present a systemati
 approa
h to the derivation of families of high-performan
ealgorithms for a large set of frequently en
ountered dense linear algebra operations. As part of thederivation a
onstru
tive proof of the
orre
tness of the algorithm is given. The paper is stru
turedso that it
an be used as a tutorial for novi
es. However, the method has been shown to yield new,high-performan
e algorithms for well-studied linear algebra operations and should also be of interest tothe \high priests of high performan
e."1 Introdu
tionThe title of this paper was taken from the title of Gries' undergraduate text The S
ien
e of Programming [8℄.That text introdu
es students to the
on
ept of verifying the
orre
tness of programs. The approa
h isbased on the early work of Floyd [7℄, Dijkstra [3, 4℄, and Hoare [16℄, among others. Ideally, the proofs are
onstru
tive so that the derivation of the program and its proof are fundamentally intertwined. In this paperwe apply this methodology to the derivation of algorithms for dense linear algebra operations.This paper is the third in what we hope will be a series that illustrate to the high-performan
e linearalgebra library
ommunity the bene�ts of the formal derivation of algorithms.� The �rst paper [11℄ gave a broad outline of the approa
h, introdu
ing the
on
ept of formal derivationand its appli
ation to dense linear algebra algorithms. In that paper we also showed that by introdu
ingan Appli
ation Programming Interfa
e (API) for
oding the provably
orre
t algorithms,
laims aboutthe
orre
tness of the algorithms allow
laims about the
orre
tness of the implementation to be made.Finally, we showed that ex
ellent performan
e
an be attained. The primary vehi
le for illustratingthe te
hniques in that paper was the LU fa
torization.� We showed that the method applies to more
omplex operations in the se
ond paper [19℄. In that paperwe showed how a large number of new high-performan
e algorithms for the solution of the triangularSylvester equation
an be derived using the methodology.In a number of workshop papers we have also given a more
ursory treatment of the te
hniques [14, 1℄.This third paper fo
uses primarily on the derivation method. In parti
ular, we show how it provides astep-by-step \re
ipe" that novi
e and veteran alike
an use to rapidly derive
orre
t algorithms. A nontrivial�This resear
h was partially sponsored by NSF grant #0203685.yDepartment of Computer S
ien
es, The University of Texas at Austin, Austin, TX 78712,fpauldj,myers,rvdgg�
s.utexas.edu.zIBM T.J. Watson Resear
h Center, P.O. Box 218 Yorktown Heights, N.Y. 10598, gunnels�us.ibm.
om.xDepartamento de Ingenier��a y Cien
ia de Computadores, Universidad Jaume I, 12.071{Castell�on, Spain,quintana�i

.uji.es. 1

ontribution of this paper is also the fa
t that we
an systemati
ally derive the loop-invariants that di
tatethe di�erent algorithmi
 variants for
omputing a given operation.The te
hniques in this paper apply to linear algebra operations for whi
h there are algorithms that
onsistof a simple initialization followed by a loop. While this may appear to be extremely restri
tive, the linearalgebra libraries
ommunity has made tremendous strides towards modularity. As a
onsequen
e, almostany operation
an be de
omposed into operations (linear algebra building blo
ks) that, on the one hand, arethemselves meaningful linear algebra operations and, on the other hand, whose algorithms have this simplestru
ture. At this time, we do not have a
lean
hara
terization of the operations that fall into this
ategory.Over the last few years, we have shown that it in
ludes all Basi
 Linear Algebra Subprograms (BLAS)(levels 1, 2, and 3) [1, 2, 17, 6, 5, 13℄, all major fa
torization algorithms (LU, Cholesky, and QR) [11℄, matrixinversion (of general, symmetri
, and triangular matri
es) [18℄, and a large number of operations that arisein
ontrol theory [19℄. A subset of these operations is given in Fig. 1.The format of the paper is that of a tutorial and in
ludes exer
ises for the reader. We assume only thatthe reader has a basi
 understanding of linear algebra. In parti
ular, it is important for the reader to re
allhow to multiply partitioned matri
es. For those not
uent in the art of high-performan
e implementation oflinear algebra algorithms we suggest �rst reading [11℄. That paper also dis
usses better how our approa
hrelates to the state-of-the-art in high-performan
e linear algebra library development.This paper is organized as follows: In Se
tion 2 we introdu
e a few of the basi
s regarding the veri�
ationof the
orre
tness of algorithms. In Se
tion 3 we show how to use these te
hniques to verify the
orre
tnessof algorithms for linear algebra operations by
on
entrating on a relatively simple operation that
omputesthe solution of a triangular system of equations with multiple right-hand sides. In Se
tion 4 we go onestep further by showing that by
onstru
ting an algorithm hand-in-hand with the proof of its
orre
tness, astep-by-step method emerges for deriving families of
orre
t algorithms for a given linear algebra operation.While the methodology inherently derives loops for
omputing a given operation, we brie
y dis
uss howre
ursive algorithms �t into the pi
ture in Se
tion 5. Con
luding remarks whi
h largely
on
entrate on thefuture dire
tions of this resear
h
an be found in the �nal se
tion.While it is the derivation of the algorithms that is the
entral fo
us of this paper, we do address thepra
ti
al issues of stability, implementation, and performan
e. So as not to distra
t from the
entral message,these topi
s are dis
ussed in Appendix A.2 Corre
tness of AlgorithmsIn this se
tion we review the relevant formal derivation te
hniques.2.1 NotationAs part of our reasoning about the
orre
tness of algorithms we will use predi
ates to indi
ate assertionsabout the state of the variables en
ountered in an algorithm. For example, after the
ommand� := 1whi
h assigns the value 1 to the s
alar variable �, we
an assert that the predi
ate \� = 1" is true. We
anthen indi
ate the state of variable � after the assignment by the predi
ate f� = 1g.Similarly, we
an use predi
ates to assert how a statement
hanges the state. If Q and R are predi
atesand S is a sequen
e of
ommands then fQgSfRg has the following interpretation ([8℄, page 100):If exe
ution of S is begun in a state satisfying Q, then it is guaranteed to terminate in a �niteamount of time in a state satisfying R.Here fQgSfRg is
alled the Hoare triplet and Q and R are referred to as the pre
ondition and post
onditionfor the triplet, respe
tively.
2

Level-3 BLAS Symmetri
 Matrix-Matrix Multipli
ation (SYMM)C := �(L+ L̂T)B + �C C := �(U + ÛT)B + �CC := �B(L+ L̂T) + �C C := �B(U + ÛT) + �CSymmetri
 Rank-K Update (SYRK)lo(C) := �lo(AAT) + �lo(C) up(C) := �up(AAT) + �up(C)lo(C) := �lo(ATA) + �lo(C) up(C) := �up(ATA) + �up(C)Symmetri
 Rank-2K Update (SYR2K)lo(C) := �lo(ABT +BAT) + �lo(C) up(C) := �up(ABT +BAT) + �up(C)lo(C) := �lo(ATB +BTA) + �lo(C) up(C) := �up(ATB +BTA) + �up(C)Triangular Matrix-Matrix Multipli
ation (TRMM)B := �LB B := �LTB B := �UB B := �UTBB := �BL B := �BLT B := �BU B := �BUTTriangular Solve with Multiple Right-Hand Sides (TRSM)B := �L�1B B := �L�TB B := �U�1B B := �U�TBB := �BL�1 B := �BL�T B := �BU�1 B := �BU�TLevel-3 BLAS-Like OperationsTRMM-Like OperationsL1 := �L1L2 L2 := �L1L2 L := �LUT L := �UTLU1 := �U1U2 U2 := �U1U2 U := �LTU U := �ULTTRSM-Like OperationsL1 := �L1L�12 L2 := �L�11 L2 L := �LU�T L := �U�1LU1 := �U1U�12 U2 := �U�11 U2 U := �L�TU U := �UL�TMis
ellaneouslo(C) := lo(LLT) + lo(C) up(C) := up(LLT) + up(C)lo(C) := lo(LTL) + lo(C) up(C) := up(LTL) + up(C)lo(C) := lo(UUT) + lo(C) up(C) := up(UUT) + up(C)lo(C) := lo(UTU) + lo(C) up(C) := up(UTU) + up(C)lo(L) := lo(L�1L�T) lo(L) := lo(L�TL�1)up(U) := up(R�1R�T) up(U) := up(R�TR�1)C := �UL+ �C C := �LU + �CFa
torization OperationsA := LnU = LU(A) A := UnL = UL(A)A := L = Chol(A) A := U = Chol(A)A := QnR = QR(A) A := QnL = QL(A)A := RnQ = RQ(A) A := LnQ = QL(A)Inversion OperationsA := A�1 lo(A) := lo(A�1) (symmetri
 A)L := L�1 U := U�1Operations from Control TheorySolution of the Sylvester EquationC := X where L1X +XL2 = C C := X where U1X +XU2 = CC := X where LX +XU = C C := X where UX +XL = CSolution of the Lyapunov Equation (symmetri
 C)C := X where LX +XLT = C C := X where LTX +XL = CC := X where UX +XUT = C C := X where UTX +XU = CFigure 1: A sampling of operations to whi
h the formal derivation te
hnique has been applied. Note thatfor most of these, real as well as
omplex
oating point implementations are required. In this �gure, lo(A)and up(A) return (referen
e) the lower and upper triangular part of that matrix, repe
tively.3

Example The predi
atef� = �g� := �+ 1f� = (� + 1)gis true. Here � = � is the pre
ondition while � = (� + 1) is the post
ondition.2.2 The
orre
tness of loopsIn a standard text by Gries and S
hneider, used to tea
h program veri�
ation to undergraduates in
omputers
ien
e, we �nd the following([9℄, pages 236{237)1:We prefer to write a while loop using the syntaxdo G! S odwhere Boolean expression G is
alled the [loop-℄guard and statement S is
alled the repetend.[The l℄oop is exe
uted as follows: If G is false, then exe
ution of the loop terminates; otherwiseS is exe
uted and the pro
ess is repeated.Ea
h exe
ution of repetend S is
alled an iteration. Thus, if G is initially false, then 0 iterationso

ur.The text goes on to state:We now state and prove the fundamental invarian
e theorem for loops. This theorem refers to anassertion P that holds before and after ea
h iteration (provided it holds before the �rst). Su
h apredi
ate is
alled a loop-invariant.(12.43) Fundamental Invarian
e Theorem. Suppose1. fP ^ GgSfPg holds { i.e. exe
ution of S begun in a state in whi
h P and G aretrue terminates with P true { and2. fPg do G! S od ftrueg { i.e. exe
ution of the loop begun in a state in whi
h Pis true terminates.Then fPg do G ! S od fP ^ :Gg holds. [In other words, if the loop is entered in astate where P is true, it will
omplete in a state where P is true and guard G is false.℄The text pro
eeds to prove this theorem using the axiom of mathemati
al indu
tion.3 Veri�
ation of Linear Algebra AlgorithmsIn this se
tion, we use the operation that
omputes the solution of a triangular system with multiple right-hand sides to relate formal veri�
ation methods to algorithms for linear algebra operations.Given a nonsingular m�m lower triangular matrix L and an m� n general matrix B, let X equal thesolution of the equation LX = B: (1)Partitioning matri
es X and B in (1) by
olumns yieldsL � x1 x2 � � � xn � = � b1 b2 � � � bn �1Small
hanges from the original text are delimited by [: : :℄. In addition, in that text B is used to denote the (loop-)guard,while we use G. The primary reason for this is that B is
ommonly used to denote one of the matrix operands.4

or � Lx1 Lx2 � � � Lxn � = � b1 b2 � � � bn � :From this we
on
lude that ea
h
olumn of the solution, xj , must satisfy Lxj = bj . In other words, thesolution of (1) requires the solution of a triangular system for ea
h
olumn of B. Sin
e the
oeÆ
ient matrix,L, is the same for all
olumns, the overall
omputation is referred to as a triangular solve with multipleright-hand sides (trsm). A simple algorithm for overwriting B with the solution X ,B := X = L�1B; (2)is now given in Fig. 2. We emphasize that rather than
omputing L�1, the solution of Lxj = bj is
omputed,overwriting bj . Computing the solution of a triangular system of equations this way is often referred to asforward substitution.In order to relate the above material to the dis
ussion in the previous se
tion regarding the veri�
ationof the
orre
tness of a loop, we turn our attention to Fig. 3. Let B̂ denote the original
ontents of B, letm(A) and n(A) return the row and
olumn dimensions of matrix A, respe
tively, and let LowTr(A) be trueif and only if A is a lower triangular matrix. The pre
ondition (Step 1a in Fig. 3) is given byPpre : (B = B̂) ^ (n(L) = m(L)) ^ LowTr(L) ^ (n(L) = m(B)):Note 1 For brevity, we will assume throughout this paper that the dimensions and stru
ture of the matri
esare
orre
t and will simply give the pre
ondition as Ppre : B = B̂ ^ : : :.Sin
e upon
ompletion the loop is to have
omputed (2) the post
ondition is given by Ppost : B = L�1B̂(Step 1b).If one asks what has been
omputed at the top of the loop in Fig. 2, one dis
overs that the �rst j � 1
olumns have been overwritten by the desired solution. In our approa
h, we partition B and B̂ asB ! � BL BR � and B̂ ! � B̂L B̂R � (3)where (relating this to Fig. 2) BL and B̂L represent the �rst j�1
olumns of B and B̂, respe
tively. (Noti
ethat subs
ripts L and R stand for Left and Right, respe
tively.) Thus, at the top of the loop the desired
urrent
ontents of B are given by Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :, the loop-invariant (Step2). Sin
e the loop in Fig. 2 is exe
uted as long as not all
olumns have been updated, the loop-guard is givenby n(BL) 6= n(B) (Step 3).Now, the loop-invariant must be true before the loop
ommen
es, whi
h is a
hieved by \boot-strapping"the partitioning in (3) by letting BL have no
olumns (Step 4).Finally, we are ready to dis
uss the body of the loop in Fig. 3. In Fig. 2, the left-most
olumn of the setof
olumns yet to be updated is updated, moving it to the set of
olumns that have been updated. In ournotation, we a

omplish this by repartitioning as in Step 5a, whi
h means that the
urrent
ontents of B,in terms of the repartitioned matri
es, is given byQbefore : � B0 b1 B2 � = � L�1B̂0 b̂1 B̂2 � ^ : : :(Step 6). Next, the exposed
olumn is updated (Step 8), whi
h updates the
ontents of B toQafter : � B0 b1 B2 � = � L�1B̂0 L�1b̂1 B̂2 � ^ : : :(Step 7). After this, the updated
olumn is moved from BR to BL (Step 5b).The Fundamental Invarian
e Theorem
an now be used to show that all assertions in Fig. 3 are truewhi
h shows that the algorithm is
orre
t. Finally, we noti
e that B̂ was only introdu
ed for the bene�t ofthe assertions in Fig. 3. Sin
e the update in the body of the loop never referen
ed B̂ or its submatri
es, a�nal algorithm is given in Fig. 4.Exer
ise 3.1 Consider the alternative algorithm for
omputing the
olumns of B in reverse order:for j = n; : : : ; 1bj := xj = L�1bjendforCreate an annotated algorithm like that given in Fig. 3 for this algorithm.5

for j = 1; : : : ; nbj := xj = L�1bjendforFigure 2: Simple algorithm for
omputing B := X = L�1B.Step Annotated Algorithm: B := L�1B1a nPpre : B = B̂ ^ : : :o4 Partition B ! � BL BR � and B̂ ! � B̂L B̂R �where n(BL) = n(B̂L) = 02 �Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :	3 while G : (n(BL) 6= n(B)) do2,3 ��Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :� ^ (G : (n(BL) 6= n(B)))	5a Repartition� BL BR �! � B0 b1 B2 � and � B̂L B̂R �! � B̂0 b̂1 B̂2 �where n(b1) = 16 �Qbefore : � B0 b1 B2 � = � L�1B̂0 b̂1 B̂2 � ^ : : :	8 b1 := L�1b17 �Qafter : � B0 b1 B2 � = � L�1B̂0 L�1b̂1 B̂2 � ^ : : :	5b Continue with� BL BR � � B0 b1 B2 � and � B̂L B̂R � � B̂0 b̂1 B̂2 �2 �Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :	enddo2,3 ��Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :� ^ : (G : (n(BL) 6= n(B)))	1b nPpost : B = L�1B̂oFigure 3: Annotated algorithm for the
omputation of B := X = L�1B by
olumns.Partition B ! � BL BR � and B̂ ! � B̂L B̂R �where n(BL) = n(B̂L) = 0while G : (n(BL) 6= n(B)) doRepartition� BL BR �! � B0 b1 B2 � and � B̂L B̂R �! � B̂0 b̂1 B̂2 �where n(b1) = 1b1 := L�1b1Continue with� BL BR � � B0 b1 B2 � and � B̂L B̂R � � B̂0 b̂1 B̂2 �enddoFigure 4: Final algorithm for the
omputation of B := X = L�1B by
olumns.6

Annotated Algorithm: [D;E;F; : : :℄ = op(A;B;C;D; : : :)fPpregPartitionwherefPinvgwhile G dof(Pinv) ^ (G)gRepartitionwherefQbugSUfQaugContinue withfPinvgenddof(Pinv) ^ : (G)gfPpostgFigure 5: Worksheet for developing linear algebra algorithms.4 Derivation of Linear Algebra AlgorithmsThe example in the previous se
tion is su
h that one might
on
lude that asserting that the algorithm inFig. 2 is
orre
t is rather trivial. In this se
tion, we
laim that in fa
t the \worksheet" that we
reated for thetrsm operation
an be applied to
onstru
tively derive a large number of algorithms for this operation andfor a large
lass of linear algebra operations. Indeed, given the pre
ondition and post
ondition, wewill show that all other
omponents of the generi
 worksheet given in Fig. 5 are systemati
allypres
ribed, leading to a family of algorithms for a given linear algebra operation. We des
ribe the derivationpro
ess in this se
tion, illustrating the steps by deriving a somewhat more
omplex algorithm for
omputingtrsm.The most general form that a linear algebra operation takes is given by[D;E; : : :℄ := op(A;B;C;D; : : :); (4)where the variables on the left of the assignment := are the output variables. Noti
e that, as for the trsmoperation in the previous se
tion, some of the input variables
an appear as output variables.Example (trsm) In the previous se
tion we saw that the triangular solve with multiple right-handsides, trsm,
an be expressed as B := L�1B = trsm(L;B), where L is a m �m lower triangularmatrix and B is an m � n general matrix. For the matrix multipli
ation on the right to be well-de�ned, the
olumn dimension of L must mat
h the row dimension of B. We will want to overwriteB with the result without requiring a work array.Step 1The des
ription of the input and output variables di
tates the pre
ondition Ppre. For variables that are tobe overwritten, it is important to introdu
e variables that indi
ate the original
ontents. If X is both aninput and an output variable, we will typi
ally use Ẑ to denote the original
ontents of Z.
7

Example (
ontinued) The variables for trsm
an be des
ribed by the pre
onditionPpre : B = B̂ ^ n(L) = m(L) ^ LowTr(L) ^ n(L) = m(B)where, as before, B̂ indi
ates the original
ontents of B. For brevity, we will typi
ally only expli
itlystate the most important part of this predi
ate: Ppre : B = B̂ ^ : : :.The operation to be performed and the substitutions required to indi
ate the original
ontents of variablesdi
tate the post
ondition Ppost.Example (
ontinued) The operation to be performed, B := L�1B, translates to the post
onditionPpost : B = L�1B̂.Step 2The primary way in whi
h we now deviate from the dis
ussion in Se
tion 3 is that we now sys-temati
ally derive the di�erent parts of the annotated algorithm. In parti
ular, we derive possibleloop-invariants rather than starting with an implementation from whi
h the loop-invariant is dedu
ed.To determine a set of possible loop-invariants, we pi
k one of the variables and partition it into twosubmatri
es, either horizontally or verti
ally, or into quadrants. The general rule is that if a matrix hasspe
ial stru
ture, e.g., triangular or symmetri
, it is typi
ally partitioned into quadrants that are
onsistentwith the stru
ture. If the matrix has no spe
ial stru
ture, it
an be partitioned verti
ally or horizontally, orinto quadrants.Example (
ontinued) Let us pi
k variable L. Sin
e it is triangular, we partition it asL! � LTL 0LBL LBR � :Here LTL is square so that both submatri
es on the diagonal are themselves lower triangular. (Thesubs
ripts TL, BL, and BR stand for Top-Left, Bottom-Left, and Bottom-Right, respe
tively.)Next, we substitute this partitioned variable into the post
ondition, whi
h is then used to determine thepartitioning of the other variables.Example (
ontinued) Substituting the partitioning of L into the post
ondition yields(some partitioning of B) = � LTL 0LBL LBR ��1 (some partitioning of B̂)This suggests that B and B̂ should be partitioned horizontally into two submatri
es, or into quad-rants. Let us
onsider the
ase where B and B̂ are partitioned horizontally into two submatri
es.Then � BTBB � = � LTL 0LBL LBR ��1 B̂TB̂B !In order to be able to multiply the matri
es on the right out and to be able to then set the submatri
eson the left equal to the result on the right we �nd that the following must hold:n(LTL) = m(B̂T) ^m(LTL) = m(BT) (5)whi
h in turn implies that m(BT) = m(B̂T) sin
e LTL is a square matrix. This is
onvenient, sin
eB and B̂ will referen
e the same matrix (B is being overwritten).8

Table 1: Possible loop-invariants for the trsm example when the pro
ess is started by partitioning matrixL into quadrants. The reason listed for reje
ting the loop-invariant given in the
olumn labeled \Comment"may not be the only reason for doing so.Loop-invariant Comment� BTBB � = � B̂TB̂B � Infeasible (Reason 2).� BTBB � = � L�1TLB̂TB̂B � Loop-invariant 1.� BTBB � = � L�1TLB̂TB̂B � LBLL�1TLB̂T � Loop-invariant 2.� BTBB � = � L�1TLB̂T�LBLL�1TLB̂T � Infeasible (Reason 1).� BTBB � = � L�1TLB̂TL�1BR(B̂B � LBLL�1TLB̂T) � Infeasible (Reason 3).We now perform the operation using the partitioned matri
es. This gives us the desired �nal
ontents ofthe output parameter(s) in terms of the submatri
es.Example (
ontinued)� BTBB � = � LTL 0LBL LBR ��1 B̂TB̂B ! = L�1TL 0�L�1BRLBLL�1TL L�1BR ! B̂TB̂B !and hen
e � BTBB � = L�1TLB̂TL�1BR(B̂B � LBLL�1TLB̂T) ! (6)Di�erent possible loop-invariants
an now be derived by
onsidering individual operations that
ontributeto the �nal result. Ea
h su
h operation may or may not have been performed at an intermediate stage.Careful attention has to be paid to the inherent order in whi
h the operations should be resolved. Anyof the resulting
onditions on the
urrent
ontents of the output variable together with the
onstraints onthe stru
ture and dimensions of the submatri
es is now
onsidered a possible loop-invariant. For ea
h su
hpossible loop-invariant the subsequent steps performed will either show it to be infeasible or will yield analgorithm for
omputing the operation. Reasons for de
laring a loop-invariant infeasible in
ludeReason 1: (Data dependen
y) The loop-invariant assumes that data that is needed in a subsequent
omputationhas been overwritten with a partial or �nal result.Reason 2: No loop-guard exists su
h that Pinv ^ :G) Ppost.Reason 3: No initialization step SI exists that involves only the partitioning of the variables su
h that fPpregSIfPinvgis true.Reason 4: (Operation dependen
y) The loop-invariant requires redundant
omputation to be performed. Noti
ethat sometimes is be
omes bene�
ial to perform redundant
omputation in an e�ort to a
hieve higherperforman
e, in whi
h
ase this reason for reje
ting a possible loop-invariant would not apply.Example (
ontinued) A
areful look at (6) shows that inherently L�1TLB̂T should be
omputed�rst, followed by B̂B �LBL(L�1TLB̂T), and, �nally, L�1BR(B̂B �LBL(L�1TLB̂T)). This leads to a subsetof possible loop-invariants given in Table 1. 9

Example (
ontinued) The feasibility of di�erent possible loop-invariants is dis
ussed in Table 1.We will subsequently use the loop-invariant� BTBB � = L�1TLB̂TB̂B ! (7)as our example, showing it to be feasible by deriving an algorithmi
 variant
orresponding to it.Noti
e that, stri
tly speaking, the
onditions indi
ated in (5) should be part of the loop-invariant.Step 3The loop-invariant Pinv and post
ondition Ppost di
tate the loop-guard G sin
e it must have the propertythat Pinv ^ :G) Ppost.Example (
ontinued) Comparing the loop-invariant in (7) with the post
ondition B = L�1B̂we see that if B = BT , B̂ = B̂T , and L = LTL then the loop-invariant implies the post
ondition,i.e., that the desired result has been
omputed. Thus, we must
hoose a loop-guard G so that itsnegation, :G, implies that the dimensions of these matri
es mat
h appropriately and therefore that(Pinv ^ :G)) Ppost. The loop-guard G : (m(LTL) 6= m(L)) meets this
ondition.Note 2 If no loop-guard
an be found so that Pinv^:G) Ppost, then the loop-invariant is de
lared infeasibleby Reason 2 in Step 2.Step 4The loop-invariant Pinv and pre
ondition Ppre di
tate the initialization step, SI . More pre
isely, SI shouldpartition the variables so that fPpregSIfPinvg is true.Example (
ontinued) Consider the initialization statement SI :Partition B ! � BTBB �, B̂ ! B̂TB̂B !, and L! � LTL 0LBL LBR �where BT and B̂T have 0 rows and LTL is 0� 0in Step 4 in Fig. 6. Sin
e then BT and B̂T have no rows, and BB = B and B̂B = B̂, it is not hardto see that fPpregSI fPinvg is true.Note 3 If no initialization SI
an be found so that fPpregSifPinvg is true then the loop-invariant is de
laredinfeasible by Reason 3 in Step 2.Step 5The loop-guard G and the initialization SI di
tate in what dire
tion the variables need to be repartitionedto make progress towards making G false.Example (
ontinued) Loop-guard G indi
ates that eventually LTL should equal all of L, at whi
hpoint G be
omes false and the loop is exited. After the initialization, LTL is 0�0. The partitioningof L is also su
h that LTL should always be square. Thus, the repartitioning should be su
h that asthe
omputation pro
eeds the dimensions of LBR should de
rease as the dimensions of LTL in
rease.This is a

omplished by the shifting of the double-lines as indi
ated in Steps 5a and 5b in Fig. 6.Noti
e that we are exposing blo
ks of rows and/or
olumns as part of the movement of the doublelines. The reason for this is related to performan
e and will be
ome more
learly apparent inAppendix A.2. 10

Step 6The repartitioning of the variables and the loop-invariant Pinv in Step 5a di
tates Qbefore, the state of thevariables before the update SU . In parti
ular, the double lines in the repartitioning have semanti
 meaningin that they show what submatri
es of the repartitioned matrix
orrespond to the original submatri
es.Substituting the submatri
es of the repartitioned matrix into the appropriate pla
e in the loop-invariantyields Qbefore. This is (often referred to as) textual substitution into the expression that de�nes the loop-invariant.Example (
ontinued) The repartitionings in Step 5a in Fig. 6 identify thatLTL = L00LBL = � L10L20 � LBR = � L11 0L21 L22 � ; BT = B0BB = � B1B2 � ; and B̂T = B̂0B̂B = � B̂1B̂2 � :Textual substitution into the loop-invariant yields the stateQbefore : 0� B0� B1B2 � 1A = 0B� L�100 B̂0� B̂1B̂2 � 1CA ^ : : : (8)Step 7The rede�nition via partitioning of the variables in Step 5b and the loop-invariant Pinv di
tate the desiredstate of the variables after the update SU and before the shifting of the double-lines, Qafter. This
an againbe viewed as textual substitution of the various submatri
es into the loop-invariant.Example (
ontinued) The rede�nition in Step 5b in Fig. 6 identi�es the following equivalentsubmatri
es:LTL = � L00 L0L10 L11 �LBL = � L20 L21 � LBR = L22 ; BT = � B0B1 �BB = B2 ; and B̂T = � B̂0B̂1 �B̂B = B̂2 :Textual substitution into the loop-invariant implies that the following state must be true before therede�nition in Step 5b. In other words, the update in Step 8 must leave the variables in the stateQafter : 0� � B0B1 �B2 1A = 0B� � L00 0L10 L11 ��1� B̂0B̂1 �B̂2 1CAwhi
h, inverting the triangular matrix and multiplying out the right-hand side, is equivalent toQafter : 0� � B0B1 �B2 1A = 0B� � L�100 B̂0L�111 (B̂1 � L10L�100 B̂0) �B̂2 1CA (9)Step 8The di�eren
e in the states Qbefore and Qafter di
tates the update SU .
11

Example (
ontinued) Comparing (8) and (9) we �nd that the updatesB1 := B1 � L10B0B1 := L�111 B1are required to
hange the state from Qbefore to Qafter.Note 4 If no update
an be found that does not use the original
ontents of a matrix to be overwritten, theneither the loop-invariant is infeasible (for Reason 1 in Step 2) or inherently a temporary variable is required.Example (
ontinued) In our example, if the update inherently has to use submatri
es of B̂(referen
ing the original
ontents of B), the loop-invariant would be infeasible sin
e the operation isexpe
ted to overwrite the original matrix without requiring a temporary variable.Step 9: The �nal algorithmOften variables that indi
ate the original
ontents of a variable are only introdu
ed to fa
ilitate the predi-
ates denoting the states at di�erent stages of the algorithm. Whenever possible, su
h variables should beeliminated from the �nal algorithm.Example (
ontinued) By re
ognizing that B̂ is never referen
ed we
an eliminate all parts of thealgorithm that refer to this matrix, yielding the �nal algorithm given in Fig. 7.Exer
ise 4.1 (Partition L Variant 2) Repeat Steps 3{8 for the feasible loop-invariantPinv : � BTBB � = L�1TLB̂TB̂B � LBLL�1TLB̂T ! ^ : : :State the �nal algorithm by removing referen
es to B̂, similar to the algorithm given in Fig. 7Exer
ise 4.2 Repeat Step 2 by
hoosing to partition B verti
ally:B ! � BL BR � :Show that this leads to a verti
al partitioning of B̂: B̂ ! � B̂L B̂R � while L is not partitioned at all.Finally, show that this leads to two possible loop-invariants:� BL BR � = � L�1B̂L B̂R � ^ : : : (10)and � BL BR � = � B̂L L�1B̂R � ^ : : : (11)Exer
ise 4.3 (Partition B Variant 1) In Exer
ise 4.2
onsider loop-invariant (10). Show that by applyingSteps 3-9 one
an systemati
ally derive the algorithms in Figs. 3 and 4.If one repartitions � BL BR �! � B0 b1 B2 � ; : : :one re
overs exa
tly those algorithms, while the repartitioning� BL BR �! � B0 B1 B2 � ; : : :yields the
orresponding blo
ked algorithm.Exer
ise 4.4 (Partition B Variant 2) Repeat Exer
ise 4.3 with loop-invariant (11) and relate the result toExer
ise 3.1. 12

Step Annotated Algorithm: B := L�1B1a nB = B̂ ^ : : :o4 Partition B ! � BTBB �, B̂ ! B̂TB̂B !, and L! � LTL 0LBL LBR �where BT and B̂T have 0 rows and LTL is 0� 02 (� BTBB � = L�1TLB̂TB̂B !)3 while m(LTL) 6= m(L) do2,3 (� BTBB � = L�1TLB̂TB̂B !! ^ (m(LTL) 6= m(L)))5a Determine blo
k size bRepartition� LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1A,� BTBB �! 0� B0B1B2 1A, B̂TB̂B !! 0B� B̂0B̂1B̂2 1CAwhere m(B1) = m(B̂1) = b and m(L11) = b6 8><>:0� B0� B1B2 � 1A = 0B� L�100 B̂0� B̂1B̂2 � 1CA9>=>;8 B1 := B1 � L10B0B1 := L�111 B17 8><>:0� � B1B2 �B2 1A = 0B� � L�100 B̂0L�111 (B̂1 � L10L�100 B̂0) �B̂2 1CA9>=>;5b Continue with� LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1A,� BTBB � 0� B0B1B2 1A, B̂TB̂B ! 0B� B̂0B̂1B̂2 1CA2 (� BTBB � = L�1TLB̂TB̂B !)enddo2,3 (� BTBB � = L�1TLB̂TB̂B !! ^ : (m(LTL) 6= m(L)))1b nPpost : B = L�1B̂oFigure 6: Annotated algorithm for trsm example.13

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blo
k size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 7: Algorithm for the trsm example.5 Re
ursionFor the unblo
ked algorithms, where the boundaries move one row and/or
olumn at a time, the operationsthat update the
ontents of some of the matri
es tend to be relatively simple. Algorithms for those operations
an also be systemati
ally derived, hand-in-hand with the proof of their
orre
tness. Ultimately, thesealgorithms are build upon addition, subtra
tion, multipli
ation, and division as well as operations su
h astaking the square root of a s
alar. Thus,
orre
t algorithms for these operations
an be derived using ourte
hniques.For the blo
ked algorithms, the operation for whi
h we are deriving the algorithms tends to show up asan operation in the body of the loop (the repetend). Clearly the
orre
tness of the blo
ked algorithm
anbe ensured by employing some
orre
t algorithm for this operation in the repetend. In the simplest
ase,a
orre
t unblo
ked algorithm
an be derived and utilized. However, the implementation of the blo
kedalgorithm itself
an be
alled re
ursively, or a di�erent blo
ked algorithmi
 variant
an be used. It isnot diÆ
ult to see that, as long as only a �nite number of levels of su
h
alls are allowed and a
orre
timplementation is
alled at every level, the
orre
tness of the overall algorithm is ensured.6 Con
lusions and Future Dire
tionsIn this paper we have presented a systemati
 approa
h to the derivation of provably
orre
t linear algebraalgorithms. The methodology represents what we believe to be a signi�
ant re�nement of our earlier ap-proa
h, presented in [11℄. The result is a formal method whi
h, in our opinion, puts the derivation of familiesof
orre
t algorithms for a
lass of dense linear algebra operations on solid theoreti
al footing. We wouldlike to think that it has s
ienti�
, pedagogi
al, and pra
ti
al impli
ations.The fa
t that we
an now systemati
ally derive
orre
t algorithms leads to a number of additionalquestions:� On
e a
orre
t algorithm has been derived, there is still the problem of translating this algorithm to
ode without introdu
ing programming bugs. We hint at a solution to this problem in Appendix A.1as well as in [11, 13, 2℄. 14

� If it were possible to fully automate the derivation and implementation of provably
orre
t algorithmsfor linear algebra operations, then one
ould
laim that this area of resear
h is well-understood.A prototype system, implemented by Sergey Kolos at UT-Austin as part of a semester proje
t, auto-mati
ally derives all algorithms for some linear algebra operations using Mathemati
a [21℄ as a tool.This indi
ates that automation may be a
hievable.� In pra
ti
e, implementations of di�erent algorithms will have di�erent performan
e
hara
teristi
s asa fun
tion of su
h parameters as operand dimensions and ar
hite
tural spe
i�
s (see also Se
tion A.3).Thus, given that a family of algorithms has been derived, one must
hoose from among the algorithms.Systemati
 (or automati
) derivation of parameterized
ost analysis hand-in-hand with the algorithmsand implementations would be highly desirable. An alternative to this would be the identi�
ation ofgeneral te
hniques for a heuristi
 for sele
tion.Some preliminary work on the automati
 derivation of
ost analyses for parallel ar
hite
tures showsthat this may be possible [10℄.� Not all algorithmi
 variants will ne
essarily have the same stability properties. The most attra
tivesolution to this problem would be to make systemati
 or to automate the derivation of the stabilityanalysis, hand-in-hand with the derivation of the algorithm. It is not
lear that this is a
hievable.� We have shown that the presented te
hniques apply to a wide range of linear algebra operations, someof whi
h are given in Fig. 1. It would be highly desirable to more pre
isely
hara
terize the
lass ofproblems to whi
h the te
hnique applies.In
on
lusion, it is our belief that the appli
ation of formal derivation methods to dense linear algebraoperations provides a new tool for examining a number of
hallenging open questions.Additional InformationAdditional information regarding formal derivation of algorithms for linear algebra operations
an be foundat http://www.
s.utexas.edu/users/flame/.A
knowledgmentsWe would like to thank Fred G. Gustavson and G.W. (Pete) Stewart for extensive feedba
k on this resear
h.Referen
es[1℄ Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. Myers, Enrique S.Quintana-Orti, and Robert A. van de Geijn. The s
ien
e of programming high-performan
e linearalgebra libraries. In Pro
eedings of Performan
e Optimization for High-Level Languages and Libraries(POHLL-02), June 2002. To appear.[2℄ Paolo Bientinesi and Robert A. van de Geijn. Developing linear algebra algorithms: Class proje
tsSpring 2002. Te
hni
al Report CS-TR-02-??, Department of Computer S
ien
es, The University ofTexas at Austin, June 2002. In preparation. http://www.
s.utexas.edu/users/flame/.[3℄ E. W. Dijkstra. A
onstru
tive approa
h to the problem of program
orre
tness. BIT, 8:174{186, 1968.[4℄ E. W. Dijkstra. A dis
ipline of programming. Prenti
e Hall, 1976.[5℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi
 linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.15

[6℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Ri
hard J. Hanson. An extended set ofFORTRAN basi
 linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Mar
h 1988.[7℄ R. W. Floyd. Assigning meanings to programs. In J. T. S
hwartz, editor, Symposium on AppliedMathemati
s, volume 19, pages 19{32. Ameri
an Mathemati
al So
iety, 1967.[8℄ David Gries. The S
ien
e of Programming. Springer-Verlag, 1981.[9℄ David Gries and Fred B. S
hneider. A Logi
al Approa
h to Dis
rete Math. Texts and Monographs inComputer S
ien
e. Springer Verlag, 1992.[10℄ John A. Gunnels. A Systemati
 Approa
h to the Design and Analysis of Parallel Dense Linear AlgebraAlgorithms. PhD thesis, Department of Computer S
ien
es, The University of Texas, De
ember 2001.[11℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, De
ember 2001.[12℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performan
e matrixmultipli
ation algorithms. In Vassil N. Alexandrov, Ja
k J. Dongarra, Benjoe A. Juliano, Ren�e S.Renner, and C.J. Kenneth Tan, editors, Computational S
ien
e - ICCS 2001, Part I, Le
ture Notes inComputer S
ien
e 2073, pages 51{60. Springer-Verlag, 2001.[13℄ John A. Gunnels and Robert A. van de Geijn. Developing linear algebra algorithms: A
olle
tion of
lass proje
ts. Te
hni
al Report CS-TR-01-19, Department of Computer S
ien
es, The University ofTexas at Austin, May 2001. http://www.
s.utexas.edu/users/flame/.[14℄ John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performan
e linear algebralibraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Ar
hite
ture of S
ienti�
Software, pages 193{210. Kluwer A
ademi
 Press, 2001.[15℄ Ni
holas J. Higham. A

ura
y and Stability of Numeri
al Algorithms. So
iety for Industrial and AppliedMathemati
s, Philadelphia, PA, USA, se
ond edition, 2002.[16℄ C. A. R. Hoare. An axiomati
 basis for
omputer programming. Communi
ations of the ACM, pages576{580, O
tober 1969.[17℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[18℄ Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on parallelmatrix inversion. SIAM J. S
i. Comput., 22(5):1762{1771, 2001.[19℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms for the triangularSylvester equation. ACM Trans. Math. Soft.
onditionally a

epted.[20℄ R. Clint Whaley and Ja
k J. Dongarra. Automati
ally tuned linear algebra software. In Pro
eedings ofSC'98, 1998.[21℄ Stephen Wolfram. The Mathemati
a Book: 3rd Edition. Cambridge University Press, 1996.A Pra
ti
al ConsiderationsThis paper is intended to highlight the formal derivation method that allows algorithms for linear algebraoperations to be developed. However, we
annot ignore the fa
t that in order for these methods to bea

epted by the linear algebra libraries
ommunity, it must be shown that the insights impa
t the pra
ti
alaspe
ts of the development of libraries. In an e�ort to address these issues without detra
ting from the
entral message of the paper, we give a few details in this appendix.16

A.1 ImplementationThe systemati
 derivation of provably
orre
t algorithms solves only part of the problem, namely that ofestablishing that there are no logi
 errors in the algorithm. So-
alled programming bugs are generallyintrodu
ed in the translation of the algorithm into
ode. While the implementation of the algorithms is notthe topi
 of this paper, we show in Fig. 8 how an appropriately de�ned API, our FLAME library [14, 11, 13℄,
an be used to program algorithms so that the
ode
losely resembles the algorithms.Noti
e that the
orre
tness of the implementations depends on the
orre
tness of the operations used toimplement the derived algorithms. The operations that partition matri
es,
reating referen
es into the orig-inal matri
es, are extremely simple. Thus their
orre
tness
an be established through normal (exhaustive)debugging methods or, preferably, they
an themselves be formally proven
orre
t. As mentioned in Se
-tion 5, algorithms and implementations for operations required in the body of the algorithm
an themselvesbe derived using our te
hniques.The
ode in Fig. 8 illustrates how the FLAME API
an be used to implement the algorithms for trsmthat start by partitioning L. This example also illustrates how re
ursion and iteration
an be easily mixedin the implementation, as mentioned in Se
tion 5.A.2 Experimental ResultsIn this se
tion we illustrate how the derivation method,
ombined with the FLAME API, leads to high-performan
e algorithms and implementations for the trsm operation. Performan
e was measured on a 650MHz Intel (R) Pentium (R) III pro
essor-based laptop with a 256K L2
a
he running the Linux (Red Hat7.1) operating system. All
omputations were performed in 64-bit (double pre
ision) arithmeti
. For ourimplementations, the FLAME API linked to BLAS provided by the ATLAS Version R3.2 BLAS library forthe Pentium III pro
essor [20℄. In other words, whenever a
all like FLA Ger is made, it results in a
allto the
orresponding BLAS routine, in this
ase the rank-1 update dger. The only ex
eption o

urs whenFLA Gemm is
alled: For some of the experiments, the ATLAS implementation of the dgemm routine is
alledby this routine. For other experiments, our ITXGEMM [12℄ implementation of matrix-matrix multipli
ationis
alled instead.In our graphs we report the rate of
omputation, in millions of
oating point operations per se
ond(MFLOPS/se
.), using the a

epted operation
ount of n3
oating point operations, where B is n � n.Noti
e that the theoreti
al peak of this parti
ular ar
hite
ture is 650 MFLOPS/se
. However, due to memorybandwidth limitations, in pra
ti
e the peak performan
e a
hieved by dgemm is around 525 MFLOPS/se
. [12℄.In Fig. 9 we report the performan
e of various unblo
ked algorithms. These implementations performthe bulk of their
omputation in the level-2 BLAS operations dger, dgemv, and/or dtrsv [6℄. It is well-known that these operations
annot attain high-performan
e sin
e they perform O(n2) operations on O(n2)data, whi
h makes the limited memory bandwidth a bottlene
k. Note that Partition L variant 1 andPartition L variant 2 perform most of their
omputation in dgemv and dger, respe
tively. This explainsthe relative performan
e of these implementations sin
e high-performan
e implementations of dgemv in
urabout half the memory traÆ
 of dger. Partition B variant 1 performs the bulk of its
omputation indtrsv. In theory, this implementation should a
tually be able to attain higher performan
e than eitherof the other two implementations for small matri
es as matrix L
an be kept in the L1
a
he. However,its performan
e su�ers
onsiderably from the fa
t that the FLAME approa
h to tra
king submatri
es isparti
ularly expensive for this implementation.In Fig. 10 we report the performan
e of blo
ked versions of the algorithms when the algorithmi
 blo
ksizebequals 120 and an unblo
ked implementation of the indi
ated variant is used for the smaller subproblem.We also show the performan
e of re
ursive implementations where the blo
ks were
hosen to equal b =120; 40; 20; 10, after whi
h an unblo
ked algorithm was used on
e matrix L was smaller than 10� 10. Thematrix-matrix multiply
alled by FLA Gemm in this
ase is provided by ATLAS. These blo
k sizes were
hosenin an attempt to optimize the implementation that uses ATLAS.In Fig. 11 we report the same experiments as reported in Fig. 10 ex
ept that our ITXGEMM matrixmultipli
ation kernel is used rather than the ATLAS
ounterpart. The blo
k sizes were adjusted to a

om-modate di�erent design de
isions made when implementing this matrix multipli
ation kernel, as indi
ated17

void Trsm_partL_re
(int variant, FLA_Obj L, FLA_Obj B, int nblks, int *nb_alg){ FLA_Obj LTL, LTR, L00, L01, L02, BT, B0,LBL, LBR, L10, L11, L12, BB, B1,L20, L21, L22, B2;int b;FLA_Part_2x2(L, <L, /**/ <R,/* ************** */&LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);FLA_Part_2x1(B, &BT,/***/&BB, 0, /* length submatrix */ FLA_TOP);while (FLA_Obj_length(LTL) != FLA_Obj_length(L)){b = min(FLA_Obj_length(LBR), nb_alg[0 ℄);FLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &L01, &L02,/* ************* */ /* ********************* *//**/ &L10, /**/ &L11, &L12,LBL, /**/ LBR, &L20, /**/ &L21, &L22,b, b, /* L11 from */ FLA_BR);FLA_Repart_2x1_to_3x1(BT, &B0,/**/ /**/&B1,BB, &B2,b, /* length B1 from */ FLA_BOTTOM);/* *** */if (variant == 1)FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L10, B0, ONE, B1);if (nblks > 1) Trsm_partL_re
(variant, L11, B1, nblks-1, &nb_alg[1 ℄);else Trsm_partL_unb(variant, L11, B1);if (variant == 2)FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L21, B1, ONE, B2);/* *** */FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, L01, /**/ L02,/**/ L10, L11, /**/ L12,/* ************** */ /* ****************** */&LBL, /**/ &LBR, L20, L21, /**/ L22,/* L11 added to */ FLA_TL);FLA_Cont_with_3x1_to_2x1(&BT, B0,B1,/***/ /**/&BB, B2,/* B1 added to */ FLA_TOP);}}Figure 8: FLAME implementation of re
ursive blo
ked trsm algorithm in Fig. 7 (variant == 1) and thealgorithm in Exer
ise 4.1 (variant == 2).
18

