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Abstract

In this paper we present a systematic approach to the derivation of families of high-performance
algorithms for a large set of frequently encountered dense linear algebra operations. As part of the
derivation a constructive proof of the correctness of the algorithm is given. The paper is structured
so that it can be used as a tutorial for novices. However, the method has been shown to yield new,
high-performance algorithms for well-studied linear algebra operations and should also be of interest to
the “high priests of high performance.”

1 Introduction

The title of this paper was taken from the title of Gries’ undergraduate text The Science of Programming [8].
That text introduces students to the concept of verifying the correctness of programs. The approach is
based on the early work of Floyd [7], Dijkstra [3, 4], and Hoare [16], among others. Ideally, the proofs are
constructive so that the derivation of the program and its proof are fundamentally intertwined. In this paper
we apply this methodology to the derivation of algorithms for dense linear algebra operations.

This paper is the third in what we hope will be a series that illustrate to the high-performance linear
algebra library community the benefits of the formal derivation of algorithms.

e The first paper [11] gave a broad outline of the approach, introducing the concept of formal derivation
and its application to dense linear algebra algorithms. In that paper we also showed that by introducing
an Application Programming Interface (API) for coding the provably correct algorithms, claims about
the correctness of the algorithms allow claims about the correctness of the implementation to be made.
Finally, we showed that excellent performance can be attained. The primary vehicle for illustrating
the techniques in that paper was the LU factorization.

e We showed that the method applies to more complex operations in the second paper [19]. In that paper
we showed how a large number of new high-performance algorithms for the solution of the triangular
Sylvester equation can be derived using the methodology.

In a number of workshop papers we have also given a more cursory treatment of the techniques [14, 1].
This third paper focuses primarily on the derivation method. In particular, we show how it provides a
step-by-step “recipe” that novice and veteran alike can use to rapidly derive correct algorithms. A nontrivial
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contribution of this paper is also the fact that we can systematically derive the loop-invariants that dictate
the different algorithmic variants for computing a given operation.

The techniques in this paper apply to linear algebra operations for which there are algorithms that consist
of a simple initialization followed by a loop. While this may appear to be extremely restrictive, the linear
algebra libraries community has made tremendous strides towards modularity. As a consequence, almost
any operation can be decomposed into operations (linear algebra building blocks) that, on the one hand, are
themselves meaningful linear algebra operations and, on the other hand, whose algorithms have this simple
structure. At this time, we do not have a clean characterization of the operations that fall into this category.
Over the last few years, we have shown that it includes all Basic Linear Algebra Subprograms (BLAS)
(levels 1, 2, and 3) [1, 2, 17, 6, 5, 13], all major factorization algorithms (LU, Cholesky, and QR) [11], matrix
inversion (of general, symmetric, and triangular matrices) [18], and a large number of operations that arise
in control theory [19]. A subset of these operations is given in Fig. 1.

The format of the paper is that of a tutorial and includes exercises for the reader. We assume only that
the reader has a basic understanding of linear algebra. In particular, it is important for the reader to recall
how to multiply partitioned matrices. For those not fluent in the art of high-performance implementation of
linear algebra algorithms we suggest first reading [11]. That paper also discusses better how our approach
relates to the state-of-the-art in high-performance linear algebra library development.

This paper is organized as follows: In Section 2 we introduce a few of the basics regarding the verification
of the correctness of algorithms. In Section 3 we show how to use these techniques to verify the correctness
of algorithms for linear algebra operations by concentrating on a relatively simple operation that computes
the solution of a triangular system of equations with multiple right-hand sides. In Section 4 we go one
step further by showing that by constructing an algorithm hand-in-hand with the proof of its correctness, a
step-by-step method emerges for deriving families of correct algorithms for a given linear algebra operation.
While the methodology inherently derives loops for computing a given operation, we briefly discuss how
recursive algorithms fit into the picture in Section 5. Concluding remarks which largely concentrate on the
future directions of this research can be found in the final section.

While it is the derivation of the algorithms that is the central focus of this paper, we do address the
practical issues of stability, implementation, and performance. So as not to distract from the central message,
these topics are discussed in Appendix A.

2 Correctness of Algorithms

In this section we review the relevant formal derivation techniques.

2.1 Notation

As part of our reasoning about the correctness of algorithms we will use predicates to indicate assertions
about the state of the variables encountered in an algorithm. For example, after the command

a:=1

which assigns the value 1 to the scalar variable «, we can assert that the predicate “a = 1” is true. We can
then indicate the state of variable « after the assignment by the predicate {a = 1}.

Similarly, we can use predicates to assert how a statement changes the state. If () and R are predicates
and S is a sequence of commands then {Q}S{R} has the following interpretation ([8], page 100):

If execution of S is begun in a state satisfying @), then it is guaranteed to terminate in a finite
amount of time in a state satisfying R.

Here {Q}S{R} is called the Hoare triplet and () and R are referred to as the precondition and postcondition
for the triplet, respectively.



Level-3 BLAS

Symmetric Matrix-Matrix Multi

plication (SYMM)

C:=a(L+L")B+pC
C:=aB(L+ L") +psC

C:=aU+U")B+pC
C:=aB(U+U") + C

Symmetric Rank-K Update (SYRK)

1o(C) := alo(AAT) + Blo(C)
1o(C) := alo(AT A) + Blo(C)

up(C) := aup(AAT) + Bup(C)
up(C) := aup(A” A) + Bup(C)

Symmetric Rank-2K Update (SYR2K)
1o(C) := alo(ABT + BAT) + Blo(C) up(C) := aup(ABT + BAT) + Bup(C)
1o(C) := alo(AT B + BT A) + Blo(C) up(C) := aup(AT'B + BT A) + Bup(C)
Triangular Matrix-Matrix Multiplication (TRMM)

B :=alLB B:=alL”B B:=aUB B:=aUTB
B :=aBL B :=aBL" B :=aBU B :=aBU"
Triangular Solve with Multiple Right-Hand Sides (TRSM)
B:=aL'B B:=aL TB B:=aU 'B B:=aU TB
B:=aBL™! B:=aBL™ T B :=aBU™! B :=aBU T
Level-3 BLAS-Like Operations
TRMM-Like Operations
L1 = aL1L2 L2 = aL1L2 L= OéLUT L= aUTL
U1 = OéUlUQ U2 = OéUlUQ U .= aLTU U .= OéULT
TRSM-Like Operations
Ly :=al L, Ly :=alL 'L, L:=aLU-T L:=aU 'L
Uy == alU,U;? Us = aU;'Us U:=aLTU U:=aUL"
Miscellaneous
1o(C) :=lo(LLT) +10(C) up(C) := up(LLT) + up(0)
lo(C) :=lo(LYL) + 1o(C) up(C) := up(LY'L) + up(C)
1o(C) :=1o(UUT) +10(0C) up(C) := up(UUT) + up(C)
lo(C) :=lo(UTU) + 1o(C) up(C) :=up(UTU) + up(C)
lo(L) :=lo(L71L~T) lo(L) :=lo(L=TL™1)
up(U) = up(R~'R™T) up(U) = up(R~"R™)
C:=aUL + 3C C:=alLU+ pC

Factorization Operations

A:=L\U = LU(A)
A :=L = Chol(A)

A:=U\L=UL(A)
A:=U = Chol(4)

A= Q\R = QR(A) A:=Q\L=QL(4)
A:= R\Q = RQ(A) A= I\Q = QL(A)
Inversion Operations
A=A lo(A4) :=10(A7!) (symmetric A)
L:=L71 U.=U"!

Operations from Control Theory

Solution of the Sylvester Equation

C:=X where LiLyX + XL, =C
C := X where LX + XU =C

C .= X where U1 X + XU, =C
C:=X where UX+XL=C

Solution of the Lyapunov Equation (symmetric C)

C := X where LX + XLT =C
C:= X where UX + XUT =C

C:=X where LTX + XL=C
C := X where UTX + XU =C

Figure 1: A sampling of operations to which the formal derivation technique has been applied. Note that
for most of these, real as well as complex floating point implementations are required. In this figure, lo(A)
and up(A) return (reference) the lower and upper triangular part of that matrix, repectively.



ExXAMPLE The predicate

{a =5}
a:=a+1
fa=@B+1)}

is true. Here o = [ is the precondition while o = (8 + 1) is the postcondition.

2.2 The correctness of loops

In a standard text by Gries and Schneider, used to teach program verification to undergraduates in computer
science, we find the following
([9], pages 236-237)*:

We prefer to write a while loop using the syntax
doG — S od

where Boolean expression G is called the [loop-]guard and statement S is called the repetend.

[The ljoop is executed as follows: If G is false, then execution of the loop terminates; otherwise
S is executed and the process is repeated.

Each execution of repetend S is called an iteration. Thus, if G is initially false, then O iterations
occur.

The text goes on to state:

We now state and prove the fundamental invariance theorem for loops. This theorem refers to an
assertion P that holds before and after each iteration (provided it holds before the first). Such a
predicate is called a loop-invariant.

(12.43) Fundamental Invariance Theorem. Suppose
1. {P AG}S{P} holds — i.e. execution of S begun in a state in which P and G are
true terminates with P true — and
2. {P} do G — S od {true} —i.e. execution of the loop begun in a state in which P
is true terminates.

Then {P} do G — S od {P A =G} holds. [In other words, if the loop is entered in a
state where P is true, it will complete in a state where P is true and guard G is false.]

The text proceeds to prove this theorem using the axiom of mathematical induction.

3 Verification of Linear Algebra Algorithms

In this section, we use the operation that computes the solution of a triangular system with multiple right-
hand sides to relate formal verification methods to algorithms for linear algebra operations.
Given a nonsingular m x m lower triangular matrix L and an m x n general matrix B, let X equal the

solution of the equation
LX = B. (1)

Partitioning matrices X and B in (1) by columns yields

L(zfe |- |an)=(bu]b2] - [ba)

ISmall changes from the original text are delimited by [...]. In addition, in that text B is used to denote the (loop-)guard,
while we use G. The primary reason for this is that B is commonly used to denote one of the matrix operands.




or
From this we conclude that each column of the solution, z;, must satisfy Lz; = b;. In other words, the
solution of (1) requires the solution of a triangular system for each column of B. Since the coefficient matrix,
L, is the same for all columns, the overall computation is referred to as a triangular solve with multiple
right-hand sides (TRsM). A simple algorithm for overwriting B with the solution X,

B:=X=L"'B, (2)

is now given in Fig. 2. We emphasize that rather than computing L, the solution of Lz; = b; is computed,
overwriting b;. Computing the solution of a triangular system of equations this way is often referred to as
forward substitution.

In order to relate the above material to the discussion in the previous section regarding the verification
of the correctness of a loop, we turn our attention to Fig. 3. Let B denote the original contents of B, let
m(A) and n(A) return the row and column dimensions of matrix A, respectively, and let LowTr(A) be true
if and only if A is a lower triangular matrix. The precondition (Step la in Fig. 3) is given by

Pyee : (B = B) A (n(L) = m(L)) A LowTr(L) A (n(L) = m(B)).

Note 1 For brevity, we will assume throughout this paper that the dimensions and structure of the matrices
are correct and will simply give the precondition as Py : B=B A ....

Since upon completion the loop is to have computed (2) the postcondition is given by Ppost : B = L-'B
(Step 1b).

If one asks what has been computed at the top of the loop in Fig. 2, one discovers that the first j — 1
columns have been overwritten by the desired solution. In our approach, we partition B and B as

B—)(BL”BR) and B—)(BLHBR) (3)

where (relating this to Fig. 2) By, and By represent the first j — 1 columns of B and é, respectively. (Notice
that subscripts L and R stand for Left and Right, respectively.) Thus, at the top of the loop the desired
current contents of B are given by Py : ( By | Br ) = ( L7'Bg, || Br ) A ..., the loop-invariant (Step
2). Since the loop in Fig. 2 is executed as long as not all columns have been updated, the loop-guard is given
by n(BL) # n(B) (Step 3).

Now, the loop-invariant must be true before the loop commences, which is achieved by “boot-strapping”
the partitioning in (3) by letting B, have no columns (Step 4).

Finally, we are ready to discuss the body of the loop in Fig. 3. In Fig. 2, the left-most column of the set
of columns yet to be updated is updated, moving it to the set of columns that have been updated. In our
notation, we accomplish this by repartitioning as in Step 5a, which means that the current contents of B,
in terms of the repartitioned matrices, is given by

Qbefore:(BO ||b1|B2):(LilBo||IA)1|BQ)/\...
(Step 6). Next, the exposed column is updated (Step 8), which updates the contents of B to
Qatter : ( By || by | B, ) = ( L_l.éo | L_li)l || B2 ) AL

(Step 7). After this, the updated column is moved from Bgr to By, (Step 5b).

The Fundamental Invariance Theorem can now be used to show that all assertions in Fig. 3 are true
which shows that the algorithm is correct. Finally, we notice that B was only introduced for the benefit of
the assertions in Fig. 3. Since the update in the body of the loop never referenced B or its submatrices, a
final algorithm is given in Fig. 4.

Exercise 3.1 Consider the alternative algorithm for computing the columns of B in reverse order:

forj=mn,...,1
b]' =T = Lflbj
endfor

Create an annotated algorithm like that given in Fig. 3 for this algorithm.



fory=1,...,n
bj =T = Lilbj
endfor

Figure 2: Simple algorithm for computing B := X = L' B.

Step || Annotated Algorithm: B:=L~'B

ta || {Pue:B=8Bn.}
4 Partition B — ( By || Br ) and B — ( BL || BR )
where n(B) =n(Br) =0

2 {an(BL”BR):(LilBL”BR)/\}
3 while G : (n(Br) #n(B)) do
2,3 {(Puw: (Br[[Br ) =(L7'BL || Br )A..) A(G: (n(BL) #n(B)))}
oa Repartition

(Br | Br)—=(Bo|b|Bs)and( Byl Br)—(Bollb]B:)

where n(b) =1

6 {Qbefore5(BO ||b1|B2):(L_1B0 ||b1|B2)/\}
8 by = Lilbl
7 {Qafter: ( By || by | B, ) = ( L71§0 | Lilbl || 32 )/\}
5b Continue with

(BL||BR)(—(B()|I)1 ||Bg)and(B€L||B€R)<—(BO|IA)1 ||Bz)
2 {Pav: (B[ Br ) =(L7'Br [ Br ) A}

enddo

23 [ {(Pav: (B ||Br )=( L 'BL[[Br )A-.)A=(G: (n(Br) #n(B)))}
1b || {Poost : B=L7'B}

Figure 3: Annotated algorithm for the computation of B := X = L™!B by columns.

Partition B — ( By || Br ) and B — ( éL || ER )
where n(Bp) =n(Br)=0
while G : (n(Br) #n(B)) do
Repartition
(BL||BR)—)(B0||I)1|B2)and(EL||BeR)—)(Bo||i)1|Bg)
where n(b) =1
by := Lilbl
Continue with

(Bl Br) < (Bo|by| B2 )and ( By | Br )« (B

b || B2 )
enddo

Figure 4: Final algorithm for the computation of B := X = L™!B by columns.




| Annotated Algorithm: [D,E,F,...]=o0p(4,B,C,D,...)

{Ppre}
Partition

where
{F)inv}
while G do
{(Pinv) A (G)}
Repartition

where

{Qbu}
Su

{Qau}

Continue with

{Pinv}
enddo
(F)inv) A~ (G)}
Ppost}

Figure 5: Worksheet for developing linear algebra algorithms.

4 Derivation of Linear Algebra Algorithms

The example in the previous section is such that one might conclude that asserting that the algorithm in
Fig. 2 is correct is rather trivial. In this section, we claim that in fact the “worksheet” that we created for the
TRSM operation can be applied to constructively derive a large number of algorithms for this operation and
for a large class of linear algebra operations. Indeed, given the precondition and postcondition, we
will show that all other components of the generic worksheet given in Fig. 5 are systematically
prescribed, leading to a family of algorithms for a given linear algebra operation. We describe the derivation
process in this section, illustrating the steps by deriving a somewhat more complex algorithm for computing
TRSM.
The most general form that a linear algebra operation takes is given by

[D,E,..]:=op(4,B,C,D,...), (4)

where the variables on the left of the assignment := are the output variables. Notice that, as for the TRSM
operation in the previous section, some of the input variables can appear as output variables.

ExaAMPLE (TRSM) In the previous section we saw that the triangular solve with multiple right-hand
sides, TRSM, can be expressed as B := L™'B = TRSM(L, B), where L is a m x m lower triangular
matrix and B is an m X n general matrix. For the matrix multiplication on the right to be well-
defined, the column dimension of L must match the row dimension of B. We will want to overwrite
B with the result without requiring a work array.

Step 1

The description of the input and output variables dictates the precondition Pp,re. For variables that are to
be overwritten, it is important to introduce variables that indicate the original contents. If X is both an
input and an output variable, we will typically use Z to denote the original contents of Z.



EXAMPLE (CONTINUED) The variables for TRSM can be described by the precondition
Pyre : B = B An(L) = m(L) A LowTr(L) An(L) = m(B)

where, as before, B indicates the original contents of B. For brevity, we will typically only explicitly
state the most important part of this predicate: Py : B=BA....

The operation to be performed and the substitutions required to indicate the original contents of variables
dictate the postcondition Fyggt.

EXAMPLE (CONIZINUED) The operation to be performed, B := L~' B, translates to the postcondition
Ppost : B=L7'B.

Step 2

The primary way in which we now deviate from the discussion in Section 3 is that we now sys-
tematically derive the different parts of the annotated algorithm. In particular, we derive possible
loop-invariants rather than starting with an implementation from which the loop-invariant is deduced.

To determine a set of possible loop-invariants, we pick one of the variables and partition it into two
submatrices, either horizontally or vertically, or into quadrants. The general rule is that if a matrix has
special structure, e.g., triangular or symmetric, it is typically partitioned into quadrants that are consistent
with the structure. If the matrix has no special structure, it can be partitioned vertically or horizontally, or
into quadrants.

EXAMPLE (CONTINUED) Let us pick variable L. Since it is triangular, we partition it as

L — .
Lpyr || LBr

Here Ly, is square so that both submatrices on the diagonal are themselves lower triangular. (The
subscripts T'L, BL, and BR stand for Top-Left, Bottom-Left, and Bottom-Right, respectively.)

Next, we substitute this partitioned variable into the postcondition, which is then used to determine the
partitioning of the other variables.

EXAMPLE (CONTINUED) Substituting the partitioning of L into the postcondition yields

-1
L 0 .

(some partitioning of B) = <L—TL”L—> (some partitioning of B)

BL || LBR

This suggests that B and B should be partitioned horizontally into two submatrices, or into quad-
rants. Let us consider the case where B and B are partitioned horizontally into two submatrices.

Then . .
() - Cita) (5
Bg Lpr || LBr Bgp
In order to be able to multiply the matrices on the right out and to be able to then set the submatrices
on the left equal to the result on the right we find that the following must hold:

n(Lyy) = m(Br) Am(Lyy) = m(Br) (5)

which in turn implies that m(By) = m(By) since Ly is a square matrix. This is convenient, since
B and B will reference the same matrix (B is being overwritten).




Table 1: Possible loop-invariants for the TRSM example when the process is started by partitioning matrix
L into quadrants. The reason listed for rejecting the loop-invariant given in the column labeled “Comment”
may not be the only reason for doing so.

[ Loop-invariant | Comment |
( > < > Infeasible (Reason 2).
B L*1 B
r_)_ LT Loop-invariant 1.
Bgp Bp
B L71B
L = LL T71 Loop-invariant 2.
Bs By — LpoLp Br
B L71 B
A, TLL Infeasible (Reason 1).
BB LBL LTL BT
B L71 B
r_)_ - LT Infeasible (Reason 3).
BB L (BB *LBLLTLBT)

We now perform the operation using the partitioned matrices. This gives us the desired final contents of
the output parameter(s) in terms of the submatrices.

EXAMPLE (CONTINUED)
< By > _ < Lrp | © )1 Br\ L7t | o Br
Bg Lpy, || Lpr Bg LBRLBLL | Ly Bg

and hence .
( Br > B L,; Br ©)
Bg Lyi(Bs — LprLy; Br)

Different possible loop-invariants can now be derived by considering individual operations that contribute
to the final result. Each such operation may or may not have been performed at an intermediate stage.
Careful attention has to be paid to the inherent order in which the operations should be resolved. Any
of the resulting conditions on the current contents of the output variable together with the constraints on
the structure and dimensions of the submatrices is now considered a possible loop-invariant. For each such
possible loop-invariant the subsequent steps performed will either show it to be infeasible or will yield an
algorithm for computing the operation. Reasons for declaring a loop-invariant infeasible include

Reason 1: (Data dependency) The loop-invariant assumes that data that is needed in a subsequent computation
has been overwritten with a partial or final result.

Reason 2: No loop-guard exists such that P,y A 7G = Ppost-

Reason 3: No initialization step Sy exists that involves only the partitioning of the variables such that { Pyre }S1{Pinv }
is true.

Reason 4: (Operation dependency) The loop-invariant requires redundant computation to be performed. Notice
that sometimes is becomes beneficial to perform redundant computation in an effort to achieve higher
performance, in which case this reason for rejecting a possible loop-invariant would not apply.

EXAMPLE (CONTINUED) A careful look at (6) shows that inherently L}iBT should be computed
first, followed by Bgp — LBL(L;iET), and, finally, L]_B}E(EB — Lpgp, (L:,TiBT)) This leads to a subset
of possible loop-invariants given in Table 1.




EXAMPLE (CONTINUED) The feasibility of different possible loop-invariants is discussed in Table 1.
We will subsequently use the loop-invariant

< By > _( L71Br o
BB BB

as our example, showing it to be feasible by deriving an algorithmic variant corresponding to it.
Notice that, strictly speaking, the conditions indicated in (5) should be part of the loop-invariant.

Step 3

The loop-invariant P, and postcondition Fpes dictate the loop-guard G since it must have the property
that Py A G = Pos.

EXAMPLE (CONTINUED) Comparing the loop-invariant in (7) with the postcondition B = LB
we see that if B = By, B = BT, and L = Ly then the loop-invariant implies the postcondition,
i.e., that the desired result has been computed. Thus, we must choose a loop-guard G so that its
negation, =@, implies that the dimensions of these matrices match appropriately and therefore that
(Pinv A =G) = Pyost- The loop-guard G : (m(Lyr) # m(L)) meets this condition.

Note 2 If no loop-guard can be found so that P,y A—G = Pyost, then the loop-invariant is declared infeasible
by Reason 2 in Step 2.
Step 4

The loop-invariant P,y and precondition P, dictate the initialization step, S;. More precisely, Sy should
partition the variables so that {Ppre}Sr{Pny} is true.

EXAMPLE (CONTINUED) Consider the initialization statement Sy:

B . B L 0
Partition B — <—T>, B == ,and L — ( L )
Bg Bg Lpy || Lr

where B and By have 0 rows and Ly, is 0 x 0

in Step 4 in Fig. 6. Since then By and BT have no rows, and Bgp = B and BB = E, it is not hard
to see that {Pore}Sr{Pnv} is true.

Note 3 If no initialization Sy can be found so that { Pore} Si{Pinv} is true then the loop-invariant is declared
infeasible by Reason 3 in Step 2.
Step 5

The loop-guard G and the initialization Sy dictate in what direction the variables need to be repartitioned
to make progress towards making G false.

EXAMPLE (CONTINUED) Loop-guard G indicates that eventually Ly, should equal all of L, at which
point G becomes false and the loop is exited. After the initialization, Ly, is 0 x 0. The partitioning
of L is also such that Ly should always be square. Thus, the repartitioning should be such that as
the computation proceeds the dimensions of Lpgr should decrease as the dimensions of L7y, increase.
This is accomplished by the shifting of the double-lines as indicated in Steps 5a and 5b in Fig. 6.
Notice that we are exposing blocks of rows and/or columns as part of the movement of the double
lines. The reason for this is related to performance and will become more clearly apparent in
Appendix A.2.

10



Step 6

The repartitioning of the variables and the loop-invariant Py, in Step ba dictates Qpefore, the state of the
variables before the update Sy. In particular, the double lines in the repartitioning have semantic meaning
in that they show what submatrices of the repartitioned matrix correspond to the original submatrices.
Substituting the submatrices of the repartitioned matrix into the appropriate place in the loop-invariant
yields Qpefore- This is (often referred to as) textual substitution into the expression that defines the loop-
invariant.

ExaMPLE (CONTINUED) The repartitionings in Step 5a in Fig. 6 identify that

Lyy =Loo || Br = By Br = By
L L 0 , B , and A B .
b= () [ eon= (Bi) 2= (5 s~ ()
2

Textual substitution into the loop-invariant yields the state

By Lyl By
Qbefore : ( B, ) = By A... (8)
B2 B2

Step 7

The redefinition via partitioning of the variables in Step 5b and the loop-invariant P, dictate the desired
state of the variables after the update Sy and before the shifting of the double-lines, Qafter- This can again
be viewed as textual substitution of the various submatrices into the loop-invariant.

ExamMpPLE (CONTINUED) The redefinition in Step 5b in Fig. 6 identifies the following equivalent

submatrices:
LOO LO B() > ( EO )
Lrp = Br = Br=\—5—
rr < Ly | L1y ) H , ! ( B > , and T B .
L = ( Loy | Loy ) || Lgr = Los Bp = By Bp = B>

Textual substitution into the loop-invariant implies that the following state must be true before the
redefinition in Step 5b. In other words, the update in Step 8 must leave the variables in the state

(o) ) - ((sten) (5
Qatter : L = Lig | L11 B;

B2 32

which, inverting the triangular matrix and multiplying out the right-hand side, is equivalent to

(3) - ()
Qafter : B, = Lﬁl (Bl - LIOLaolBO) (9)
BZ B2

Step 8
The difference in the states Qpefore and Qagrer dictates the update Sy .

11



ExampLE (CONTINUED) Comparing (8) and (9) we find that the updates

By :=B; - LBy
B, :=L;'B

are required to change the state from Qpefore t0 Qatter-

Note 4 If no update can be found that does not use the original contents of a matriz to be overwritten, then
either the loop-invariant is infeasible (for Reason 1 in Step 2) or inherently a temporary variable is required.

EXAMPLE (CONTINUED) In our example, if the update inherently has to use submatrices of B
(referencing the original contents of B), the loop-invariant would be infeasible since the operation is
expected to overwrite the original matrix without requiring a temporary variable.

Step 9: The final algorithm

Often variables that indicate the original contents of a variable are only introduced to facilitate the predi-
cates denoting the states at different stages of the algorithm. Whenever possible, such variables should be
eliminated from the final algorithm.

EXAMPLE (CONTINUED) By recognizing that B is never referenced we can eliminate all parts of the
algorithm that refer to this matrix, yielding the final algorithm given in Fig. 7.

Exercise 4.1 (Partition L Variant 2) Repeat Steps 3-8 for the feasible loop-invariant

B LB
-Pinv:( T>: LL T_l N...
BB BB — LBLLTLBT

State the final algorithm by removing references to B, similar to the algorithm given in Fig. 7

Exercise 4.2 Repeat Step 2 by choosing to partition B vertically:

Show that this leads to a vertical partitioning of B: B ( By || Bg ) while L is not partitioned at all.
Finally, show that this leads to two possible loop-invariants:

(BL ||BR):(L71.BL ||BR)/\ (].0)

and . .
(BL||Br )=(BL| L 'Br)A-.. (11)

Exercise 4.3 (Partition B Variant 1) In Exercise 4.2 consider loop-invariant (10). Show that by applying
Steps 3-9 one can systematically derive the algorithms in Figs. 3 and 4.
If one repartitions
(BL||BR)—>(B()||[)1|32 ),

one recovers exactly those algorithms, while the repartitioning
(BullBa)=(Bo | B | B ).
yields the corresponding blocked algorithm.
Exercise 4.4 (Partition B Variant 2) Repeat Exercise 4.3 with loop-invariant (11) and relate the result to

FExercise 3.1.
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| step || Annotated Algorithm: B := L 'B

la {B =BA.. }
B . B L 0
4 Partition B — <—T>, B == ,and L — ( L >
Bg Bg Ly || Lr
where By and ET have 0 rows and Ly is 0 x 0
) ( Br > ~( Ly Br
BB B BB
3 while m(Lyy) # m(L) do
B L7iB
23 ( L ) = (2L ) A () £ m(D))
BB BB
5a Determine block size b
Repartition
Loe | 0 Loo || 0 | 0O
L—”L— = | Liw|| L | O )
BL bR Loo || L1 | Loz
BT BO BT BO
B — Bl ’ B - Bl
B BQ B B2
where m(By) =m(B,) =band m(Ly;) =b
By Ly Bo
6 () ) "\ (&
B2 B2
8 Bl = Bl — L10B0
Bl = L;l Bl
) (o)
7 Bs = L' (By — LigLgy Bo)
B2 B2
5b Continue with
Lot 0 Lo | O 0
—”—L—“L— | Lio| L] O ,
BL Al ZBR Lo | Loy || Loy
BO a BO
B B ——
(BT><— By ,(BT>F B,
B B2 B B2
) ( Br ) [ Ly.Br
BB BB
enddo
Br L;iBT
2,3 = |=——— A= (m(L m(L
{((BB) ( o (m(L12) # (L)
1b {Ppost B = L*lﬁ}

Figure 6: Annotated algorithm for TRSM example.
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B L 0
Partition B — < = > and L — < 1L >
B Lgy | LBr

where Br has 0 rows and Ly, is 0 x 0
while m(Lyy) # m(L) do
Determine block size b

Repartition
sy (B o L] 0 | 0
B — B, and L—”L— — Lio || L1 0
B B- Br bR Log || La1 | Loo
where m(B;) =bandn(Ly;) =b
B, := B, — L1pBo
B, :=L}'B
Continue with
BO Loo 0 0
B L 0
< BT > — | Bi | and <L—TLHL—> | Lo | Lt | O
B B, BLALBER Lyo | Loy || Lo

enddo
Figure 7: Algorithm for the TRSM example.

5 Recursion

For the unblocked algorithms, where the boundaries move one row and/or column at a time, the operations
that update the contents of some of the matrices tend to be relatively simple. Algorithms for those operations
can also be systematically derived, hand-in-hand with the proof of their correctness. Ultimately, these
algorithms are build upon addition, subtraction, multiplication, and division as well as operations such as
taking the square root of a scalar. Thus, correct algorithms for these operations can be derived using our
techniques.

For the blocked algorithms, the operation for which we are deriving the algorithms tends to show up as
an operation in the body of the loop (the repetend). Clearly the correctness of the blocked algorithm can
be ensured by employing some correct algorithm for this operation in the repetend. In the simplest case,
a correct unblocked algorithm can be derived and utilized. However, the implementation of the blocked
algorithm itself can be called recursively, or a different blocked algorithmic variant can be used. It is
not difficult to see that, as long as only a finite number of levels of such calls are allowed and a correct
implementation is called at every level, the correctness of the overall algorithm is ensured.

6 Conclusions and Future Directions

In this paper we have presented a systematic approach to the derivation of provably correct linear algebra
algorithms. The methodology represents what we believe to be a significant refinement of our earlier ap-
proach, presented in [11]. The result is a formal method which, in our opinion, puts the derivation of families
of correct algorithms for a class of dense linear algebra operations on solid theoretical footing. We would
like to think that it has scientific, pedagogical, and practical implications.

The fact that we can now systematically derive correct algorithms leads to a number of additional
questions:

e Once a correct algorithm has been derived, there is still the problem of translating this algorithm to
code without introducing programming bugs. We hint at a solution to this problem in Appendix A.1
as well as in [11, 13, 2].
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e If it were possible to fully automate the derivation and implementation of provably correct algorithms
for linear algebra operations, then one could claim that this area of research is well-understood.

A prototype system, implemented by Sergey Kolos at UT-Austin as part of a semester project, auto-
matically derives all algorithms for some linear algebra operations using Mathematica [21] as a tool.
This indicates that automation may be achievable.

e In practice, implementations of different algorithms will have different performance characteristics as
a function of such parameters as operand dimensions and architectural specifics (see also Section A.3).
Thus, given that a family of algorithms has been derived, one must choose from among the algorithms.
Systematic (or automatic) derivation of parameterized cost analysis hand-in-hand with the algorithms
and implementations would be highly desirable. An alternative to this would be the identification of
general techniques for a heuristic for selection.

Some preliminary work on the automatic derivation of cost analyses for parallel architectures shows
that this may be possible [10].

e Not all algorithmic variants will necessarily have the same stability properties. The most attractive
solution to this problem would be to make systematic or to automate the derivation of the stability
analysis, hand-in-hand with the derivation of the algorithm. It is not clear that this is achievable.

e We have shown that the presented techniques apply to a wide range of linear algebra operations, some
of which are given in Fig. 1. It would be highly desirable to more precisely characterize the class of
problems to which the technique applies.

In conclusion, it is our belief that the application of formal derivation methods to dense linear algebra
operations provides a new tool for examining a number of challenging open questions.

Additional Information

Additional information regarding formal derivation of algorithms for linear algebra operations can be found
at http://www.cs.utexas.edu/users/flame/.
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A Practical Considerations

This paper is intended to highlight the formal derivation method that allows algorithms for linear algebra
operations to be developed. However, we cannot ignore the fact that in order for these methods to be
accepted by the linear algebra libraries community, it must be shown that the insights impact the practical
aspects of the development of libraries. In an effort to address these issues without detracting from the
central message of the paper, we give a few details in this appendix.

16



A.1 Implementation

The systematic derivation of provably correct algorithms solves only part of the problem, namely that of
establishing that there are no logic errors in the algorithm. So-called programming bugs are generally
introduced in the translation of the algorithm into code. While the implementation of the algorithms is not
the topic of this paper, we show in Fig. 8 how an appropriately defined API, our FLAME library [14, 11, 13],
can be used to program algorithms so that the code closely resembles the algorithms.

Notice that the correctness of the implementations depends on the correctness of the operations used to
implement the derived algorithms. The operations that partition matrices, creating references into the orig-
inal matrices, are extremely simple. Thus their correctness can be established through normal (exhaustive)
debugging methods or, preferably, they can themselves be formally proven correct. As mentioned in Sec-
tion 5, algorithms and implementations for operations required in the body of the algorithm can themselves
be derived using our techniques.

The code in Fig. 8 illustrates how the FLAME API can be used to implement the algorithms for TRSM
that start by partitioning L. This example also illustrates how recursion and iteration can be easily mixed
in the implementation, as mentioned in Section 5.

A.2 Experimental Results

In this section we illustrate how the derivation method, combined with the FLAME API, leads to high-
performance algorithms and implementations for the TRSM operation. Performance was measured on a 650
MHz Intel (R) Pentium (R) III processor-based laptop with a 256K L2 cache running the Linux (Red Hat
7.1) operating system. All computations were performed in 64-bit (double precision) arithmetic. For our
implementations, the FLAME API linked to BLAS provided by the ATLAS Version R3.2 BLAS library for
the Pentium III processor [20]. In other words, whenever a call like FLA_Ger is made, it results in a call
to the corresponding BLAS routine, in this case the rank-1 update dger. The only exception occurs when
FLA Gemm is called: For some of the experiments, the ATLAS implementation of the dgemm routine is called
by this routine. For other experiments, our ITXGEMM [12] implementation of matrix-matrix multiplication
is called instead.

In our graphs we report the rate of computation, in millions of floating point operations per second
(MFLOPS/sec.), using the accepted operation count of n® floating point operations, where B is n x n.
Notice that the theoretical peak of this particular architecture is 650 MFLOPS/sec. However, due to memory
bandwidth limitations, in practice the peak performance achieved by dgemm is around 525 MFLOPS /sec. [12].

In Fig. 9 we report the performance of various unblocked algorithms. These implementations perform
the bulk of their computation in the level-2 BLAS operations dger, dgemv, and/or dtrsv [6]. It is well-
known that these operations cannot attain high-performance since they perform O(n?) operations on O(n?)
data, which makes the limited memory bandwidth a bottleneck. Note that Partition L variant 1 and
Partition L variant 2 perform most of their computation in dgemv and dger, respectively. This explains
the relative performance of these implementations since high-performance implementations of dgemv incur
about half the memory traffic of dger. Partition B variant 1 performs the bulk of its computation in
dtrsv. In theory, this implementation should actually be able to attain higher performance than either
of the other two implementations for small matrices as matrix L can be kept in the L1 cache. However,
its performance suffers considerably from the fact that the FLAME approach to tracking submatrices is
particularly expensive for this implementation.

In Fig. 10 we report the performance of blocked versions of the algorithms when the algorithmic blocksize
bequals 120 and an unblocked implementation of the indicated variant is used for the smaller subproblem.
We also show the performance of recursive implementations where the blocks were chosen to equal b =
120, 40, 20, 10, after which an unblocked algorithm was used once matrix L was smaller than 10 x 10. The
matrix-matrix multiply called by FLA_Gemm in this case is provided by ATLAS. These block sizes were chosen
in an attempt to optimize the implementation that uses ATLAS.

In Fig. 11 we report the same experiments as reported in Fig. 10 except that our ITXGEMM matrix
multiplication kernel is used rather than the ATLAS counterpart. The block sizes were adjusted to accom-
modate different design decisions made when implementing this matrix multiplication kernel, as indicated
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void Trsm_partL_rec( int variant, FLA_Obj L, FLA_Obj B, int nblks, int *nb_alg )

{
FLA_Obj LTL, LTR, LoO, LO1, LO2, BT, BO,
LBL, LBR, L10, L11, L12, BB, B1,
L20, L21, L22, B2;
int b;

FLA_Part_2x2( L, &LTL, /**/ &LTR,
/% kkkkkkkkokkkkkk k/

&LBL, /*x/ &LBR, 0, 0, /* submatrix */ FLA_TL );
FLA_Part_2x1( B, &BT,

/xxx/

&BB, 0, /* length submatrix */ FLA_TOP );

while ( FLA_Obj_length( LTL ) !'= FLA_Obj_length( L ) ){
b = min( FLA_Obj_length( LBR ), nb_alg[ 0 ] );

FLA_Repart_2x2_to_3x3( LTL, /**/ LTR, &LOO, /*x/ &LO1, &LO2,
/% kkckkkkokkokkkkk k/ /% kkkkskokskskokokokkokokokkokkokokk ok /
/*%/ &L10, /*x/ &L11, &L12,
LBL, /**x/ LBR, &L20, /**x/ &L21, &L22,
b, b, /* L11 from */ FLA_BR );
FLA_Repart_2x1_to_3x1( BT, &BO,
/*x/ /*x/
&B1,
BB, &B2,

b, /* length Bl from */ FLA_BOTTOM );
[% ok ok ROk KOk KR KRR Kk ok KK KR K ok ok KK KRR kR Rk Rk ok %
if ( variant == 1)
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L10, BO, ONE, Bl );

if ( nblks > 1 ) Trsm_partL_rec( variant, L11, B1, nblks-1, &nb_alg[ 1 ] );
else Trsm_partL_unb( variant, L11, Bl );

if ( variant == 2 )
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L21, Bi, ONE, B2 );
[% Rk Rk Rk Kok ok koK ko Kok ok Kk Kok ok ok ko Kok ok kR Kok koK Rk Kok ok R kR Kk kR Rk ok Kk Rk k[

FLA_Cont_with_3x3_to_2x2( &LTL, /*x/ &LTR, LOO, LO1, /*x/ L02,
/xx/ L10, L11, /#%/ L12,
/% kkkkkskokkokkkkkk ok / /% kkckokskskokskokokokokkokokokkk ok /
&LBL, /*x/ &LBR, L20, L21, /*x/ L22,
/* L11 added to */ FLA_TL );
FLA_Cont_with_3x1_to_2x1( &BT, BO,
B1,
[*xx/ [*xx/
&BB, B2,
/* Bl added to */ FLA_TOP );
}
}
Figure 8: FLAME implementation of recursive blocked TRsM algorithm in Fig. 7 (variant == 1) and the
algorithm in Exercise 4.1 (variant == 2).
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