
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2012/09-1

03/September/2012

Improved Orthogonality for Dense Hermitian

Eigensolvers Based on the MRRR Algorithm

M. Petschow, E. S. Quintana-Ortì, P. Bientinesi

Financial support from the Deutsche Forschungsgemeinschaft (German Research Foundation) through

grant GSC 111 is gratefully acknowledged.

©M. Petschow, E. S. Quintana-Ortì, P. Bientinesi 2012. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

Improved Orthogonality for Dense Hermitian Eigensolvers

based on the MRRR algorithm

A Mixed Precision Approach

M. Petschow ∗, E. S. Quintana-Ort́ı †, P. Bientinesi ∗

Abstract

The dense Hermitian eigenproblem is of outstanding importance in numerical
computations and a number of excellent algorithms for this problem exist. One
of the fastest method is the MRRR algorithm, which is based on a reduction to
real tridiagonal form. This approach, although fast, does not deliver the same
accuracy (orthogonality) as competing methods like the Divide-and-Conquer or
the QR algorithm. In this paper, we demonstrate how the use of mixed preci-
sions in MRRR-based eigensolvers leads to improved orthogonality. At the same
time, when compared to the classical use of the MRRR algorithm, our approach
comes with no or only limited performance penalty, increases the robustness, and
improves scalability.

1 Introduction

In [36], the authors describe how the use of “higher internal precision and mixed
input/output types and precisions [in libraries] permits [...] to implement some al-
gorithms that are simpler, more accurate, and sometimes faster.” In particular, the
internal use of higher precision provides the library developer with extra precision and
a wider range of values, which may benefit the accuracy and robustness of numerical
routines. As a major difference to software that uses arbitrary precision (e.g., Math-
ematica [58], Sage [51], and the LAPACK [2] adaptation MPACK [42]) to obtain any
desired accuracy – as pointed out in [36] – the use of higher precision should not lower
“performance significantly if at all.” Our goal is to use mixed precisions to improve the
accuracy, robustness and scalability of solvers for the Hermitian eigenproblem (HEP)
based on the fast method of Multiple Relatively Robust Representations (MRRR or
MR3 for short) [18, 20, 21] with little or negligible impact on their execution time.

∗RWTH Aachen, Aachen Institute for Advanced Study in Computational Engineering Science,
52062 Aachen, Germany. Electronic address: {petschow,pauldj}@aices.rwth-aachen.de

†Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12071 Castellón, Spain.
Electronic address: quintana@icc.uji.es

1

The Hermitian eigenproblem consists of finding scalars λ ∈ R and nonzero vectors
v ∈ C

n such that the equation
Av = λv (1)

holds for a given Hermitian matrix A ∈ C
n×n. In this case, λ is called an eigenvalue of

A and v is called a corresponding eigenvector. Together, (λ, v) form an eigenpair. The
Spectral Theorem for Hermitian matrices [43] ensures the existence of n eigenpairs
(λi, vi) such that the eigenvectors form a complete orthonormal set; that is for all
i, j ∈ {1, 2, . . . , n}

v∗j vi =

{
1 if j = i ,
0 if j 6= i ,

(2)

where we use v∗ to denote the complex-conjugate-transpose of v. Frequently, only the
eigenvalues or a subset of eigenpairs are desired. In this paper, we consider the case
where eigenvectors are computed as well.

For dense matrices, there exist a number of excellent algorithms, which usually
proceed in three stages: (1) reduction of A to a real symmetric tridiagonal matrix
T = Q∗AQ via a unitary similarity transformation; (2) solution of the symmetric
tridiagonal eigenproblem Tz = λz; and (3) back-transformation of the eigenvectors
v = Qz. These solvers commonly differ only in the algorithm that is used for the
tridiagonal part. Thus, differences in performance and accuracy are attributed to the
tridiagonal eigensolver used in the second stage. A study on the performance and
accuracy of various tridiagonal eigensolvers demonstrates that among the fastest is
the MRRR algorithm [16]. Unfortunately, this approach delivers generally the least
accurate results. These observations carry over to dense eigensolvers that differ only
in their tridiagonal stage.

For a solver based on the MRRR algorithm, we present how the use of mixed pre-
cisions leads to more accurate results at very little or even no extra costs in terms
of performance and memory usage. As a consequence, MRRR becomes not only one
of the fastest methods, but also as accurate or even more accurate than the competi-
tion. Furthermore, we give compelling experimental evidence that the mixed precision
approach improves both robustness and parallel scalability. Before we detail the discus-
sion, in Section 1.1 we present that all these goals can be achieved for an eigensolver
with single precision input/output.

1.1 Motivating example

High-performance numerical linear algebra libraries such as LAPACK contain routines
with input/output data in the single and double precision formats (defined by the
IEEE-754 standard [1, 31]) as these formats and their arithmetic is widely supported
by both computer languages and hardware. We therefore concentrate on the two
cases of single precision and double precision input/output. However, to increase the
performance, accuracy, and robustness of routines, numerical libraries can make use of
other data types internally, that is, invisible to the user. Table 1 shows the relevant
floating point formats and their support on our test machine. For example, when we

2

refer to single precision, we mean both the 32-bit data type and its unit round-off
εs, while the term “precision” alone is a synonym for the unit round-off. Thus, using
higher precision means using a data format with smaller unit round-off.

Name IEEE-754 Precision Underflow Support

single binary32 εs = 2−24 ωs = 2−126 Hardware
double binary64 εd = 2−53 ωd = 2−1022 Hardware
extended binary80 εe = 2−64 ωe = 2−16382 Hardware
quadruple binary128 εq = 2−113 ωq = 2−16382 Software

Table 1: The various floating point formats used and their support on our hardware, an
Intel Xeon X7550 “Beckton”. The ε-terms denote the unit round-off error (for rounding to
nearest) and the ω-terms the underflow threshold. We frequently use the letters s, d, e and q
synonymously with 32, 64, 80 and 128. Our use of the term extended is limited to the specific
80-bit format as specified in the table, opposed to the looser definition given in the original
IEEE standard and many programming languages.

In this section, we concentrate on single precision input/output arguments. In this
case, the use of higher precision internally – double precision in this case – improves
accuracy and improves speed, robustness, and scalability of the code. For single preci-
sion input/output, the use of higher precision is “easy” as [36] “the computer’s native
double precision is a way to achieve [the] benefits [of a higher precision format] easily
on all commercially significant computers.”

We merely show experimental results for accuracy and performance, delaying the
discussion of robustness, scalability, and how all the improvements are achieved to
later sections. Figures 1 and 2 show accuracy and timing results for three different
solvers: SSYEVD and SSYEVR, LAPACK’s Divide-and-Conquer and MRRR implemen-
tations respectively, and our routine mr3smp-mixed, which uses the mixed-precision
approach discussed in detail later. In this experiment, we generated three dense ma-
trices for each matrix size with random entries drawn from uniform distribution in
[−1, 1] as input to the three solvers. We report the worst case error and the average
time for computing all eigenpairs. More information about the experimental setup can
be found in later sections.

Figure 1 demonstrates that our approach is – as desired – more accurate. At
least for these test matrices, both the residual norms the numerical orthogonality, as
defined in Section 1.2, are superior to SSYEVR and even SSYEVD. Figure 2 illustrates
that the approach is not only more accurate, but also faster than the pure single
precision routines SSYEVR and SSYEVD. The left plot displays the relative execution time
compared to SSYEVR and suggests that all solvers require about the same execution
time. Nonetheless, mr3smp-mixed is the fastest in all tests. This is emphasized in
the right plot, where the execution time of only the tridiagonal stage is shown. Our
tridiagonal solver is up to five times faster than SSTEMR, LAPACK’s routine for the
tridiagonal part within the solver SSYEVR. The reason for this (possibly) surprising

3

2,000 4,000 6,000 8,000 10,000
10

−8

10
−7

10
−6

10
−5

10
−4

R
es

id
ua

l N
or

m

Matrix Size

mr3smp−mixed

SSYEVR

SSYEVD

2,000 4,000 6,000 8,000 10,000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

O
rt

ho
go

na
lit

y

Matrix Size

mr3smp−mixed

SSYEVR

SSYEVD

Figure 1: Residual norm krεs and orthogonality koεs as defined in Section 1.2. The dashed
line corresponds to the single precision unit round-off εs.

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
/ T

im
e

of
 S

S
Y

E
V

R

Matrix Size

mr3smp−mixed

SSYEVR

SSYEVD

2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
T

im
e

/ T
im

e
of

 S
S

T
E

M
R

Matrix Size

mr3smp−mixed

SSTEMR

SSTEDC

Figure 2: Left: Execution time relative to routine SSYEVR on an Intel Xeon X7550 “Beckton”
processor. All routines are executed single-threaded. Right: Execution time of only the tridi-
agonal stage relative to routine SSTEMR, which is the routine used in SSYEVR for the tridiagonal
stage.

result will be discussed in great detail below.
Before we discuss how all this is possible, in Section 1.2 we define exactly what we

mean by accuracy in the context of Hermitian eigenproblems and in Section 1.3 give a
brief overview of existing methods with their advantages and disadvantages.

4

1.2 Accurate solutions to the Hermitian eigenproblem

Given an Hermitian matrix A and a set of computed eigenpairs (λ̂i, v̂i), with ‖v̂i‖2 = 1
and i ∈ I, how do we quantify their accuracy?1 With ε denoting the input/output
format’s precision, we commonly say that, if the constants

kr = max
i

‖Av̂i − λ̂iv̂i‖
ε‖A‖ and ko = max

i
max
j 6=i

|v̂∗j v̂i|
ε

, (3)

are moderate in magnitude, the eigenpairs are computed accurately. In other words,
we require a small (norm-wise) relative backward error for each eigenpair and the
(numerical) orthogonality of the set of eigenvectors. In the following, we accept this
definition of accuracy without further discussion. Also, we generally display the quan-
tities krε for the maximal residual norm and koε for the orthogonality of eigenvectors
in all accuracy plots. The scaling by ε is mainly for the visual effect as one expects
errors to be small.

The numbers kr, ko quantify the quality of the result. They depend on a number
of factors: the norm ‖ • ‖, the algorithm A used2, a set of parameters P of the specific
implementation of A, and the input matrix A – in particular its dimension n and its
spectrum λ[A]. Once a specific norm is fixed3, we thus have kr = kr(A,P, n, λ[A], A)
and ko = ko(A,P, n, λ[A], A). From each algorithm A, we isolate the set of parameters
P, which includes convergence criteria, thresholds, etc., so that if two algorithms only
differ in P, then they are considered the same. For a given algorithm A, we can adjust
P to achieve optimal performance while guaranteeing a desired accuracy.

To compare different algorithms, each with some fixed set of parameters, we try to
factor in the dependence of the input matrix by obtaining results for a large set of test
matrices. Ideally, this test set would be somewhat standardized and consist of a variety
of application and artificial matrices in a wide range of sizes. Taking for each size n the
average and worst case accuracy usually represents well the accuracy of an algorithm
and gives some practical upper bounds Kr(n) and Ko(n) for kr and ko, respectively.
In general, for a stable algorithm it is possible to provide theoretical upper bounds
for kr and ko, independently of all properties of the input matrix but its size. These
theoretical upper bounds are crucial for proving stability and for improving algorithms,
but often greatly overestimate the actual error. As James Wilkinson said [28], “a
priori bounds are not, in general, quantities that should be used in practice. Practical
error bounds should usually be determined in some form of a posteriori error analysis,
since this takes full advantage of the statistical distribution of rounding error [...].”
Therefore, we evaluate the accuracy of an algorithm by executing it on a set of test
matrices.

1Here and in the following, we use λ̂i and v̂i for computed approximations to the exact quantities
λi and vi, respectively, and assume that ‖v̂i‖2 = 1 holds exactly.

2See Section 1.3 for the discussion of five different algorithms: Jacobi’s method, Bisection and
Inverse Iteration, QR Iteration, Divide-and-Conquer, and the MRRR algorithm.

3Any norm can be used. We use the 1-norm for all our numerical experiments below.

5

Similar to the accuracy considerations, the average and worst case execution times
can be used to assess the performance of different methods. This approach is for
instance taken in [16] to evaluate the performance and accuracy of LAPACK’s sym-
metric tridiagonal eigensolvers. All performance numbers depend highly on the input
matrices, the architecture, and the implementation of external libraries, such as vendor
optimized BLAS [24], making the evaluation a difficult task. In our experiments, the
test matrix set is not large enough to draw final conclusions, but the tests suggest gen-
eral ideas on the behavior of the algorithms. Our experiments are underpinned by the
outcomes in [16], where results of a large set of test matrices on different architectures
are collected.

1.3 Algorithms for the dense Hermitian eigenproblem

For the solution of dense Hermitian eigenproblems, one is in the luxurious situation of
being able to choose among different algorithms: Jacobi’s method, Bisection and In-
verse Iteration, QR Iteration, the Divide-and-Conquer method, and the already men-
tioned method of Multiple Relatively Robust Representations. The library user is
required to make a selection among the available algorithms, each of them with its
strengths and weaknesses and without a clear winner in all situations. At this point,
we collect some of the advantages and disadvantages of each method as reported in
various studies, e.g. [12, 14, 28, 43]. As already mentioned, we concentrate on the
case where the eigenvectors are desired. With the exception of Jacobi’s method, all
methods are based on the three-stage approach that initially reduces the input matrix
to real symmetric tridiagonal form.

• Jacobi’s method (JM) [32], as stated in [14], “has been very popular, since it is
implemented by a very simple program and gives eigenvectors that are orthog-
onal to working accuracy.” It has the advantage of finding eigenvalues to high
relative accuracy whenever this is possible [17, 43]. Furthermore, it is naturally
suitable for parallelism [28, 49] and can be fast on strongly diagonally dominant
matrices. On the downside, in terms of performance, it is usually not competitive
to methods that are based on a reduction to real symmetric tridiagonal form [12].
Additionally, JM cannot compute a subset of eigenpairs at reduced cost.

• Bisection and Inverse Iteration (BI) [5, 55] has the advantage of being adaptable,
that is, the method may be used to compute a subset of eigenpairs at reduced
cost. On the other hand, it was shown that the current software can theoreti-
cally fail to deliver correct results [19, 12] and, due to the reorthogonalization of
eigenvectors, its performance suffers severely on matrices with tightly clustered
eigenvalues [12]. While BI has been the method of choice for computing a subset
of eigenpairs for many years, the authors of [16] suggest that today MRRR “is
preferable to BI for subset computations.”

• QR Iteration (QR) [27, 35] is the work horse of dense eigencomputations, es-
pecially for unsymmetric and generalized eigenproblems [34, 12]. For the Her-

6

mitian problem the method faces the competition of the Divide-and-Conquer
algorithm, which is usually faster and equally accurate. Recent improvements
reduce this performance handicap, making it almost comparable to the fastest
methods available for computing all eigenpairs [52]. Like Jacobi’s Method, the
current implementations of QR are very robust. The method has the distinct
feature that in the dense case it requires the least amount of memory since the
eigenvectors can overwrite the initial input matrix [52]. If only a moderate subset
of eigenpairs has to be computed, other methods are preferred.

• Divide-and-Conquer (DC) [10, 29] is among the fastest and most accurate meth-
ods available [12, 16]. One advantage of the method lies in the inherent paral-
lelism of the divide-and-conquer approach [25]; a second advantage is the reliance
on the highly optimized matrix-matrix kernel. DCs drawbacks are that it requires
the largest amount of memory of all methods [16, 48] and that most implemen-
tations cannot be used to compute a subset of eigenpairs at reduced cost; for DC
and subset computations see [3].

• Multiple Relatively Robust Representations (MRRR) [18, 20, 21] cures BI from the
explicit reorthogonalization of eigenvectors. As a result, the method is capable
of computing k eigenpairs of a tridiagonal matrix in O(nk) operations and has
therefore the lowest worst case complexity of all the tridiagonal eigensolvers. In
the dense case, this means that the cost of the tridiagonal stage is asymptotically
negligible compared with the O(n3) cost of the reduction to tridiagonal form.
MRRR is the method of choice for computing small subsets of eigenpairs, but
often is the fastest method even when all eigenpairs are desired [16, 47, 48, 7]. In
particular, as stated in [23], “the MRRR algorithm is usually faster than all other
methods on matrices from industrial applications.” Various studies [48, 47, 7, 54]
show its excellent scalability in parallel environments. There are mainly two
disadvantages of MRRR: (1) The computation relies on finding so called relative
robust representations, which are special factorizations of shifted versions of the
intermediate tridiagonal matrix that must fulfill certain restrictions, and there
exists the danger of failing to find such representations; (2) In general, MRRR
delivers the least accurate results of all the listed methods. In the dense case,
the residual norms of all methods are comparable, but the orthogonality of the
eigenvectors computed by MRRR is inferior to the other methods.

To summarize, all methods will generally deliver accurate results – i.e., with kr
and kc in Eq. (3) of moderate size – but the MRRR-based solvers are less accurate
than the others. In particular, the orthogonality of the eigenvectors can be several
orders of magnitudes worse. On the other hand, MRRR is very fast and the method of
choice when only a small subset of eigenpairs is desired. In this paper, we address the
accuracy disadvantage of MRRR with a pragmatic approach based on mixed precisions.
Additionally, this approach decreases the risk posed by the first of MRRR’s drawback;
experimental evidence for this claim is given in Section 4.

7

Our goal is to achieve the same accuracy as methods such as DC and QR, while
being equally fast or faster. We restrict our experiments to the methods based on a
prior reduction to real symmetric tridiagonal form. In this case, extensive tests in [16]
on tridiagonal solvers confirm that (1) DC and MRRR are much faster than QR and
BI, (2) DC and QR are the most accurate algorithms, and (3) MRRR is preferable
to BI for subset computations. All these observations carry over to the dense case, as
we assume that the solvers differ only in their tridiagonal part. Because of (1) and
(2) and despite the fact that [52] shows that dense solvers based on QR can be made
comparable to DC, we compare our results to DC but not QR. As references, we use
LAPACK’s implementations of DC, BI, and and MRRR.

1.4 Other related work

The term mixed precision algorithm is sometimes synonymously used for the following
procedure: first solve the problem using a fast low-precision arithmetic, and then refine
the result to higher accuracy using a higher precision arithmetic, see for example [4].
This mixed precision iterative refinement approach exploits the fact that there might
exist a lower precision arithmetic faster than that of the input/output format. The
larger the performance gap between the two arithmetics, the more beneficial is the
approach. Iterative refinement (with and without using mixed precisions) has been
most extensively studied for the solution of linear systems of equations [4, 15, 30, 8, 41],
but other operations such as the solution of Lyapunov equations can benefit from it
too [6].

We use of the term mixed precision in its more general form; that is, using two or
more different precisions for solving a problem. In particular, we use a higher precision
in the more sensitive parts of an algorithm to obtain accuracy, which otherwise could
not be achieved. This approach is especially effective if the sensitive portion of the
algorithm and/or the performance gap between the two arithmetics is small. Similarly
to the mixed precision ideas for iterative refinement, the approach is quite general. We
will demonstrate it on the specific case of MRRR-based eigensolvers.

The rest of the paper is organized as follows: In Section 2, we detail the discussion
of our mixed precision approach in a general setting. In Section 3, we demonstrate
the concept for an eigensolver with double precision input/output, and in Section 4
we provide further experimental results.

2 Improved Accuracy Through Mixed Precision

The technique is simple, yet powerful: use a higher than input/output precision inside
the tridiagonal eigensolver to improve the overall accuracy. A similar idea was already
mentioned in [18], in relation to a preliminary version of the MRRR algorithm, but
was never pursued further. With many implementation and algorithmic advances since
then (e.g., [37, 22, 56, 7, 54]), it is appropriate to investigate the approach in detail. To
this end, we need a tridiagonal eigensolver that differentiates between two precisions:

8

(1) the input/output precision, say binary x, and (2) the working precision binary y
with y ≥ x. Although any x-bit and y-bit precisions might be chosen, in practice, only
the specific values already shown in Table 1 are used for a high-performance library.
For example, for the tridiagonal stage of the solver of Section 1.1, the input/output
format is binary32 (single) while the working format is binary64 (double). In principle,
any selection of y, even chosen at run time, leads to correct results; and if y = x, we
have the original situation of a pure binary x solver.

Provided the precision εy is sufficiently smaller than the input/output precision
εx, say 5–6 orders of magnitude, we obtain improved accuracy to the desired level.
What makes the use of (possibly much more costly) higher precision promising for a
MRRR-based eigensolver are four properties of the tridiagonal part of the algorithm:
(1) it has a lower complexity than the other two stages of the solver; (2) it performs
the fewest flops of all tridiagonal solvers; (3) it does not make use of any higher level
BLAS operations; (4) it is responsible for the deteriorated accuracy. Because of (1)
and (2), the extra cost for large matrices are asymptotically negligible and we are
perhaps willing to spend more time in the tridiagonal stage to improve the accuracy
of the final result. Furthermore, since MRRR does not rely on higher level BLAS
operations, we do not require in our mixed precision approach any optimized BLAS
library for higher precisions, which might not be available. Point (4) is important as
other methods would generally not benefit from improved accuracy in the tridiagonal
stage.

We give four remark on the expected performance: (1) If the y-bit floating point
arithmetic is not much slower than the x-bit floating point arithmetic, the approach
obtains improved accuracy at no or only marginal extra cost in terms of execution
time; (2) The additional cost due to the use of higher precision on large matrices is
negligible; (3) The approach works best for complex input matrices as in this case more
weight is on the reduction and back-transformation stages; (4) If only a small subset of
eigenpairs is computed, the extra cost is reduced, as less y-bit floating point arithmetic
is performed. In general, even if the higher arithmetic is significantly slower, mixed
precision might work well for large, complex input matrices for which only a fraction of
eigenpairs needs to be computed. Fortunately, this is a situation frequently occurring
in practice, see for example [48, 50, 3] and the references therein.

In principle, the mixed precision dense eigensolver could be constructed by the
following sequence of routines: (1) reduction to tridiagonal form in binary x arith-
metic followed by a conversion of the output to binary y; (2) solution to the tridi-
agonal eigenproblem using binary y arithmetic and conversion of the result to bi-
nary x; and (3) back-transformation of the eigenvectors using binary x arithmetic.
For example, for single precision input/output, the sequence of LAPACK routines
SSYTRD-DSTEMR-SORMTR with the intermediate data conversions would work. Subse-
quently, we refer to this as “the naive approach”. While it would improve accuracy,
it is for two reasons not optimal: (1) the approach potentially increases the memory
requirement as we need to explicitly store the eigenvectors of the tridiagonal in the
binary y format; and (2) if the y-bit floating point arithmetic is much slower than the

9

x-bit floating point arithmetic, the performance suffers severely. The first issue is ad-
dressed in Section 2.1, where we discuss how the computation can be organized so that
the memory requirements do not grow essentially. The second caveat is addressed in
Section 3, where we demonstrate that the mixed precision approach becomes feasible
even if we need to resort to much slower y-bit floating point arithmetic.

2.1 Memory cost

The memory management in the mixed precision tridiagonal solver is affected by the
fact that the eigenvector matrix Z ∈ R

n×k in binary x format is used as intermediate
work space. Thus if y > x, this part of the work space is not sufficient anymore
for its customary use, which is the following: for every cluster of two or more close
eigenvalues, the method stores up to 2n binary y numbers in columns of Z. This is
generally not possible if y > x. If we restrict y ≤ 2x, it is still possible store the 2n
binary y numbers whenever the cluster of eigenvalues is of size four or larger. Thus, the
computation must be carefully reorganized so that clusters containing less than four
eigenvalues are processed without storing any data in Z temporarily. Additionally,
after computing an eigenvector in binary y, it is converted to binary x, written into Z,
and discarded. Since also some of the bookkeeping can be done using binary x, we do
not require (substantially) more memory.

At the beginning of the tridiagonal stage, we must also make a copy of the input
matrix in order to cast it to binary y. Since in the input is tridiagonal, the memory
increase due to keeping a copy of the input is rather small. As the result, our mixed
precision approach still needs only O(n) floating point numbers extra work space for
the tridiagonal stage, although (most of) the computation is performed in a higher
precision.

3 A Solver for Double Precision Input/Output

By Table 1 in Section 1.1, when dealing with binary64 input/output arguments, we
can use either binary128 (quadruple) or binary80 (extended) in our mixed precision
approach. Both cases are analyzed in Section 3.1 and 3.2, respectively.

3.1 Quadruple precision

We discuss the use of quadruple precision first, as it closely resembles the single/double
precision case. The major difference is that this time the binary y arithmetic is not
supported by hardware and is therefore much slower than binary x. In general, the
situation corresponds to the case where input/output are in the largest IEEE format
supported by hardware. Thus, when using quadruple precision for the tridiagonal
stage, we must identify which of the computation can still be performed in the much
faster hardware supported double precision and relax the accuracy requirements of the
tridiagonal eigensolver to improve its performance. We use the double/quadruple case
as our case study, but the discussion is general, provided the quantities with index d,

10

such as εd, and with index q are respectively replaced with the indices x and y, and the
words ’double’ and ’quadruple’ are respectively replaced by ’binary x’ and ’binary y’.4

While the mixed precision approach for the single/double case works on virtually any
of today’s processors, the applicability of the double/quadruple case depends on the
performance of the quadruple arithmetic, on the matrix size, and on whether the subset
of eigenpairs to be computed is large.

3.1.1 Optimizing the tridiagonal stage for performance

There are two performance optimization approaches for our tridiagonal eigensolver:
(1) Given a double precision eigensolver, replace a minimum of the computation to use
quadruple and adjust a minimum of the parameters to guarantee a certain accuracy;
(2) Given a quadruple precision eigensolver, use as much of double precision compu-
tation and loosen as many of the convergence criteria and thresholds as possible while
still meeting the accuracy requirements.

We took the second approach as it is incremental: we can only apply some of the
changes without breaking the functionality of the mixed precision solver. In the follow-
ing, we give a list of optimizations that can be incorporated. A reader that is merely
interested in the results, can safely skip to Section 3.1.4 at this point. Otherwise, Al-
gorithm 1 presents the MRRR algorithm in sufficient detail for our discussion. Since
the algorithm heavily uses the concept of so called Relatively Robust Representations
of tridiagonals, we give the following definition adapted from [56].

Definition 3.1. A (partial) Relatively Robust Representation (RRR) of the symmetric
tridiagonal T ∈ R

n×n is a set {x1, . . . , xm} of m ≤ 2n − 1 scalars and a mapping f :
R
m → R

2n−1 that define the entries of T in such a way that small relative perturbations
x̃i = xi(1 + ξi), with |ξi| ≤ ξ ≪ 1, will only cause relative changes in (some of) the
eigenvalues and eigenvectors of f(x̃1, . . . , x̃m) proportional to ξ. In particular, if M
is an RRR for eigenvalue λ, we have |λ̃ − λ| = O(nξ|λ|), where λ̃ is the perturbed 5

eigenvalue of M̃ .

For example, the non-trivial entries of bidiagonal factorizations LDL∗ = T −σI for
some shift σ ∈ R together with the mapping defined by the factorization often form
(partial) RRRs and are used in all implementations we consider in this paper. Thus, if
preferred by the reader, each occurrence of a representation M might be replaced with
LDL∗. For a detailed discussion of the MRRR algorithm and the Relatively Robust
Representations of tridiagonals in particular, we refer to [18, 20, 21, 56] and [45],
respectively.

Algorithm 1 requires the input matrix to be unreduced, i.e., all the off-diagonal
entries are non-zero. Because of this requirement and an efficiency benefit, small off-
diagonal elements are set to zero in a preprocessing step. We discuss this step first.

4Furthermore, in the general discussion, we might assume εx/εy ≥ 105, to improve the orthogonality
to levels of other eigensolvers.

5Here and in the following, we use the notation O(x) informally as “of the order of x in magnitude”.

11

Algorithm 1 The Core MRRR Algorithm

Input: An unreduced symmetric tridiagonal T ∈ Rn×n and an index set Γ ⊆ {1, . . . , n}
of desired eigenpairs.
Output: The eigenpairs (λ̂i, ẑi) with i ∈ Γ.

1: if only a small subset of eigenpairs desired or enough parallelism available then

2: Compute initial eigenvalue approximations λ̂i of T for i ∈ Γ via bisection.
3: end if

4: Compute (root) representation M0 := T − τI with τ ∈ R — an RRR for all eigenpairs
with index i ∈ Γ.

5: Perturb M0 entry-wise by a small random relative amount.
6: if already computed initial eigenvalue approximations then
7: Refine initial λ̂i with respect to M0 via bisection.
8: else

9: Compute eigenvalues λ̂i with respect to M0 for i ∈ {1, . . . , n} via the dqds algorithm.

10: Discard λ̂i if i ∈ {1, . . . , n} \ Γ.
11: end if

12: Partition Γ =
⋃

k Γk according to the relative and absolute gaps of the associated eigen-
values.

13: Form a work queue Q, set depth := 0 and enqueue each task (Γk,M0, depth).
14: while Q not empty do

15: Dequeue a task (Γ̃,M, depth).

16: if |Γ̃| > 1 then

17: Compute M̃ := M − σI with σ ∈ R — a new RRR for all eigenpairs with index
i ∈ Γ̃.

18: Refine λ̂i with index i ∈ Γ̃ with respect to M̃ via bisection.
19: Partition Γ̃ =

⋃
k Γ̃k according to the relative gaps of the associated eigenvalues.

20: Set depth := depth+ 1 and enqueue each (Γ̃k, M̃ , depth).
21: else

22: Compute (λ̂i, ẑi) with i ∈ Γ̃ via inverse iteration with Rayleigh Quotient Correc-
tion.

23: end if

24: end while

Preprocessing: Splitting the problem into smaller sub-problems. Given the
tridiagonal T by its diagonal entries (c1, ..., cn) and its off-diagonal entries (e1, ..., en−1),
we set element ek to zero whenever

|ek| ≤ tolsplit‖T‖ , (4)

and therefore reduce the problem to smaller (unreduced) sub-problems [13, 43]. The
splitting perturbs the eigenvalues by O(tolsplit‖T‖) [13, 43]. After splitting, Algo-
rithm 1 is invoked on each unreduced block.

In LAPACK’s DSTEMR, the particular choice of the splitting tolerance is tolsplit = εd.
As our goal for the maximal residual norm does not change, the value of tolsplit can
be maintained and does not need to become the more restrictive εq. Since in the
context of the dense problem, we cannot in general hope to obtain the eigenvalues

12

to high relative accuracy, we normally employ this absolute splitting criterion. A
relative criterion on the other hand, where ‖T‖ becomes for example

√
|ckck+1| and

which might by used for some tridiagonal eigenproblems, requires the tolerance to
become εq. In both cases, the tolerance for splitting the matrix has no effect on the
worst case orthogonality, which depends on the size of the largest sub-problem and
therefore is usually improved by splitting. In the rest of this section, we assume that
the preprocessing has been done and each sub-problem can be treated independently
by invoking Algorithm 1. In particular, whenever we refer to matrix T , it is assumed
to be unreduced; whenever we reference the matrix size n in the context of parameter
settings, it refers to the size of the processed block.

A note on optimizing for performance. Given an MRRR tridiagonal eigensolver
for quadruple precision, we are seeking to relax some of its convergence criteria and
thresholds such that we achieve the desired accuracy for the double precision input
and output arguments. Often these parameters can take a wide range of values. As
the performance not only depends on these parameters in a highly non-trivial fashion,
but also on the input matrix, the platform, the performance difference of the dou-
ble and quadruple arithmetic, we cannot expect to select “optimal” values without
some form of (auto-)tuning these parameters on a specific set of matrices and on a
specific architecture. Nonetheless, we can choose the parameters in a way that give
generally good performance. Additionally, often the tridiagonal eigensolver is not the
performance bottleneck of the dense eigenproblem, and tuning these parameters is a
secondary problem.

To fully understand the parameters and their effect on the accuracy, the reader
should be familiar with the basics of the MRRR algorithm in general and the LAPACK
implementation in particular. For a reader that does not have this background, we
recommend to read [23] first or skip directly to the results in Section 3.1.4.

3.1.2 Optimizations that do not influence the final accuracy

Some modifications in our tridiagonal eigensolver stem from the fact that we use
quadruple precision but require double precision accuracy. The following amendments
are not perceivable in the output and can therefore equally be used in a tridiagonal
eigensolver aiming for quadruple precision accuracy.

Line 2: Convergence criteria for bisection. The bisection procedure relies on
the ability to count the number of eigenvalues smaller than given value µ ∈ R [13].
Starting from an interval [λ, λ] known to contain eigenvalue λ, for instance by virtue
of the Gerschgorin bounds, bisection reduces the width of the interval by a factor
two at every iteration. The process is converged when the interval satisfies |λ − λ| ≤
rtol0 ·max{|λ|, |λ|} or |λ− λ| ≤ atol.

LAPACK’s DSTEMR uses atol = O(ωd) and rtol0 =
√
εd, i.e., computing the values

to about 8 digits of accuracy (whenever possible). In our solver, we can adjust these

13

parameters. If we desire relative accuracy in this stage, ωd becomes ωq, but we do not
need to select rtol0 =

√
εq. Instead, we could for instance retain rtol0 =

√
εd. In fact,

there is no obvious functional dependency of rtol0 with the machine precision at all.
We therefore changed the parameter to rtol0 = 10−3 for all our experiments. Since the
result will be refined before the eigenvalues are classified, the actual choice of rtol0 is
not crucial, although it influences performance. In principle, we could omit this step
(Line 2) entirely.

Line 7 and 18: Convergence criteria for bisection. The intervals from the
previous approximations to the eigenvalues are inflated and used as a starting point
for limited bisection to refine the eigenvalue with respect to the RRR. The interval
width is halved until it satisfies |λ − λ| ≤ max{rtol1 · gap(λ), rtol2 · max{|λ|, |λ|}} or
|λ− λ| ≤ atol.

LAPACK’s choice in DSTEMR is rtol1 =
√
εd and rtol2 = max{5√εd · 10−3, 4εd}.

This reflects the fact that the “eigenvalue needs to be known to high relative accuracy
only at the point when the eigenvector is computed. At intermediate stages, while
the representation tree is constructed, eigenvalues only need to be accurate enough to
distinguish between large and small relative gaps” [53]. In our situation, we do not
need to change rtol1 and rtol2 if also the minimum relative gap, given by the parameter
gaptol (see below), remains mainly unchanged. For various reasons, we prefer to use
smaller values for gaptol and possibly double precision arithmetic for the bisection
computation. Thus, we choose rtol1 = rtol2 = max{5 · gaptol · 10−3, 4εd}.

A side note: “if the proportion of desired eigenpairs is high enough or the full
spectrum has to be computed, then all eigenvalues are computed by the more efficient
dqds algorithm and unwanted ones are discarded” [23]. However, bisection might be
more efficient – even if all the eigenvalues are needed – in a parallel environment. We
therefore need to decide whether the dqds algorithm or bisection is used for the initial
eigenvalue computation in Lines 1 to 11, see [47]. The changes in the convergence
criteria and the precision used (see below) for the computations both influence the
minimal amount of parallelism necessary for bisection to become faster than dqds.

Line 9: Precision used in the dqds algorithm. If the dqds algorithm is chosen,
let Zq = (q1, e1, q2, e2, . . . , qn, en) be the quadruple precision input – as defined for
example in [46] – to a specific implementation of the algorithm and Zd be Zq cast to
double precision. Then the conversion Zq to Zd corresponds to an element-wise relative
perturbation of at most εd. Since Zq is an RRR for all eigenvalues, and by Def. 3.1, the
exact eigenvalues λq and λd of respectively Zq and Zd satisfy |λq − λd| = O(nεd|λd|).
A double precision implementation of the dqds algorithm such as LAPACK’s DLASQ2
produces eigenvalues λ̂d to high relative accuracy, that is |λ̂d−λd| = O(nεd|λd|). Thus,
our computed eigenvalues satisfy |λq − λ̂d| ≤ |λq − λd| + |λ̂d − λd| = O(nεd|λd|). As
a final cast of the result to quad precision introduces no additional error, we obtain
the eigenvalues with relative error of O(nεd). This is more than required, provided we
prohibit gaptol from being too small, to classify the eigenvalues. In this way, we can

14

perform a (noticeable) portion of the computation in the much faster double precision
arithmetic.

Line 7 and 18: Precision used for bisection. By the same argument, we can use
the much faster double precision computation when refining the eigenvalues. In Lines
7 and 18, given representation Mq in quadruple precision. A conversion to double, that
is to Md, corresponds to relative perturbations in the entries of Mq. The refinement of

the eigenvalue λ̂d with respect toMd via bisection in double precision with a conversion
to the quadruple yields |λ̂q − λq| = O(tol · |λq|), where the convergence parameter tol
is chosen as discussed above.6

Note that in order to avoid under-/overflow in the double precision execution, it
might be necessary that the input matrix T is scaled as in a pure double precision solver.
This depends on the specific implementation of the bisection routine, see [13, 38]. Also,
the relative convergence criterion cannot be taken smaller than what is achievable by
bisection executed double precision.

As the initial eigenvalue approximation and refinement of eigenvalues can make
up for a noticeable portion of the overall computation, the use of double precision
arithmetic for these parts can speed up the mixed precision approach considerably in
those cases where quadruple precision arithmetic is performed rather slow, e.g., when
it is simulated in software.

3.1.3 Optimizations that influence the final accuracy

The following optimizations reflect the fact that we are not aiming for quadruple pre-
cision accuracy in the tridiagonal stage. The list is not exhaustive, but concentrates on
the parameters that influence performance the most. Additionally, the freedom in the
parameter selection due to the relaxed accuracy requirement may be used to increase
robustness and scalability as well; both aspects are discussed further in Section 4.

Line 5: Random perturbation of the root representation. The elements of
the representation M0, {x1, ..., xm}, are perturbed by small random relative amounts
x̃i = xi(1+ ξi) with |ξi| ≤ ξ for all 1 ≤ i ≤ m to break up tight clusters. This idea and
its importance for robustness is discussed in detail in [22].

DSTEMR uses ξ = 8εd, which is perturbing each entry by a few units in the last
place. In our situation, we can be more aggressive, using ξ = εd. Thus, about half of
the digits in each entry of the representation M0 are chosen randomly. This has two
major effects: (1) it becomes very unlikely to encounter clusters within clusters under
the classification criterion described below and (2) it helps significantly in finding an
RRR with a shift close to one end of a cluster.

6At this point, we could use Mq to ensure at the cost of two Sturm counts per eigenvalue that the
approximation as accurate as required. If not, the corresponding interval could be inflated and refined
in quadruple precision. A similar approach could be taken after the double precision dqds algorithm
was used.

15

Line 12 and 19: Minimum relative gap. The unfolding of Algorithm 1 highly
depends on how the sets Γ and Γ̃ are partitioned in Line 12 in Line 19, respectively.
The criterion is based on the absolute and relative gap of the eigenvalues. To justify
the choice made, we invoke the following classical theorem that can be found in similar
form for example in [43, 12].

Theorem 3.1. Given T (by any representation) and an approximation (λ̂, ẑ), with
‖ẑ‖2 = 1, to the eigenpair (λ, z), let r be the residual T ẑ − λ̂ẑ; then

sin∠(ẑ, z) ≤ ‖r‖2
gap(λ̂)

, (5)

with gap(λ̂) = minj{|λ̂− λj | : λj 6= λ}. Proof: See [43, 12, 56, 11].

In order to achieve sin∠(ẑ, z) = O(nε), we must be able to compute residual norms
with ‖r‖2 = O(nεgap(λ̂)). Unfortunately, this is not always possible. In particular, if
gap(λ̂) ≪ ‖T‖2, we cannot expect convergence of standard inverse iteration [18, 19].
One of the features of the MRRR algorithm is the computation of eigenpairs with
‖r‖2 = O(nε|λ̂|) [44, 21]. Thus, provided gap(λ̂) & |λ̂|, say gap(λ̂)/|λ̂| > gaptol, we
can achieve sin∠(ẑ, z) ≤ O(nε/gaptol). The choice of gaptol is restricted by the loss of
orthogonality that we are willing to accept. In practice, the value is often chosen to be
10−3, reflecting a compromise between achievable orthogonality and practicality [20].

When our working precision becomes quadruple, the requirement can be relaxed.
We have

sin∠(ẑ, z) ≤ O
(

nεq
gaptol

)
, (6)

and the value of gaptol can be chosen (at least) as small as εq
√
n/εd ≈ 10−18

√
n.

The particular choice7 of gaptol affects performance in multiple ways: the conver-
gence criteria for bisection depend explicitly on it, and in order to use double precision
computations of the eigenvalues as discussed above, the value cannot be chosen too
small. On the other hand, the smaller the value of gaptol the less clustering of eigen-
values occurs – resulting in beneficial performance. Taking these considerations into
account, we restricted gaptol to the interval [10−12, 10−3] and optimized the value for
performance. For the experimental results shown in later sections, we fixed gaptol to
10−10.

Line 12: Minimum absolute gap. A classification of the eigenvalues based on
their relative gaps alone can lead to bulky clusters, especially for large-scale problems.
In order for an eigenvalue λ̂ to be classified as well-separated by the relative criterion,
we require

gap(λ̂) > gaptol · |λ̂| , (7)

7In the more general case, min{10−3, εy
√
n/εx} ≤ gaptol ≤ 10−3.

16

i.e., the absolute gap for an eigenvalue large in magnitude must be equally large; even
though some of the eigenvalues might be well-separated from the others in an absolute
sense, they might not be in the relatively sense.

Large clusters can lead to deteriorated performance and impose problems for paral-
lel distributed-memory codes such as [48, 54, 7]. The problem and how to overcome it
is discussed in detail in [53, 54]. The solution is to supplement the relative classification
criterion in Line 12 with one that takes also the absolute gap of the eigenvalues into
account. Using a small adaption of the criterion in [53, 54], we classify an eigenvalue
as well-separated if

gap(λ̂) >
|λn − λ1|
n− 1

= avgap , (8)

and additionally split clusters of eigenvalues into smaller clusters whenever the cluster
has a separation from the rest of the spectrum greater than the average gap, avgap.
This criterion can be justified by the analog of Theorem 3.1 for invariant subspaces
of any dimension, see [43, 56, 11, 14, 53]. In fact, we could relax this condition to
α · avgap with α ≪ 1, if we also reduce the convergence criterion for inverse iteration
accordingly and adjust gaptol. For practical matrices, the effect on performance is
minor and we used α = 1 in all experiments.

Line 22: Stopping criteria for inverse iteration. The MRRR algorithm usu-
ally performs Rayleigh Quotient iteration with twisted factorizations (controlled by
bisection), a process described in detail in [23, 56, 53]. An eigenpair is accepted if
‖r‖2 ≤ tol1 · gap(λ̂), or if the ’Rayleigh Quotient Correction’ ≤ tol2 · |λ̂| and therefore
cannot improve the eigenvalue approximation. The convergence criteria are discussed
for example in [53].

DSTEMR uses tol1 = 4εd log n and tol2 = 2εd. While tol2 must becomeO(εq), in most
cases we can stop the inverse iteration process earlier by relaxing the tol1 parameter.
We chose tol1 = 4εd and tol2 = 2εq for the experiments.

3.1.4 The effect of the changes to performance and accuracy

To cite Beresford Parlett in [43]: “We might hope that results with low accuracy would
cost less than those with high accuracy. In practice, however, numerical methods do
not work that way.”8 While in general a trade-off between accuracy and performance
is not that straightforward, within the MRRR algorithm it can be realized. In Fig. 3,
we illustrate the net effect of all the changes we employed for the tridiagonal solver in
isolation.

As the left plot shows, our adapted solver provides a remarkable up to five-fold
speedup a on a set of application matrices (Table 2 of Section 4). The reference is
QSTEMR, a pure quadruple precision tridiagonal eigensolver, which is basically obtained

8In fact, the MRRR algorithm is an excellent example of how high accuracy can lead to a fast
algorithm.

17

by automatically translating LAPACK’s DSTEMR by replacing DOUBLE PRECISION data
types with REAL*16 (quadruple) data types.

Such performance gains are not a miracle, but stem from our willingness to give
up accuracy up to a certain level. This is depicted by the accuracy of our solutions in
Fig. 3 (right).9 Note that there is nothing special about the line given by εd; in fact,
we can achieve any accuracy that is not better than the quadruple precision result. In
our context however, it makes no sense to further reduce residuals and orthogonality
since the results will be converted to double precision. At this place, we also want
to point to Fig. 2 again, as now it becomes understandable why our mixed precision
approach is faster than SSYEVR for single precision input/output.

2,053 4,289 7,923 12,387 16,023
0

0.2

0.4

0.6

0.8

1

T
im

e
/ T

im
e

of
 Q

S
T

E
M

R

Matrix Size

Quad solver QSTEMR

mr3smp−mixed

2,053 4,289 7,923 12,387 16,023
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

R
es

id
ua

l N
or

m
 &

 O
rt

ho
go

na
lit

y

Matrix Size

QSTEMR (residual)

QSTEMR (orthogonality)

mr3smp−mixed (residual)

mr3smp−mixed (orthogonality)

Figure 3: Left: Execution time of our adapted tridiagonal solver mr3smp-mixed relative to
the quad precision routine QSTEMR computing all eigenpairs. Left: Corresponding accuracy for
mr3smp-mixed and QSTEMR. As a reference, we added εd and εq as black dashed lines.

3.1.5 Portability of using quadruple precision

Presently, there are two major drawbacks in using quadruple precision: (1) it is rather
slow and (2) the support through compilers and languages is limited. These draw-
backs make it hard to produce portable code that runs at reasonable performance
on different architectures with different compilers. In FORTRAN, it is possible to
produce portable code by using the REAL*16 data type. But, this type might not be
supported by all compilers. In a C/C++ environment, the support is entirely compiler
dependent. It is for instance supported via the float128 and Quad data types with
the GNU compilers and the Intel compilers, respectively. Alternatively, an external
library implementing the software arithmetic might be used for portability. In any
case, if quadruple precision is available, the performance highly depends on the spe-
cific implementation. Most likely, the support for quadruple precision will be improved

9In this experiments, we kept all the eigenpairs in quadruple precision in order to compute their
residuals and the orthogonality in quadruple.

18

in the future.

3.2 Extended precision

Quadruple precision arithmetic is rather slow, as there exist no widespread hardware
support at the time of writing. But, many current architectures have hardware support
for a 80-bit extended floating point format (see Table 1). According to William Ka-
han [33] “this format is intended mainly to help programmers enhance the integrity of
their Single and Double software, and to attenuate degradation by round-off in Double
matrix computations of larger dimensions, and can easily be used in such a way that
substituting Quadruple for Extended need never invalidate its use.” Our situation fits
into this picture.

As the unit round-off εe is only about three orders of magnitude smaller than εd, we
cannot expect our orthogonality to be improved by more than this amount. The main
advantage of the extended format is that compared to double precision its arithmetic
comes without any or only a small loss in speed.10 We therefore expect in all situations
improved accuracy without any significant loss in performance. This is confirmed in
all test we performed: the tridiagonal stage was never slowed down more than by
a factor of two, which results in negligible extra cost for the dense eigensolver. The
situation is slightly different between the double/extended and double/quadruple cases;
in contrast to the double/quadruple case, we cannot relax the accuracy requirements
of the tridiagonal eigensolver when using extended precision – all the extra precision
is necessary to improve accuracy. Thus, even if the arithmetic is performed exactly at
the same speed, we cannot expect the mixed precision eigensolver using extended to
be faster than a solver using pure double precision exclusively.

Experimental results suggest that in many cases the MRRR-based eigensolver using
extended precision obtains orthogonality comparable to that of methods such DC or
QR. On the other hand, especially for larger matrices, the use of extended precision
potentially leads to an orthogonality that is inferior to other methods (see Section 4).

3.2.1 Portability of using extended precision

Not all architectures support the 80-bit extended floating point format, so that its
use is not generally portable. A C/C++ code that uses the long double data type
(introduced in ISO C99) for the higher precision in the tridiagonal solver would achieve
the desired result on most architectures. However, some compilers might interpret long
double as either double or rarely even quadruple. In the first case, we do not gain
(or lose) anything. In the later case, we gain accuracy but might lose performance
depending on how quadruple is supported. FORTRAN code making use of extended
precision is likely not to be portable, as not all compilers support the extended precision
format REAL*10.

10A loss in performance might appear for two reasons: (1) the ability to use vectorized operations
is lost, and (2) the algorithm is memory-bandwidth limited.

19

4 Experimental Results

So far we have not listed the details of the experimental results of the previous sections.
At this point, we want to catch up on this. For all LAPACK results, we used version
3.3 in conjunction with version 10.2 of Intel MKL BLAS. For the mixed precision
results, we used the same reduction and back-transformation routines as LAPACK in
conjunction with a modified mixed precision version of the parallel solver presented
in [47]. For the extended precision results, we used version 4.7 of the GNU compilers.
In all other experiments, we used version 12.1 of Intel’s compiler.11 In all cases, we
enabled optimization level -O3. All experiments were performed single-threaded on a
Intel Xeon X7550 “Beckton” processor with nominal clock speed of 2 GHz.

In the single/double experiment of Section 1.1, we applied all the adjustments
discussed in Section 3.1, with only one exception: we do not resort to single precision
arithmetic in the dqds algorithm and bisection. In the double/extended experiments,
we merely used extended as our higher precision arithmetic; in the double/quadruple
case, we applied all the discussed changes.

Since for single precision input/output the mixed precision approach works very
well, here we concentrate on double precision input/output. In this case, the mixed
precision approach uses either extended or quadruple precision. We refer to these
cases as mr3smp-extended and mr3smp-quad, respectively. The use of quadruple is
more critical as it shows that the approach is applicable in many circumstances, even
when the higher precision arithmetic used in the tridiagonal stage is much slower than
arithmetic in the input/output format.

In this section, we confine ourselves to experiments on a small set of application
matricesas listed in Table 2, coming from quantum chemistry and structural mechanics
problems.12 As the performance of the eigensolvers highly depend on the spectra of
the input matrices, the platform of the experiment, the used BLAS library, and the
implementation of the quadruple arithmetic, we cannot draw final conclusions about
performance from these limited test. On the other hand, the orthogonality improve-
ments are quite general and are observed also for a much larger test set originating
from [39]. We do not report on residuals as the worst case residual norms are generally
comparable for all solvers.

To better display the effects of the use of mixed precisions, the performance results
are simplified in the following sense: As the routines for the reduction to tridiagonal
form and the back-transformation of all solvers are exactly the same, we used for these
stages the minimum execution time of all runs for each solver. In this way, the cost
of the mixed precision approach becomes more visible and we do not have to resort to
statistical metrics for the timings. We point out that especially for the subset tests,
the run time of the tridiagonal stage for larger matrices is often smaller than the

11For all timings, we only compare routines compiled with the same compiler. That is the routines
using extended are compared to routines compiled with the GNU compilers.

12These matrices are stored in tridiagonal form. In order to create real and complex dense matrices,
we generated a random Householder matrix H = I − τvv∗ and applied the similarity transformation
HTH to the tridiagonal matrix T .

20

Matrix Size Application Reference

A 2,053 Chemistry ZSM-5 in [26] and Fann3 in [39]
B 4,289 Chemistry Originating from [9]
C 4,704 Mechanics T nasa4704 in [39]
D 7,923 Mechanics See [7] for information
E 12,387 Mechanics See [7] for information
F 13,786 Mechanics See [7] for information
G 16,023 Mechanics See [7] for information

Table 2: A set of test matrices.

fluctuations in the timings for the reduction to tridiagonal form.

4.1 Real symmetric case

Computing all eigenpairs. Figure 4 refers to the computation of all eigenpairs.
We report on the execution time of the mixed precision routines relative to LAPACK’s
MRRR (DSYEVR) and the obtained orthogonality. As a reference, results for LAPACK’s
DC (DSYEVD) are included. The orthogonality is improved using extended and quadru-
ple precision. The left plot shows the performance penalty that we pay for the improve-
ments. In particular, for larger matrices, the additional cost of the mixed precision
approach becomes negligible, making it extremely attractive for large-scale problems.
For example, for test matrices E, F , and G, our solver mr3smp-quad is as fast as
DSYEVD, although it uses software simulated quadruple precision, while achieving bet-
ter orthogonality. Since the quadruple arithmetic is currently much slower than the
double one, mr3smp-quad carries a considerable performance penalty for small matri-
ces. In our case, for matrices with n < 2, 000, one must expect an increase in the total
execution time of a factor larger than two. The situation is similar to the one reported
in [4] for the iterative refinement of the solution of linear systems of equations, where
the mixed precision approach comes with a performance penalty for small matrices.

In contrast to mr3smp-quad, the use of extended precision does not significantly
increase the execution time even for smaller matrices, while still improving the or-
thogonality. As the reason for different performance is solely due to the tridiagonal
eigensolver, in the left panel of Fig. 5 we show the execution time of the tridiagonal
eigensolvers relative to LAPACK’s MRRR (DSTEMR).

We want to remark that although the mixed precision approach slows down the
tridiagonal stage compared to DSTEMR (at least with the current support for quadruple
precision arithmetic, see Fig. 5), it has two features that compensate this disadvan-
tage: it increases robustness and parallel scalability of the code. To underpin these
statements, in Table 3 we present the recursion depth, the maximal cluster size and the
number of times Line 17 in Algorithm 1 is executed when all eigenpairs are computed.

The table shows that in all cases mr3smp-quad computes all eigenpairs directly
from the representation M0 obtained in Line 4. Since this representation is definite,
no danger of element growth in its computation exist (thus, the RRR can be found).

21

2,053 4,289 7,923 12,387 16,023

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e
/ T

im
e

of
 D

S
Y

E
V

R

Matrix Size

mr3smp−quad

mr3smp−extended

DSYEVR

DSYEVD

2,053 4,289 7,923 12,387 16,023

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

O
rt

ho
go

na
lit

y

Matrix Size

Figure 4: Computation of all eigenpairs. Left: Execution time relative to routine DSYEVR.
Right: Orthogonality.

A B C D E F G

max. depth DSTEMR 2 2 2 4 5 2 5
mr3smp-quad 0 0 0 0 0 0 0

largest cluster DSTEMR 324 1,027 10 5,011 8,871 1,369 14,647
mr3smp-quad 1 1 1 1 1 1 1

new RRR DSTEMR 311 638 1,043 1,089 1,487 1,798 1,825
mr3smp-quad 0 0 0 0 0 0 0

Table 3: Recursion depth, largest encountered cluster, and number of times an RRR for a
cluster needs to be computed by executing Line 17 in Algorithm 1 for DSTEMR and mr3smp-quad.

Such a danger occurs in Line 17, where a new RRR for each cluster needs to be
computed. By executing Line 17 only a few times – often no times at all – the danger
of not finding a proper RRR is reduced and therefore robustness increased.13 Since our
approach is independent of the actual form of the RRRs, it is possible to additionally
use blocked factorizations as proposed in [57] to further improve robustness.

The mixed precision approach is especially appealing in the context of distributed-
memory parallelism. The fact that all eigenpairs in our experiment are computed
directly from the initial representation implies that the execution is truly embar-
rassingly parallel. That MRRR is embarrassingly parallel was already announced –
somewhat prematurely – with its introduction, see [18]. Only later, parallel versions
of MRRR [7, 54] found that “the eigenvector computation in MRRR is only embar-
rassingly parallel if the root representation consists of singletons” [53], i.e., all the
eigenvectors are computed from the initial RRR, and that otherwise “load imbalance
can occur and hamper the overall performance” [54].

13Besides the fact that less RRRs need to be found, additionally, the restriction of what constitutes
an RRR might be relaxed.

22

2,053 4,289 7,923 12,387 16,023
0

1

2

3

4

5

6

7
T

im
e

/ T
im

e
of

 L
A

P
A

C
K

’s
 M

R
R

R

Matrix Size

mr3smp−quad

mr3smp−extended

LAPACK’s MRRR

LAPACK’s DC

2,053 4,289 7,923 12,387 16,023
0

5

10

15

20

25

30

T
im

e
/ T

im
e

of
 L

A
P

A
C

K
’s

 M
R

R
R

Matrix Size

mr3smp−quad

mr3smp−extended

LAPACK’s MRRR

LAPACK’s BI (real)

LAPACK’s BI (complex)

Figure 5: Execution time of the tridiagonal stage relative to LAPACK’s MRRR. Left: Com-
putation of all eigenpairs. Right: Computation of 20% of the eigenpairs corresponding to the
smallest eigenvalues.

While one can expect only very limited clustering of eigenvalues for applica-
tion matrices arising from dense inputs, it is not always the case that the recursion
depth is zero. Experiments on all the tridiagonal matrices provided explicitly by the
Stetester [39] – a total of 176 matrices ranging in size from 3 to 24,873 – showed that
the worst case residual norm and worst case orthogonality were given by respectively
1.5·10−14 and 1.2·10−15 and the recursion depth was limited to two for all matrices. In
fact, only four artificially constructed matrices, glued Wilkinson matrices [22], which
are challenging for the MRRR algorithm, had clusters within clusters. In most cases,
with the settings of our experiments, the clustering was very benign or even no clus-
tering was observed. For example, the largest matrix in the test set, Bennighof 24873,
had only a single cluster of size 37. Furthermore, it is also possible to significantly
lower the gaptol parameter, say to 10−16, and therefore reduce clustering even more.
For such small values, in the approximation and refinement of eigenvalues we need to
resort to quadruple precision, which so far we avoided for performance reasons, see
Section 3.

Our results suggest that all experimental results hold similarly for the multi-
threaded and the distributed-memory case. The MRRR algorithm was already highly
scalable, see [47, 48, 7, 54], and the mixed precision approach additionally improves
scalability – often making the computation truly embarrassingly parallel.

Computing a subset of eigenpairs. The situation is more favorable when only
a subset of eigenpairs needs to be computed. As DSYEVD does not allow subset com-
putations at reduced cost, a user can resort to either BI or MRRR. The capabilities
of BI are accessible via LAPACK’s routine DSYEVX. Recently, the routine DSYEVR was
edited, so that it uses BI instead of MRRR in the subset case. We therefore refer
to ’DSYEVR (BI)’ when we use BI and ’DSYEVR (MRRR)’ when we force the use of

23

MRRR instead.14 In Fig. 6, we report the execution time relative to LAPACK’s MRRR
for computing 20% of the eigenpairs associated with the smallest eigenvalues and the
corresponding orthogonality.

2,053 4,289 7,923 12,387 16,023

0.6

0.8

1

1.2

1.4

1.6

T
im

e
/ T

im
e

of
 D

S
Y

E
V

R
 (

M
R

R
R

)

Matrix Size

mr3smp−quad

mr3smp−extended

DSYEVR (MRRR)

DSYEVR (BI)

2,053 4,289 7,923 12,387 16,023

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

O
rt

ho
go

na
lit

y
Matrix Size

Figure 6: Computation of 20% of the eigenpairs corresponding to the smallest eigenvalues. Left:
Execution time relative to routine DSYEVR that is forced to use MRRR. Right: Orthogonality.

BI and mr3smp-quad achieved the best orthogonality. At the moment, for small
matrices (n ≪ 2,000) the use quadruple might be be too expensive, but in this case
the mixed precision routine can easily be run in double precision only or BI can be
used for accuracy and performance. As support for quadruple precision improves, the
overhead will further decrease or completely vanish. The use of extended precision
comes almost without any performance penalty. On the other hand, for larger matri-
ces, the orthogonality might still be inferior to other methods. To illustrate the source
of the differing run times, the right panel of Fig. 5 presents the execution time of the
tridiagonal eigensolver relative to LAPACK’s MRRR. As expected, due to explicit or-
thogonalization via the Gram-Schmidt procedure, BI potentially becomes considerably
slower than MRRR.

4.2 Complex Hermitian case

Computing all eigenpairs. In Fig. 7, we show results for computing all eigenpairs
of complex valued Hermitian matrices. The left and right panel display the execution
time of all solvers relative to LAPACK’s MRRR (ZHEEVR) and the orthogonality, re-
spectively. As predicted, the extra cost due to the higher precision becomes relatively
smaller for complex valued input compared to real valued input – compare Figs. 4
and 7. Similarly, if the mixed precision solver is used for the generalized eigenprob-
lem based on Cholesky-Wilkinson algorithm [40, 43], the approach will increase the
execution only marginally even for relatively small problems.

14In all experiments, we used BI with default parameters.

24

2,053 4,289 7,923 12,387 16,023
0.8

0.9

1

1.1

1.2

1.3

T
im

e
/ T

im
e

of
 Z

H
E

E
V

R

Matrix Size

mr3smp−quad

mr3smp−extended

ZHEEVR

ZHEEVD

2,053 4,289 7,923 12,387 16,023
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

O
rt

ho
go

na
lit

y

Matrix Size

Figure 7: Computation of all eigenpairs. Left: Execution time relative to routine ZHEEVR.
Right: Orthogonality.

We want to remark that the timing plots might be misleading and suggest that
the cost of the mixed precision approach is high. Indeed, for test matrix A, using
quadruple precision increased the run time by about 23% relative to ZHEEVR. This
means in absolute time that the mixed precision approach required about 27 seconds
and ZHEEVR only 22 seconds. For larger matrices the absolute execution time increases
as n3 and the performance gap between mixed precision approach and pure double
precision solver vanishes. Such a scenario is observed with test matrix F , for which we
obtain an orthogonality of 1.3 · 10−15 with mr3smp-quad compared to 2.9 · 10−8 with
ZHEEVR, while spending only about 4% more in the total execution time.

Computing a subset of eigenpairs. As in the real valued case, we compute 20%
of the eigenpairs associated with the smallest eigenvalues. The execution time relative
to LAPACK’s MRRR and the corresponding orthogonality are displayed in Fig. 8.

For our test case, the extra cost due to the use of higher precision in
mr3smp-extended or mr3smp-quad is quite small. Even if quadruple precision was
used, for the smallest matrix the run time only increased by 13%. In a similar exper-
iment – computing 10% of the eigenpairs corresponding to the smallest eigenvalues –
the extra cost for mr3smp-quad was less than 6% compared to LAPACK’s MRRR. We
believe that this additional cost could be reduced further, for instance by omitting the
initial approximation of the eigenvalues of T using quadruple arithmetic – see Line 2
of Algorithm 1. On the other hand, such a penalty in the execution time is already
below the fluctuations observed in repeated experiments. Currently, mr3smp-extended
is faster than mr3smp-quad for smaller problems, but using extended precision cannot
quite deliver the same orthogonality as obtained with quadruple.

The relative timings of the tridiagonal eigensolvers are depicted in the right panel
of Fig. 5. Interestingly, BI is almost by a factor two slower than in the real valued case,
although exactly the same computation is performed. The reason is that the Gram-

25

2,053 4,289 7,923 12,387 16,023
0.7

0.8

0.9

1

1.1

1.2

T
im

e
/ T

im
e

of
 Z

H
E

E
V

R
 (

M
R

R
R

)

Matrix Size

mr3smp−quad

mr3smp−extended

ZHEEVR (MRRR)

ZHEEVR (BI)

2,053 4,289 7,923 12,387 16,023
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

O
rt

ho
go

na
lit

y

Matrix Size

Figure 8: Computation of 20% of the eigenpairs corresponding to the smallest eigenvalues are
computed. Left: Execution time relative to routine ZHEEVR (when forced to use MRRR). Right:
Orthogonality.

Schmidt orthogonalization, a memory bandwidth-limited operation, is performed on
complex data (although all imaginary parts of the involved vectors are zero).

4.3 Summarizing the experimental results

Using our mixed precision approach improves the orthogonality considerably – possibly
at the cost of some performance. The additional cost depend on the difference in
speed between the precision of input/output and the higher precision used in the
tridiagonal stage. As demonstrated in the single/double precision case, the mixed
precision approach might lead to faster executions. In any case, for larger matrices the
additional cost becomes negligible as the tridiagonal stage has a lower complexity than
the other two stages of the Hermitian eigenproblem. For double precision input/output
and small matrices, the use of quadruple precision comes with high extra cost, as
currently the support for quadruple precision is very limited and the arithmetic is
rather slow as it is performed entirely in software. In the future, with improved support
for quadruple – through (partial) hardware support or advances in the algorithms for
software simulation – the additional cost of the mixed precision approach vanishes.
An alternative on many architectures today is the use of a hardware supported 80-bit
extended floating point format. In this case, the execution time is hardly affected, but
it cannot guarantee the same orthogonality as quadruple. In addition to improving the
orthogonality, our approach increases both robustness and scalability of the solver. For
this reasons, the mixed precision approach is ideal for large-scale distributed-memory
solvers such as [47, 48, 7, 54].

26

5 Conclusions

In order to achieve improvements in accuracy, robustness, and scalability of MRRR-
based eigensolvers, we take on a different perspective of the tridiagonal MRRR algo-
rithm. In our perspective, given a format binary x for the input/output arguments, a
binary y floating point arithmetic is used to obtain any desired (achievable) accuracy.
In particular, provided the precision of the y-bit floating point format is sufficiently
smaller than the precision of the x-bit format, we obtain eigenvectors that are truly
orthogonal to input/output precision. We showed through cases studies that the per-
formance, robustness, and scalability of a tridiagonal eigensolver that incorporates our
mixed precision approach can be improved by relaxing its accuracy requirements. The
applicability of the approach depends mainly on the difference in performance between
the x-bit and y-bit floating point arithmetics. This is illustrated by two cases with re-
spectively a small and a large gap in performance: (1) binary32 (single) input/output
with binary64 (double) used internally and (2) binary64 input/output with binary128
(quadruple) used internally.

For single precision input/output arguments, we obtain routines for dense Hermi-
tian eigenproblems that are more accurate and faster, more robust, and more scalable
than the corresponding single precision eigensolver. Additionally, our mixed precision
approach is portable and has memory requirements similar to the original. In the sin-
gle precision case, the approach has no major drawback and works well for all matrix
sizes, whether all eigenpairs are computed or just a subset of them.

For double precision input/output arguments, we can resort to either extended or
quadruple precision. The first option offers a somewhat improved accuracy without
major performance cost. The latter option provides all the benefits mentioned in the
single precision case, but might slow down the computation due to today’s limited
support for quadruple precision. Nonetheless, for large matrices, the extra cost is
small even with today’s software simulated arithmetic. This is even more when only
a small subset of eigenpairs is computed and when the routines are executed in par-
allel. Furthermore, if the support for quadruple precision improves in the future, the
mixed precision approach will – like for single precision input/output – provide higher
accuracy without any major performance penalty.

As a result, we obtain MRRR-based eigensolvers for the Hermitian eigenproblem
that are at least as accurate as other methods like the Divide-and-Conquer or the QR
algorithm while largely maintaining or even improving the strengths of MRRR: speed
and scalability.

Acknowledgments

The authors would like to thank Diego Fabregat for discussion on an earlier draft of
this report. Financial support from the Deutsche Forschungsgemeinschaft (German
Research Association) through grant GSC 111 is gratefully acknowledged. Enrique S.
Quintana-Ort́ı was supported by project TIN2011-23283 and FEDER.

27

References

[1] American National Standards Institute and Institute of Electrical and Electronic Engineers.
ANSI/IEEE 754-1985. 1985.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. Dongarra, J. D. Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadel-
phia, PA, third edition, 1999.

[3] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Led-
erer, and P. Willems. Parallel Solution of Partial Symmetric Eigenvalue Problems from Electronic
Structure Calculations. Parallel Comput., 37:783–794, Dec. 2011.

[4] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. To-
mov. Accelerating Scientific Computations with Mixed Precision Algorithms. Computer Physics
Communications, 180(12):2526 – 2533, 2009.

[5] W. Barth, R. S. Martin, and J. H. Wilkinson. Calculation of the Eigenvalues of a Symmetric
Tridiagonal Matrix by the Method of Bisection. Numer. Math., V9(5):386–393, 1967.

[6] P. Benner, P. Ezzatti, D. Kressner, E. S. Quintana-Ort́ı, and A. Remón. A Mixed-Precision
Algorithm for the Solution of Lyapunov Equations on Hybrid CPU-GPU Platforms. Parallel
Comput., 37(8):439–450, Aug. 2011.

[7] P. Bientinesi, I. Dhillon, and R. van de Geijn. A Parallel Eigensolver for Dense Symmetric
Matrices Based on Multiple Relatively Robust Representations. SIAM J. Sci. Comput., 27:43–
66, July 2005.

[8] Å. Björck. Iterative Refinement and Reliable Computing. In M. G. Cox and S. J. Hammarling,
editors, Reliable Numerical Computation, pages 249–266, Oxford, 1990. Clarendon Press.

[9] S. Blügel, G. Bihlmeyer, D. Wortmann, C. Friedrich, M. Heide, M. Lezaic, F. Freimuth, and
M. Betzinger. The Jülich FLEUR Project. Jülich Research Center, 1987. http://www.flapw.de.

[10] J. Cuppen. A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem. Nu-
mer. Math., 36:177–195, 1981.

[11] C. Davis and W. Kahan. The Rotation of Eigenvectors by a Perturbation. III. SIAM J. Numer.
Anal., 7(1):pp. 1–46, 1970.

[12] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, USA, 1997.

[13] J. W. Demmel, I. Dhillon, and H. Ren. On the Correctness of some Bisection-like Parallel
Eigenvalue Algorithms in Floating Point Arithmetic. Electronic Trans. Num. Anal., 3:116–149,
1995.

[14] J. W. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of
Algebraic Eigenvalue Problems: a Practical Guide. SIAM, Philadelphia, PA, USA, 2000.

[15] J. W. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy. Error Bounds from
Extra-Precise Iterative Refinement. ACM Trans. Math. Softw., 32(2):325–351, June 2006.

[16] J. W. Demmel, O. Marques, B. Parlett, and C. Vömel. Performance and Accuracy of LAPACK’s
Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp., 30:1508–1526, 2008.

[17] J. W. Demmel and K. Veselic. Jacobi’s Method is more accurate than QR. SIAM J. Matrix Anal.
Appl, 13:1204–1245, 1992.

[18] I. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Prob-
lem. PhD thesis, EECS Department, University of California, Berkeley, 1997.

[19] I. Dhillon. Current Inverse Iteration Software Can Fail. BIT, 38:685–704, 1998.

[20] I. Dhillon and B. Parlett. Multiple Representations to Compute Orthogonal Eigenvectors of
Symmetric Tridiagonal Matrices. Linear Algebra Appl., 387:1–28, 2004.

28

[21] I. Dhillon and B. Parlett. Orthogonal Eigenvectors and Relative Gaps. SIAM J. Matrix
Anal. Appl., 25:858–899, 2004.

[22] I. Dhillon, B. Parlett, and C. Vömel. Glued Matrices and the MRRR Algorithm. SIAM J. Sci.
Comput, 27:496–510, 2005.

[23] I. Dhillon, B. Parlett, and C. Vömel. The Design and Implementation of the MRRR Algorithm.
ACM Trans. Math. Software, 32:533–560, December 2006.

[24] J. Dongarra, J. Du Cruz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[25] J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric eigenvalue problem.
SIAM J. Sci. Stat. Comput., 8(2):139–154, Mar. 1987.

[26] G. Fann, R. Littlefield, and D. Elwood. Performance of a Fully Parallel Dense Real Symmetric
Eigensolver in Quantum Chemistry Applications. In Proceedings of High Performance Computing
’95, Simulation MultiConference. The Society for Computer Simulation, 1995.

[27] J. Francis. The QR Transform - A Unitary Analogue to the LR Transformation, Part I and II.
The Comp. J., 4, 1961/1962.

[28] G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University Press, 3rd
edition, 1996.

[29] M. Gu and S. C. Eisenstat. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal
Eigenproblem. SIAM J. Matrix Anal. Appl., 16(1):172–191, 1995.

[30] N. Higham. Iterative Refinement for Linear Systems and LAPACK. IMA Journal of Numerical
Analysis, 17(4):495–509, 1997.

[31] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,
2008.

[32] C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkom-
menden Gleichungen numerisch aufzulösen. 30:51–94, 1846.

[33] W. Kahan. Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arith-
metic. Manuscript, 1997.

[34] D. Kressner. Numerical Methods for General And Structured Eigenvalue Problems. Springer,
Berlin Heidelberg New York, 2005.

[35] V. Kublanovskaya. On some Algorithms for the Solution of the Complete Eigenvalue Problem.
Zh. Vych. Mat., 1:555–572, 1961.

[36] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur,
M. C. Martin, T. Tung, and D. J. Yoo. Design, Implementation and Testing of Extended and
Mixed Precision BLAS. ACM Trans. Math. Software, 28:2002, 2002.

[37] O. Marques, B. Parlett, and C. Vömel. Computations of Eigenpair Subsets with the MRRR
Algorithm. Numerical Linear Algebra with Applications, 13(8):643–653, 2006.

[38] O. Marques, E. Riedy, and C. Vömel. Benefits of IEEE-754 Features in Modern Symmetric
Tridiagonal Eigensolvers. SIAM J. Sci. Comput., 28:1613–1633, September 2006.

[39] O. A. Marques, C. Vömel, J. W. Demmel, and B. N. Parlett. Algorithm 880: A Testing Infras-
tructure for Symmetric Tridiagonal Eigensolvers. ACM Trans. Math. Softw., 35(1):8:1–8:13, July
2008.

[40] R. Martin and J. Wilkinson. Reduction of the Symmetric Eigenproblem Ax = λBx; and Related
Problems to Standard Form. Numerische Mathematik, 11:99–110, 1968. 10.1007/BF02165306.

[41] C. B. Moler. Iterative Refinement in Floating Point. J. ACM, 14(2):316–321, Apr. 1967.

[42] M. Nakata. The MPACK (MBLAS / MLAPACK): A Multiple Precision Arithmetic Version of
BLAS and LAPACK, 2012. http://mplapack.sourceforge.net.

29

[43] B. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998.

[44] B. Parlett and I. Dhillon. Fernando’s Solution to Wilkinson’s Problem: an Application of Double
Factorization. Linear Algebra Appl., 267:247–279, 1996.

[45] B. Parlett and I. Dhillon. Relatively Robust Representations of Symmetric Tridiagonals. Linear
Algebra Appl., 309(1-3):121 – 151, 2000.

[46] B. Parlett and O. Marques. An Implementation of the DQDS Algorithm (Positive Case). Linear
Algebra Appl., 309:217–259, 1999.

[47] M. Petschow and P. Bientinesi. MR3-SMP: A Symmetric Tridiagonal Eigensolver for Multi-Core
Architectures. Parallel Computing, 37(12):795 – 805, 2011.

[48] M. Petschow, E. Peise, and P. Bientinesi. High-Performance Solvers For Dense Hermitian
Eigenproblems. Submitted, 2011.

[49] A. Sameh. On Jacobi and Jacobi-like Algorithms for a Parallel Computer. Math. Comp.,
25(115):579–590, 1971.

[50] M. Sears, K. Stanley, and G. Henry. Application of a High Performance Parallel Eigensolver
to Electronic Structure Calculations. In Proceedings of the 1998 ACM/IEEE conference on Su-
percomputing (CDROM), Supercomputing ’98, pages 1–1, Washington, DC, USA, 1998. IEEE
Computer Society.

[51] W. Stein et al. Sage Mathematics Software. The Sage Development Team, 2012.
http://www.sagemath.org.

[52] F. G. Van Zee, R. van de Geijn, and G. Quintana-Orti. Restructuring the QR Algorithm for
High-Performance Application of Givens Rotations. Technical Report TR-11-36, The University
of Texas at Austin, Department of Computer Sciences, October 2011.

[53] C. Vömel. A Refined Representation Tree for MRRR. LAPACK Working Note 194, Department
of Computer Science, University of Tennessee, Knoxville, Nov. 2007.

[54] C. Vömel. ScaLAPACK’s MRRR Algorithm. ACM Trans. Math. Software, 37:1:1–1:35, January
2010.

[55] J. H. Wilkinson. The Calculation of the Eigenvectors of Codiagonal Matrices. Comp. J., 1(2):90–
96, 1958.

[56] P. Willems. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and Bidiagonal
SVD. PhD thesis, University of Wuppertal, 2010.

[57] P. Willems and B. Lang. Block Factorizations and qd-type Transformations for the MR3 Algo-
rithm. Electron. Trans. Numer. Anal., 38:363–400, 2011.

[58] S. Wolfram. Mathematica - a system for doing mathematics by computer (2. ed.). Addison-Wesley,
1992.

30

