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Abstract. We present a systematic methodology for deriving and implementing
linear algebra libraries. It is quite common that an application requires a library
of routines for the computation of linear algebra operations that are not (exactly)
supported by commonly used libraries like LAPACK. In this situation, the appli-
cation developer has the option of casting the operation into one supported by an
existing library, often at the expense of performance, or implementing a custom
library, often requiring considerable effort. Our recent discovery of a methodol-
ogy based on formal derivation of algorithm allows such a user to quickly de-
rive proven correct algorithms. Furthermore it provides an API that allows the
so-derived algorithms to be quickly translated into high-performance implemen-
tations.

1 Introduction

We have recently written a series of journal papers where we illustrate to the HPC com-
munity the benefits of the formal derivation of algorithms [2, 3, 7, 11]. In those papers,
we show that the methodology greatly simplifies the derivation and implementation of
algorithms for a broad spectrum of dense linear algebra operations. Specifically, it has
been successfully applied to all Basic Linear Algebra Subprograms (BLAS) [4, 5, 9],
most operations supported by the Linear Algebra Package (LAPACK) [1], and many
operations encountered in control theory supported by the RECSY library [8]. We il-
lustrate the methodology and its benefits by applying it to the inversion of a triangular
matrix, L := L−1, an operation supported by the LAPACK routine DTRTRI.

2 A Worksheet for Deriving Linear Algebra Algorithms

In Fig. 1, we give a generic “worksheet” for deriving a large class of linear algebra
algorithms. Expressions in curly-brackets (Steps 1a, 1b, 2, 2,3, 6, 7) denote predicates
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Step Annotated Algorithm: [D, E, F, . . .] = op(A, B, C, D, . . .)

1a {Ppre}
4 Partition

where

2 {Pinv}
3 while G do

2,3 {(Pinv) ∧ (G)}
5a Repartition

where

6 {Pbefore}
8 SU

7 {Pafter}
5b Continue with

2 {Pinv}
enddo

2,3 {(Pinv) ∧ ¬ (G)}
1b {Ppost}

Fig. 1. Worksheet for developing linear algebra algorithms

that describe the state of the various variables at the given point of the algorithm. The
statements between the predicates (Steps 3, 4, 5a, 5b, 8) are chosen in such a way that,
at the indicated points in the algorithm, those predicates hold. In the left column of
Fig. 1, the numbering of the steps reflects the order in which the items are filled in.

3 Example: Triangular Matrix Inversion

Let us consider the example L := L−1 where L is an m × m lower triangular matrix.
This is similar to the operation provided by the LAPACK routine DTRTRI [4]. In the
discussion below the “Steps” refer to the step numbers in the left column of Figs. 1
and 2.

Step 1: Determine Ppre and Ppost. The conditions before the operation commences
(the precondition) can be described by the predicate indicated in Step 1a in Fig. 2. Here
L̂ indicates the original contents of matrix L. The predicate in Step 1b in Fig. 2 indicates
the desired state upon completion (the postcondition).

Step 2: Determine Pinv. In order to determine possible intermediate contents of the
matrix L, one starts by partitioning the input and output operands, in this case L and
L̂. The partitioning corresponds to an assumption that algorithms progress through data
in a systematic fashion. Since L is lower triangular, it becomes important to partition it
into four quadrants,
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Step Annotated Algorithm: L := L−1

1a
{

L = L̂ ∧ LowerTri(L)
}

4 Partition L =

(
LTL 0

LBL LBR

)
and L̂ =

(
L̂TL 0

L̂BL L̂BR

)

where LTL and L̂TL are 0× 0

2

{(
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

)}

3 while ¬SameSize(L, LTL) do

2,3

{((
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

))
∧ (¬SameSize(L, LTL))

}

5a Determine block size b
Repartition(

LTL 0

LBL LBR

)
→




L00 0 0

L10 L11 0

L20 L21 L22


 and

(
L̂TL 0

L̂BL L̂BR

)
→




L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22




where L11 and L̂11 are b× b

6








L00 0 0

L10 L11 0

L20 L21 L22


 =




L̂−1
00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22








8
L10 := −L−1

11 L10L00

L11 := L−1
11

7







L00 0 0

L10 L11 0

L20 L21 L22


 =




L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

L̂20 L̂21 L̂22







5b Continue with(
LTL 0

LBL LBR

)
←




L00 0 0

L10 L11 0

L20 L21 L22


 and

(
L̂TL 0

L̂BL L̂BR

)
←




L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22




2

{(
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

)}

enddo

2,3

{((
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

))
∧ ¬ (¬SameSize(L, LTL))

}

1b
{

L = L̂−1
}

Fig. 2. Worksheet for developing an algorithm for symmetric matrix multiplication

L →
(

LTL 0

LBL LBR

)
,

where LTL and LBR are square so that these diagonal blocks are lower triangular. Here
the indices T , B, L, and R stand for Top, Bottom, Left, and Right, respectively.
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Now, this partitioned matrix is substituted into the postcondition after which al-
gebraic manipulation expresses the desired final contents of the quadrants in terms of
operations with the original contents of those quadrants:

(
LTL 0

LBL LBR

)
=

(
L̂TL 0

L̂BL L̂BR

)−1

=

(
L̂−1

TL 0

−L̂−1
BRL̂BLL̂−1

TL L̂−1
BR

)
.

At an intermediate stage (at the top of the loop-body) only some of the operations will
have been performed. For example, the intermediate state

(
LTL 0

LBL LBR

)
=

(
L̂−1

TL 0

L̂BL L̂BR

)

comes from assuming that only LTL has been updated with the final result while the
other parts of the matrix have not yet been touched. Let us use this example for the
remainder of this discussion: it becomes Pinv in the worksheet in Fig. 1 as illustrated in
Fig. 2.

Step 3: Determine Loop-Guard G. We are assuming that after the loop completes,
Pinv ∧ ¬G holds. Thus, by choosing a loop-guard G such that (Pinv ∧ ¬G) ⇒ Ppost,
it is guaranteed that the loop completes in a state that implies that the desired result has
been computed. Notice that when LTL equals all of L,

((
LTL 0

LBL LBR

)
=

(
L̂−1

TL 0

L̂BL L̂BR

)
∧ SameSize(L, LTL)

)
⇒ (L = L̂−1).

Here the predicate SameSize(L, LTL) is true iff the dimensions of L and LTL are equal.
Thus, the iteration should continue as long as ¬SameSize(L, LTL), the loop-guard G
in the worksheet.

Step 4: Determine the Initialization. The loop-invariant must hold before entering the
loop. Ideally, only the partitioning of operands is required to attain this state. Notice that
the initial partitionings given in Step 4 of Fig. 2 result in an L that contains the desired
contents, without requiring any update to the contents of L.

Step 5: Determine How to Move Boundaries. Realize that as part of the initialization
LTL is 0 × 0, while upon completion of the loop this part of the matrix should corre-
spond to the complete matrix. Thus, the boundaries, denoted by the double lines, must
be moved forward as part of the body of the loop, adding rows and columns to LTL.
The approach is to identify parts of the matrix that must be moved between regions at
the top of the loop body, and adds them to the appropriate regions at the bottom of the
loop body, as illustrated in Steps 5a and 5b in Fig. 2.

Step 6: Determine Pbefore. Notice that the loop-invariant is true at the top of the loop
body, and is thus true after the repartitioning that identifies parts of the matrices to
be moved between regions. In Step 6 in Fig. 2 the state, in terms of the repartitioned
matrices, is given.
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Partition L =

(
LTL 0

LBL LBR

)

where LTLis 0× 0

while ¬SameSize(L, LTL) do

Determine block size b
Repartition(

LTL 0

LBL LBR

)
→




L00 0 0

L10 L11 0

L20 L21 L22




where L11 is b× b

L10 := −L−1
11 L10L00

L11 := L−1
11

Continue with(
LTL 0

LBL LBR

)
←




L00 0 0

L10 L11 0

L20 L21 L22




enddo

Fig. 3. Final algorithm

Step 7: Determine Pafter. Notice that after the regions have been redefined, (as in Step
5b in Fig. 2), the loop-invariant must again be true. Given the redefinition of the regions
in Step 5b, the loop-invariant, with the appropriate substitution of what the regions will
become, must be true after the movement of the double lines. Thus,

(
L̂−1

TL 0

L̂BL L̂BR

)
=




(
L̂00 0

L̂10 L̂11

)−1

0

(
L̂20 L̂21

)
L̂22


 =




L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

L̂20 L̂21 L̂22




must be true after the movement of the double lines.

Step 8: Determine the Update SU . By comparing the state in Step 6 with the desired
state in Step 7, the required update, given in Step 8, can be easily determined.

Final Algorithm. Finally, by noting that L̂ was introduced only to denote the original
contents of L and is never referenced in the update, the algorithm for computing L :=
L−1 can be stated as in Fig. 3.

Note that the second operation in update SU requires itself an inversion of a triangu-
lar matrix. When b = 1, this becomes an inversion of the scalar L11. Thus, the so-called
“blocked” version of the algorithm, where b > 1, could be implemented by calling an
“unblocked” version, where b = 1 and L11 := L−1

11 is implemented by an inversion of
a scalar.
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1 FLA_Part_2x2( L, &LTL, &LTR,
2 &LBL, &LBR, 0, 0, FLA_TL );
3
4 while ( FLA_Obj_length( LTL ) != FLA_Obj_length( L ) ){
5 b = min( FLA_Obj_length( LBR ), nb_alg );
6 FLA_Repart_2x2_to_3x3(
7 LTL, /**/ LTR, &L00, /**/ &L01, &L02,
8 /* ************* */ /* ******************** */
9 &L10, /**/ &L11, &L12,
10 LBL, /**/ LBR, &L20, /**/ &L21, &L22,
11 b, b, FLA_BR );
12 /*-------------------------------------------------*/
13
14 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
15 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
16 MINUS_ONE, L11, L10);
17
18 FLA_Trmm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
19 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
20 ONE, L00, L10);
21
22 FLA_TriInv( L11 );
23
24 /*-------------------------------------------------*/
25 FLA_Cont_with_3x3_to_2x2(
26 &LTL, /**/ &LTR, L00, L01, /**/ L02,
27 L10, L11, /**/ L12,
28 /* *************** */ /* ***************** */
29 &LBL, /**/ &LBR, L20, L21, /**/ L22,
30 FLA_TL );
31 }

Fig. 4. C implementation

Alternative Algorithms. The steps we just described allow one to derive alternative
algorithms: by applying Steps 3-8 with different loop-invariants one can obtain different
variants for the same operation.

4 Implementation and Performance

In order to translate the proven correct algorithm into code, we have introduced APIs
for the Mscript [10], C, and Fortran programming languages. The APIs were designed
to mirror the algorithms as obtained from the worksheet. This allows for a rapid and
direct translation to code, reducing chances of coding errors. The C code corresponding
to the algorithm in Fig. 3 is illustrated in Fig. 4. The Partition statement in the algo-
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Fig. 5. Performance of LAPACK vs. FLAME on a single CPU and four CPUs of an Itanium2-
based SMP. Here Variant3 indicates a different loop invariant which results in an algorithm rich
in triangular matrix matrix multiply (TRMM). It is known that the rank-k update is an operation
that parallelizes better than TRMM. This explain the better peformance of Variant3 with respect
to LAPACK

rithm corresponds to lines 1 and 2 in the code; The Repartition and Continue with
statements are coded by lines 6 to 11 and 25 to 30 respectively. Finally, the updates in
the body of the loop correspond to lines 14 to 22 in the code.

Performance attained on an SMP system based on the Intel Itanium2 (R) processor
is given in Fig. 5. For all the implementations reported, parallelism is achieved through
the use of multithreaded BLAS. While the LAPACK implementation uses the algorithm
given in Fig. 3, the FLAME one uses a different algorithmic variant that is rich in rank-k
updates, which parallelize better with OpenMP. For this experiment, both libraries were
linked to a multithreaded BLAS implemented by Kazushige Goto [6].

5 Conclusion

We presented a methodolody for rapidly deriving and implementing algorithms for lin-
ear algebra operations. The techniques in this paper apply to operations for which there
are algorithms that consist of a simple initialization followed by a loop. While this may
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appear to be extremely restrictive, the linear algebra libraries community has made
tremendous strides towards modularity. As a consequence, almost any operation can be
decomposed into operations (linear algebra building blocks) that, on the one hand, are
themselves meaningful linear algebra operations and, on the other hand, whose algo-
rithms have the structure given by the algorithm in Fig. 1.

The derivation of algorithms is dictated by eight steps, while the implementation is
a direct translation of the algorithm through a number of API’s that we have developed.
Using PLAPACK [12], a C library based on MPI, even a parallel implementation for a
distributed memory architecture closely mirrors the algorithm as represented in Fig. 3
and is no different from the C code shown in Fig. 4.

One final comment about the eight steps necessary to fill the worksheet in: the pro-
cess is so systematic that we were able to develop a semi-automated system capable of
generating one algorithm starting from a loop invariant. In the paper Automatic Deriva-
tion of Linear Algebra Algorithms with Application to Control Theory, also presented
at this conference, we show how to use the system to solve the Triangular Sylvester
Equation.

Additional Information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/

Acknowledgments

This research is partially supported by NSF grants ACI-0305163 and CCF-0342369.
We thank NEC Solutions (America), Inc. for access to the Intel Itanium2 processor
SMP used for the performance experiments.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadel-
phia, 1992.

2. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

3. Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

4. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

5. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17,
March 1988.



384 Paolo Bientinesi et al.

6. Kazushige Goto and Robert A. van de Geijn. On reducing tlb misses in matrix multiplication.
Technical Report CS-TR-02-55, Department of Computer Sciences, The University of Texas
at Austin, 2002.

7. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, De-
cember 2001.

8. Isak Jonsson. Recursive Blocked Algorithms, Data Structures, and High-Performance Soft-
ware for Solving Linear Systems and Matrix Equations. PhD thesis, Dept. Computing Sci-
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