
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2010/08-01

23/August/2010

High-Performance Parallel Computations using Python

as High-Level Language

Stefano Masini and Paolo Bientinesi

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through

grant GSC 111 is gratefully acknowledged.

©Stefano Masini and Paolo Bientinesi 2010. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

High-Performance Parallel Computations

using Python as High-Level Language

Stefano Masini⋆ and Paolo Bientinesi⋆⋆

RWTH Aachen, AICES, Aachen, Germany

Abstract. High-performance and parallel computations have always rep-
resented a challenge in terms of code optimization and memory usage,
and have typically been tackled with languages that allow a low-level
management of resources, like Fortran, C and C++. Nowadays, most of
the implementation effort goes into constructing the bookkeeping logic
that binds together functionalities taken from standard libraries. Because
of the increasing complexity of this kind of codes, it becomes more and
more necessary to keep it well organized through proper software en-
gineering practices. Indeed, in the presence of chaotic implementations,
reasoning about correctness is difficult, even when limited to specific
aspects like concurrency; moreover, due to the lack in flexibility of the
code, making substantial changes for experimentation becomes a grand
challenge.
Since the bookkeeping logic only accounts for a tiny fraction of the total
execution time, we believe that for such a task it can be afforded to
introduce an overhead due to a high-level language. We consider Python
as a preliminary candidate with the intent of improving code readability,
flexibility and, in turn, the level of confidence with respect to correctness.
In this study, the bookkeeping logic of SMP-MRRR, a C & Fortran highly
optimized multi-core eigensolver, is ported to Python. We report here
on the porting process and on the pros and cons of using a high-level
language in a high-performance parallel library.

Keywords: Productivity, Code Development, High-Performance Com-
putations, Python, High-Level Languages

1 Introduction

The scientific computing community spends a great deal of effort in developing
numerical routines and libraries. The codes are often both large and difficult
to manage. As an example, representative codes for 3D Finite Element solvers
normally include hundreds of files, thousands of routines, surpass the 100K lines
of code, and are entirely written in one or more of the classic languages: C,
C++ and Fortran. Even though the situation is considered to be sub-optimal,
it is often tacitly accepted in the name of high-performance.

⋆

stefano@stefanomasini.com
⋆⋆

pauldj@aices.rwth-aachen.de

Typically, complex numerical solvers and simulations are organized into lay-
ers: the key logic is expressed at high level in terms of simpler algorithms that
perform most of the number crunching. A large number of separate routines,
taken from consolidated libraries and often used as black boxes, needs to be
orchestrated through proper data structures, function calls and thread synchro-
nization. The libraries themselves are organized in the same fashion. As an ex-
ample, LAPACK, the de facto standard linear algebra library, is layered on top
of the routines of levels 3, 2 and 1 of the BLAS library. Such a modular approach
helps separating the computation—confined to well-defined functions—from the
data and thread management.

A considerable challenge arises when concurrency is required: in that situa-
tion it is generally hard to be highly confident with respect to correctness and
absence of deadlock. The typical approach is to try to keep the logic as simple
as possible so that the intricate implementation remains confined to limited sec-
tions. Unfortunately, always in the name of high-performance, Fortran and C
are often misused to obtain low-level optimizations over instructions, registers
and the memory hierarchy. Applying these practices when not strictly necessary
makes it unlikely that code rich in semantics is also simple and compact. Fur-
thermore, if achieving correctness is already time consuming, it becomes even
more expensive to experiment with algorithmic variants, despite this activity is
precisely what scientific research is all about.

The main concerns for numerical code and libraries are correctness and per-
formance. We believe that nowadays other concerns should be considered as
equally important: code modularity, flexibility, and development time. In this
paper we focus on the development of the logic for the management of data,
functions and threads (bookkeeping) in high-performance parallel libraries. For
this specific task, high-level languages might be better suited than C or Fortran:
we chose Python in our first attempt to investigate the pros and cons of replacing
C as the main programming language.

The paper is organized as follows. In Section 2 we describe our experimental
setup and compare with related approaches. Details on the actual porting of the
code are in Section 3. In Section 4 we report on the concrete advantages that
we experienced. Section 5 explains the impact of the Global Interpreter Lock in
order to understand the performance numbers presented in Section 6, together
with future directions. In Section 7 we draw conclusions.

2 Setup

Python is a very appealing language for the scientific computing community
at large [6]. Its applicability, even to large projects, has been proven fruitful
for a long time already [13]. Most of the investigations and studies targeting
parallel computations have only considered the model of distributed memory
and message passing [3, 7–12]. In that scenario Python has been used to steer
the computation by organizing and synchronizing processes containing number-
crunching operations performed by libraries normally written in C, C++ or For-

tran. By targeting shared memory parallelism, our investigation departs sharply
from previous efforts.

We aim at using Python within a high-performance numerical library, i.e., a
piece of code that is highly optimized for speed. Our computing model is SMP
(Symmetric MultiProcessing), in which parallelism is obtained through multi-
threading, and synchronization is based on primitives like semaphores. When
compared to approaches based on MPI or BSP, multithreading leads to a dif-
ferent type of parallelism: thanks to fast shared memories and the absence of
costly message passing operations, algorithms are parallelized at a much finer
granularity.

There is a diffuse perception that Python is not mature enough to be used
in this context because of its slow interpreted nature and well known limita-
tions like the Global Interpreter Lock. While some of these criticisms are well
founded, we are nonetheless interested in exploring the boundaries of applica-
bility of Python to scenarios in which we feel developers would highly benefit
from an expressive language. The goal of this study is to shed some light on
Python’s current actual limits. We envision two favorable consequences: on the
one hand scientific developers might come to the realization that some of the
drawbacks of the language are not as severe as expected; on the other hand,
Python’s developers could pinpoint specific weaknesses that is worth improving
on.

In the attempt of stressing the limits of the language, we set out for a rather
challenging goal: using Python within a highly-optimized parallel numerical li-
brary. We selected SMP-MRRR, a multi-core version of the MRRR symmetric
eigensolver [1, 2]. Eigensolvers are at the core of innumerable scientific compu-
tations and are included in all the standard numerical libraries. SMP-MRRR is
currently the fastest eigensolver available for multi-core architectures. It is writ-
ten in C and Fortran, and makes use of routines from LAPACK and BLAS. It is
designed for systems comprising up to 60-80 cores. SMP-MRRR constitutes an
especially disadvantageous choice for our goal: not only is it a high-performance
library, it also has the lowest algorithmic complexity among all the existing
eigensolvers, O(n2).1 As a consequence, any overhead introduced by Python will
impact the overall execution time much more noticeably than it would had the
algorithm had O(n3) complexity, like most of the dense linear algebra algorithms
have. With such a complexity, the overhead would be easily hidden under a much
higher amount of computations, quickly becoming negligible.

The execution of SMP-MRRR unfolds by computing an initial approximation
of the eigenvalues first, and the eigenvectors together with more accurate eigen-
values later. Depending on the number of available cores, the initial eigenvalue
computation is either performed sequentially by the fast dqds algorithm, or in
parallel by bisection. The eigenvectors, together with more accurate eigenvalues,

1 Given an input matrix of size n, SMP-MRRR computes all the eigenvalues and eigen-
vectors of the matrix in O(n2) floating point operations. While such a complexity is
an upper bound, the actual completion time depends on the input matrix.

are then computed in parallel by organizing the computation according to a tree
of tasks, and utilizing a task queue based approach.

The way that tasks are created, their execution order and the portion of
data they manipulate represent the core contribution to the algorithm imple-
mentation, and accounts for most of the development time. We will refer to this
portion of code as the bookkeeping logic, implemented in roughly 5000 lines of C
code. The remaining code, mostly written in Fortran, is what we consider actual
computation, or informally, number crunching. More precisely, we do not include
in the bookkeeping logic any loop whose primary purpose is to perform numer-
ical calculations, like O(n) vector manipulations. We count as bookkeeping the
boolean logic, the if and switch statements, and simple (non computational)
loops. The code is organized into multiple functions; although the number of
function calls depends not only on the matrix size but also on its numerical
properties, the time spent on the logic preceding each function call is indepen-
dent of these factors.

Porting the bookkeeping logic to Python introduces overhead, so it is useful
to start from a clear understanding of this portion of the code in relation to
the actual number crunching. Table 1 shows the number of calls to the Fortran
routines for two different types of matrices that we considered in our experi-
ments: Wilkinson and Hermite.2 The sections of number crunching are highly
fragmented and interspersed with bookkeeping logic; the exact figures depend
on the nature of the matrices. With Hermite matrices, the amount of time spent
inside the bookkeeping logic decreases with larger matrices, as expected, due to
the quadratic complexity of the algorithm. The trend for Wilkinson matrices is
not as apparent, because of the numerical properties of these matrices.

Table 1. Analysis of the original C implementation: impact of the bookkeeping code
on the overall execution time

Wilkinson matrices

Size LAPACK calls Bookkeeping

3001 15210 0.90%

5001 25220 0.92%

10001 50319 0.83%

Hermite matrices

Size LAPACK calls Bookkeeping

3001 9303 4.18%

5001 15724 3.19%

10001 36651 1.55%

All the experiments were run on a Mac Pro with two 2.4Ghz Quad-Core Intel
Xeon processors, for a total of 8 available cores. We limited the runs to only 6
cores in order to avoid interference with others applications and collect more
stable results.

2 In order to avoid the possible overhead due to the contention of shared data struc-
tures we performed the measurements in single threaded executions.

3 Porting to Python

We chose Python as target high-level language because of its clean syntax, pow-
erful semantics and large standard library featuring thread-safe data structures,
like priority queues and shared counters. When compared against more tradi-
tional languages, Python presents a much lighter cognitive load: developers do
not spend time working out pointer arithmetic or backtracking compiler errors,
thus becoming more productive and less likely to introduce subtle bugs.

During the porting phase, our main concern was to preserve correctness. The
way we achieved this with high confidence was by constantly comparing the out-
put from the original version with that of the work in progress. Code was always
kept in a runnable shape and we performed test runs. The output of SMP-MRRR
was also verified through residual and orthogonality of the computed quantities.
The translation did not introduce any numerical or computational optimization,
but was intentionally limited to keep the logic and the data structures as they
were. We also point out that the porting was performed by one of the authors,
without specific knowledge of the mathematics involved in the eigensolver.

The initial porting phase aimed at removing all the C code, leaving Python
to instantiate the data structures and directly call the Fortran routines. The
NumPy [22] package provides facilities to instantiate and manipulate multi-
dimensional arrays, and is the de-facto standard for scientific computations in
Python. The Fortran routines were made callable by creating simple wrappers
using Cython [23] (we discuss Cython in more details in Section 6).

In order to test the code as often as possible, the C functions were ported
one at a time, starting from the callers and then moving on to the invoked ones.
Thread management and synchronization was very easily rewritten using the
Python standard library.

This early translation of the code still presented the typical structure of a
procedural programming style: a few huge functions with lots of parameters
and local variables. We considered that an Object Oriented design would have
been more adequate so we proceeded with a refactoring phase [16, 15]. We first
split large blocks of statements into small methods. Then we renamed variables
and functions to be more meaningful. Finally we were able to decouple logically
independent parts of the algorithm into correspondingly independent classes.

In the end, the entire porting process took an experienced Python developer
a total of 7 working days. The Python code is considerably shorter and more
readable than the original. Only 1800 lines as opposed to the 5100 of the C
code, not including comments. The shorter scope of local variables makes it is
easier to understand the logic and the object oriented design makes it possible
to experiment with alternative strategies by simply composing different sets of
objects.

4 The advantages of Python and refactoring

The refactoring process uncovered some corner cases that, though unlikely, could
lead to deadlock. For example, some portions of code taken from the task queue

management appeared duplicated inside a task performing function. Duplicated
code is generally an indication of poor design. In this case we had a mixture of
high-level logic (the task queue management) with lower-level one (the actual
execution of a task). The code turned out long and hard to read, so reasoning
about correctness was very difficult. Instead, after the refactoring, all of the
task queue management logic reacquired integrity by being encapsulated within
the same class, while at the same time the task execution code became shorter.
Thanks to the improved readability we were able to spot a flaw in the code
design that had not been noticed before.

In the context of parallel computing, such defects are especially dangerous
as they both add unnecessary complications to the logic—which is already dif-
ficult to keep in sync with the mathematical model—and might lead to idling
processors. An effective practice is then to keep the code in the best possible
shape in order to maintain a high level of confidence in the correct behaviour of
the system.

The competencies required to develop high quality software are largely in-
dependent of domain specific knowledge. For example, while porting the library
to Python, the author became intimately familiar with the data flow and the
parallelism of the program, despite his lack of knowledge in eigensolvers. Indeed,
the bookkeeping logic in numerical code, once stripped of the number-crunching
sections, is no different than any other type of general purpose program.

In general, sane software engineering practices can and should be applied in
order to keep the complexity under control, regardless of the programming lan-
guage used. Good practices include, but are not limited to, the use of meaningful
names for variables, small functions that do just one thing, possibly with few
parameters and no logic repeated in more than one place [14].

Code refactoring is a necessary activity but it requires knowledge and disci-
pline. Learning and applying it though seems to be easier on modern dynamic
languages like Python because of their simplicity and flexibility. We believe that
by using such languages developers have a better chance of becoming more con-
scious about software engineering issues thus writing better code and becoming
more productive.

5 Simulating the Global Interpreter Lock

Python supports multithreading but the internal implementation of its most
commonly used interpreter (CPython, written in C) limits the effectiveness of
this model in the case of multi-core CPUs. In order to simplify the implementa-
tion details of the basic data types, like lists and dictionaries, CPython makes
use of a Global Interpreter Lock (GIL). A thread can progress the execution only
after it internally acquires the GIL with exclusive access. Therefore it is not un-
common that only one core is used while the others remain idle. Fortunately,
in our case this is far from the truth as we observed that all the available cores
were effectively used.

Indeed there are situations when the GIL is actively released so that other
threads have a chance to run. For example when an I/O operation is performed,
or when a call is made to C or Fortran extensions that are known to be thread-
safe. This latter case is especially relevant for our application, as this means that
in SMP-MRRR the threads will compete for the GIL only during the execution
of bookkeeping sections.

It is important to realize that due to the presence of shared data structures,
e.g., the task queue, the use of locks and synchronization devices is standard in
the SMP model. Therefore, as the number of threads grows, increasing levels of
contention are expected even in the original C algorithm. However, there is a
great difference in granularity between simple data structure locks and a lock
like the GIL that encapsulates all the bookkeeping logic. We are interested in
measuring how locks of different granularity affect the overall performance in
our scenario because this will be of primary importance to understanding the
overhead introduced by Python, as described in Section 6.

In order to reproduce the contention caused by the GIL in Python, we created
a modified C version of SMP-MRRR in which we artificially introduced a global
lock. Since the modified and the original versions have no other differences, the
resulting measured overhead is a direct indication of the amount of extra con-
tention introduced. Our artificial global lock is implemented by means of a simple
mutex from the pthread standard library, whereas the internal implementation
of the Python GIL is much more elaborate. Thus, our measurements represent
a lower bound on the amount of overhead generated by the real GIL: its current
implementation is known to be inefficient because it originates many system calls
and can induce the threads into an unproductive condition known as the GIL

battle [19]. The latest Python 3.2—still under active development—will include
a better version of the GIL [18, 17]. We expect that with every new release that
improves the GIL implementation, the Python interpreter will perform closer to
the lower bound that we are observing in our simulation.

We report on the execution of the modified version of SMP-MRRR for two
types of input matrices, Wilkinson and Hermite. The eigenspectrum of Wilkinson
matrices is such that the computation of eigenvalues and eigenvectors is espe-
cially involved, which translates to number-crunching sections that take longer
to complete. The Hermite matrices are instead quite favorable, meaning that
the outputs can be computed with shorter number-crunching sections. The im-
pact of the bookkeeping logic will therefore be significantly more evident in the
latter case. In the case of Hermite matrices, a larger problem size makes the
bookkeeping become less noticeable, as more and more time is spent within
number-crunching sections. For Wilkinson such a trend is more subtle, because
the complexity of the eigenspectrum increases together with the problem size.
Finally a note about multithreading: as the number of threads increases, there is
a higher chance of threads competing for the lock to start a bookkeeping section,
thus increasing the overhead.

Table 2 summarizes the results of our experiments on the simulated global
lock in the C code. The top two tables show the likelihood that a thread, upon

Table 2. Contention due to the use of a global lock.

Lock busy count

Wilkinson

Size 2 cores 4 cores 6 cores

3001 0.48% 1.66% 4.15%

5001 0.30% 1.06% 2.57%

10001 0.17% 0.62% 2.16%

Hermite

Size 2 cores 4 cores 6 cores

3001 4.16% 12.86% 27.09%

5001 4.48% 11.74% 27.06%

10001 1.73% 6.12% 12.25%

Execution time penalty

Wilkinson

Size 2 cores 4 cores 6 cores

3001 0.60% 1.07% 2.62%

5001 0.66% 1.82% 3.28%

10001 0.60% 2.17% 3.53%

Hermite

Size 2 cores 4 cores 6 cores

3001 0.85% 1.42% 4.76%

5001 0.65% 1.16% 5.81%

10001 0.20% 0.43% 0.56%

completion of a Fortran call, finds the global lock unavailable (because taken by
another thread). A value of 0% signifies that the lock is always available, while
100% means that it is never available, and the thread is always forced to stay
idle, waiting for the release. The percentage has been calculated as the average
across 30 runs. The standard deviation increases slightly with the number of
cores, as one may expect, but remains within 10% of the average value on most
cases.

The bottom two tables show the impact of introducing the global lock on the
overall running time. The two C versions of the algorithm were tested 30 times
for every combination of matrix type, size and number of cores. The percentage
represents the amount of overhead computed using the average values across
the runs. There is an obvious correlation between the frequency of hitting a
busy lock and the performance penalty. The standard deviation for the original
algorithm always remains below 10% of the minimum value, indicating that the
behaviour of the system is quite stable and predictable. In the case of the global
lock instead we measured an increase also of the standard deviation, of up to 2
to 3 times in some cases, indicating that the contention not only decreased the
overall performance, but also made it somewhat less predictable.

6 Performance hit and future work

In Table 3 we compare the execution time of the original SMP-MRRR and the
Python version. The overhead should be considered in light of the observations
made in Section 5 about the Global Interpreter Lock. There is no clear way to

identify precisely the amount of overhead due to the GIL, but it certainly has
an impact and explains why the overhead increases with the number of cores.

Table 3. Overall performance overhead: Python over C

Wilkinson matrix

Size 2 cores 4 cores 6 cores

3001 11.80% 28.20% 57.80%

5001 15.00% 22.20% 40.10%

10001 13.20% 15.00% 19.20%

Hermite matrix

Size 2 cores 4 cores 6 cores

3001 95.40% 231.30% 386.90%

5001 85.20% 121.20% 197.80%

10001 43.50% 54.60% 53.00%

The interpreted nature of Python is the other obvious source of overhead.
Previous studies [4, 5] have shown that for some simple calculations there can
be a difference of up to 2 orders of magnitude between the speed of a Python
implementation and the equivalent C. The bookkeeping logic cannot be consid-
ered proper algorithmic code because it does not include loops and numerical
calculations but, still, we expect it to be much slower than C.

There are well known approaches to circumvent the speed limit of the Python
interpreter. Ultimately they are all based on the generation of efficient machine
code, or C source code that can in turn be compiled. Some of these solutions are
enough low-level to also give the opportunity to work around the GIL limitation
by allowing the developer to release it when possible.

We will review some of the available tools—of which only one we were able
to test—and consider how much it is necessary to alter the starting Python code
in order to achieve the speedup.

Psyco [20] is an easy to use Just In Time (JIT) compiler. It requires no
modification to the original Python code and runs in the standard Python inter-
preter. It works by generating efficient machine code blocks in a lazy fashion at
run-time. When the interpreter hits for the first time a given Python function it
compiles it for the current argument types. The next time that the function is
called with the same argument types, the previously generated machine code is
used instead of interpreting the source code.

Previous studies [4, 5] have shown that this approach can increase the perfor-
mance even by 70-80% in the case of simple numerical computations with nested
loops. Conversely, in our case we have observed a consistent performance loss of
up to 15%. We believe the reason lies in the very nature of the bookkeeping code
that, by definition, does not include computation intensive loops. It is possible
that in our case the startup cost of just-in-time compilation is not compensated
by enough repetitions of the same code.

Psyco development has ceased because the author decided to contribute to
the PyPy [21] project instead. This alternative implementation of the Python

interpreter—written in Python itself—is bundled with a more advanced JIT
compiler that performs better than Psyco. We plan on trying PyPy in the future,
even though we do not expect the JIT to bring substantially different results in
our case.

A radically different approach than JIT is to try to statically compile a
Python program. In the general case this is not possible because the variable
types are known only at run-time. Therefore all the available tools try to over-
come this limitation, each adopting a different strategy.

Cython [23] is a language almost identical to Python except that variable
types can be statically declared. A dedicated compiler translates the Cython code
to C, which in turn is further compiled to build a conventional extension module.
If the original Python code is properly modified to add type declarations for
variables and function parameters, it is possible to obtain very efficient compiled
code. We have used Cython as a way to build simple wrappers around the
Fortran routines, but we could extend its usage to incorporate a portion or all
of the bookkeeping logic. With Cython it is also possible to declare which parts
of the code do not need the GIL thus reducing the granularity of global locking,
at the expense of not using high-level data structures like lists or dictionaries.
The downside is that Cython is technically a different language than Python
and once the starting code has been altered, it is not possible anymore to run it
inside the Python interpreter.

ShedSkin [24] is another Python to C translator: again, the ability to generate
efficient C code depends on the knowledge of the variable types. In contrast to
Cython, Shedskin attempts to guess the types by static analysis and does not
require annotations in the Python code. In order for the translator to perform its
guesswork, the code must be written according to appropriate restrictions (some
constructs are not allowed); the advantage is that the code remains valid Python
which can therefore still be run inside the interpreter. Unfortunately ShedSkin
is still at an early development stage. It can only be used with short modules
and does not directly support NumPy types.

Finally, another promising approach to static compilation is RPython, a sub-
set of the Python language (the “R” stands for “Reduced”) that can efficiently
be translated to machine code. It is used within the PyPy project to actually
define and implement the real Python interpreter. Just like ShedSkin it offers the
advantage of leaving the code runnable even inside a regular Python interpreter.

We foresee two possible directions for future development of our experiments.
On the one hand we could optimize the current Python implementation by adopt-
ing one or more of the tools described above. It would be interesting to see how
close we can get to the original C performance by still maintaining a high-level
Python development environment. On the other hand, we could look at different
languages that perform better than Python when used in our context. We could
see how they relate to Python and if they can be considered as equally attractive
and productive from the point of view of the developer.

7 Conclusions

Porting the bookkeeping logic from C to Python proved to be an incredibly valu-
able exercise: it yielded a code readable and easy to reason about. Thanks to this,
we were able to thoroughly investigate the correctness of the implementation. As
a result, we spotted possible deadlocks and hidden constraints that could affect
performance. The new code also lends itself for experimentation and testing of
new design and algorithm strategies. We believe that proper software engineer-
ing practices should discipline the development process even for scientific codes.
High-level languages like Python can greatly enhance this opportunity and so
they deserve full attention by the scientific computing community.

On the downside, Python added overheads, as expected, and is still far from
being a concrete alternative to traditional languages like C or C++ in perfor-
mance critical environments. Nonetheless, considering the extremely disadvan-
tageous situation represented by an O(n2) SMP-parallel algorithm, we observed
an interesting performance in spite of the Global Interpreter Lock and the slow
interpreted nature of Python. We believe that in many cases these limitations
are outweighed by the enhanced flexibility of the language.

The high-level dynamic languages scene is rapidly evolving, so it will be
interesting to see how these performance issues will be addressed in the coming
years.

References

1. I. Dhillon. A new O(n2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem. Ph.D. thesis, University of California, Berkeley, 1997.

2. M. Petschow and P. Bientinesi. The Algorithm of Multiple Relatively Robust Rep-
resentations for Multi-Core Processors. PARA 2010: State of the Art in Scientific
and Parallel Computing, (submitted).

3. J. K. Nilsen, X. Cai, B. Høyland, H. P. Langtangen. Simplifying parallelization of
scientific codes by a function-centric approach in Python. Submitted to Computa-
tional Science & Discovery for publication, 2010.

4. I. Wilbers, H. P. Langtangen and Å. Ødegard. Using Cython to Speed up Numer-
ical Python Programs. Proceedings of MekIT’09, ed. by B. Skallerud and H. I.
Andersson, pp. 495-512, NTNU, Tapir.

5. P. Ramachandran et al. A beginners guide to using Python for performance com-
puting. http://www.scipy.org/PerformancePython.

6. Hans Petter Langtangen. Python Scripting for Computational Science, 3rd edition.
Springer Publishing Company, Incorporated, 2009.

7. Hans Petter Langtangen and Xing Cai. On the Efficiency of Python for High-
Performance Computing: A Case Study Involving Stencil Updates for Partial Dif-
ferential Equations. Proceedings of the Third International Conference on High
Performance Scientific Computing, Hanoi, Vietnam, 2008, pp. 337-357.

8. Konrad Hinsen. Parallel Scripting with Python. Computing in Science and Engi-
neering, Vol. 9, Issue 6, pp 82-89, 2007.

9. K. Hinsen, H. P. Langtangen, O. Skavhaug and Å. Ødegard. Using BSP and
Python to simplify parallel programming. Future Generation Computer Systems
22(1-2):123-157, 2006.

10. X. Cai, H. P. Langtangen. Parallelizing PDE solvers using the Python programming
language. In A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial
Differential Equations on Parallel Computers. Volume 51 of Springer Lecture Notes
in Computational Science and Engineering. pp. 295-325, Springer, 2006.

11. X. Cai, H. P. Langtangen, H. Moe. On the performance of the Python programming
language for serial and parallel scientific computations. Scientific Programming,
Vol. 13, Issue 1, pp. 31-56, 2005.

12. Konrad Hinsen and Rue Charles Sadron. High-Level Parallel Software Development
with Python and BSP. Parallel Processing Letters, Vol. 13, 2003.

13. K. Hinsen. The Molecular Modeling Toolkit: a case study of a large scientific ap-
plication in Python. Proceedings of the 6th International Python Conference, San
Jose, California, 1997.

14. Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-
tice Hall, 2009.

15. Joshua Kerievsky. Refactoring to patterns. Addison-Wesley, 2004.
16. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.
17. David Beazley Understanding the Python GIL. [Presentation] PyCON 2010 in At-

lanta, February 20.
18. David Beazley Inside the New Python GIL. [Presentation] Chipy, January 14, 2010.
19. David Beazley Inside the Python GIL. [Presentation] Chipy, June 11, 2009.
20. Armin Rigo Psyco: Python Specializing Compiler. http://psyco.sourceforge.net/
21. The PyPy Group. PyPy: a Python implementation written in Python.

http://codespeak.net/pypy
22. T. Oliphant et al. NumPy software package. http://numpy.org/
23. G. Ewing, R. Bradshaw, S. Behnel, D. S. Seljebotn et al. Cython: C-extensions for

Python. http://cython.org/
24. M. Dufour, J. Coughlan. ShedSkin. http://code.google.com/p/shedskin/

