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1 Introduction

The Conjugate Gradient method is found by constructing a sequence of residuals R
that spans the Krylov space K and that is orthogonal. The GMRES method constructs
another basis of the Krylov space, but the residuals S now satisfy
• the residual is of minimum L2 length in each iteration, or equivalent,
• the residuals are A-orthogonal.
While it would be easy to construct the A-orthogonal basis of K, and in fact several
methods do so, this construction can break down. For this reason, Saad and Schultz [2]
proposed using a breakdown-free process, such as Arnoldi iteration, and constructing
the basis by appropriate linear combinations.

2 Theory

Let us inventory the available facts.

We can start from a CG method

AM−1R = RH, H = (I− J)D−1(I +U), RtM−1R = Ω
2

which constructs R, Ω, and H (or equivalently D and U), such that U is strictly upper
triangular and Ω diagonal. Here the operator A is given, as well as the first column
of R.

The Arnoldi iteration for computation of eigenvalues computes a very similar set:

AM−1N = NG, NtM−1N = I

where G is an upper Hessenberg matrix; the operator A is given, as well as the first
column of N. The main difference between these procedures is that the Arnoldi method
generates an orthonomal basis N of the Krylov space, while CG methods construct only
an orthogonal basis; it is uniquely determined by the form H = (I− J)D−1(I +U) of
the Hessenberg matrix.

It is not hard to prove that the two bases differ only by a diagonal scaling:

R = NΩ, H = Ω
−1GΩ. (1)

Any sequence of residuals S with the same starting vector is now related to V by
taking linear combinations S = RV where V is upper triangular with column sums≡ 1.
(Such linear combinations are called ‘affine’; note that they are not convex since the
coefficients are allowed to be negative.)

The GMRES derivation problem is now:
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Given the residuals R of a CG method or the basis N of a Lanczos method,
which differ by a scaling R = NΩ, find new residuals

S = RV

where

V ∈ Ue = {U : U upper triangular and etU = et}

such that the columns of S have minimal length over all possible choices
V = Ue.

We introduce a notation for the above type of problem where each column of a matrix
is the solution of a minimization problem:

Definition 1 We define a vector sequence X to be a ‘multiple minimizer’ with respect
to a sequence R and a predicate P(·)

X = mmin
X∈S
{R : P(R)} where P(R) is a predicate on R

iff each column of X minimizes a problem:

∀i : xi = argmin{‖ri‖ : P(ri)}.

In the specific case that the individual problems are minimization problems, we intro-
duce a shorthand notation:

X = mmin
X∈S

(A,F) = mmin
X∈S
{R : R = AX−F}

which means that

∀i : xi = argmin{‖ri‖ : ri = Axi− fi}.

With this notation, we can state that the GMRES derivation problem is that of finding V
such that

V = mmin
V∈Ue

{S : S = RV},

This is also the post-condition on the GMRES worksheet we are constructing.

In order to arrive at a construction for S, we now perform a number of manipulations
on this minimization problem.
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• First of all, we transform the equation S = RV into an update equation, by mul-
tiplying by a square matrix J−E:{

S = RV where
V = mminUe{S : S(J−E) = RV (J−E)}

• Next we observe that, with V ∈Ue, etV (J−E) = 0t , so (up to the last element)
V (J−E) is an upper Hessenberg matrix with zero column sums. If we call the
set of such Hessenberg matrices H0, then

S = RV where
V follows from H̃ =V (J−E), and
H̃ = mminH0{S : S(J−E) = RH̃}

• Now we observe that any H ∈ H0 can be written (by lemma 23 of [1]) as H =
(I− J)U with U upper triangular. Therefore, the H̃ matrix above is related to
the Hessenberg matrix H from the CG algorithm by H̃ = HŨ for some upper
triangular matrix Ũ . The minimization problem now becomes:

S = RV where
V follows from H̃ =V (J−E), and
H̃ follows from H̃ = HŨ , and
Ũ = mminU{S : S(J−E) = RHŨ}

where U is the set of all upper triangular matrices.
• Next, we note that s1 = r1, so we can write S = [r1, S̃] with S̃ the tail of the

sequence S. This also makes S̃ = SJ and RE = SE. We also write H̄ = ΩH and
Ē = ΩE. With this we rewrite (silently introducing a minus sign)

Ũ = mminU{S : S(J−E) = RHŨ}
= mminU{S̃ : S̃ = RHŨ−RE}
= mminU(RH,RE)
= mminU(NH̄,NĒ)
= mminU(H̄, Ē)

making the final problem
S = RV where
V follows from H̃ =V (J−E), and
H̃ follows from H̃ = HŨ , and
Ũ = mminU(H̄, Ē)
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Collapsing this whole story, We now have the situation that the sn vectors are computed
as

sn+1 = r0−Rvn, vn = Hun, un = argmin
u

∥∥‖r1‖e1−Ωn+1H[n+1,n]u
∥∥ (2)

Bearing in mind the fact that the Hessenberg matrices of the Arnoldi and CG methods
differ by a scaling (equation (1)), we can also write

un = argmin
w

∥∥‖r1‖e1−G[n+1,n]u
∥∥ (3)

We compute this by making a QR factorization of H. Since H gets extended by a
column in every iteration, we can also update the QR factorization.

3 Worksheets

The algorithm for GMRES, as described above is an interleaving of two algorithms:
the creation of the basic R residuals, and the derivation of the minimized combinations
S from them. Therefore we will present this as two separate worksheets.

3.1 Residual sequence

Easy things first: the equations for generating R. We have a PME

AM−1
(

RL rM RR

)
=
(

RL rM RR

)
HT L hT M HT R

ht
ML hMM ht

MR

/0 hBM HBR


Rt

L

rt
M

Rt
R

M−1
(

RL rM RR

)
=


Ω2

T L 0 0

0 ω2
MM 0

0 0 Ω2
BR


(

et 1 et
)

HT L hT M HT R

ht
ML hMM ht

MR

/0 hBM HBR

=
(

0t 0 0t
)

(4)

TR-13-03 4



Bientinesi et al FLAME derivation of GMRES

where hML is nonzero only in its last component, and hBM only in its first. From this
we pick the following invariant:

(AM−1RL) =
(

RL rM

)( HT L

ht
ML

)
(

Rt
L

rt
M

)(
RL rM

)
=

(
Ω2

T L 0
0 ω2

MM

)
(

et 1
)( HT L

ht
ML

)
= (0t)

The before equations are

AM−1R0 =(R0 r1)

(
H00
ht

01

)
, etH00+ht

01 = 0t ,

(
Rt

0
r1

)
M−1 (R0 r1

)
=

(
Ω2

00
ω2

1

)
The after equations are

(AM−1R0 AM−1r1) = (R0 r1 r2)

H00 h01
ht

01 h11
0 h21

 , (et 11)

H00 h01
ht

01 h11
0 h21

= (0t 0)

Rt
0

rt
1

rt
2

M−1 (R0 r1 r2
)
=

Ω2
00

ω2
1

ω2
2


The extra equations to satisfy after the update are

AM−1r1 = R0h01 + r1h11 + r2h21

Rt
0M−1r2 = 0, rt

1M−1r2 = 0
eth01 +h11 +h21 = 0

The computation now proceeds as follows:

• Clearly, we need to choose

r2h21 = AM−1r1−R0h01− r1h11

where all h∗1 coefficients are to be determined.
• For 0 = Rt

0M−1r2 we note that

Rt
0M−1r2h21 = Rt

0AM−1r1−Rt
0M−1R0h01

so choosing h01 = Ω
−2
0 Rt

0AM−1r1 suffices.
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• Similarly, inspection of

rt
1M−1r2 = rt

1AM−1r1− rt
1M−1r1h11

shows that h11 = ω
−2
1 rt

1AM−1r1 makes rt
1M−1r2 = 0 be satisfied.

• Finally, h21 =−(h11 + eth01).

Formally:

0. Description Our target operation is to compute: AM−1R = RH, where etH = 0t ,
given A and r0.

1. Precondition and postcondition The precondition is that the first column of R is
known: Re0 = r0. At the end of the algorithm, R and H are fully computed to satisfy

AM−1R = RH, etH = 0t , RtM−1R = Ω, Ω diagonal.

3. Partitioning We use a three-way partition: R→
(

RL rM RR
)
,H→

 HT L hT M HT R

ht
ML ηMM ht

MR
0 hBM HBR

,

where initially RL is N×1.

This gives a Partitioned Matrix Expression (PME):

AM−1 ( RL rM RR
)
=
(

RL rM RR
) HT L hT M HT R

ht
ML ηMM hMR

/0 hBM HBR


where H is a Hessenberg matrix, so HT L,HBR are themselves of Hessenberg form, and

ht
ML = (0, . . . ,0,?), ht

BM = (?,0, . . . ,0).

2. Loop invariant We choose the following set:

AM−1RL =
(

RL rM
)( HT L

ht
ML

)
,
(

et
L 1

)( HT L

ht
ML

)
= 0t

(
RL rM

)t M−1
(

RL rM
)
=

(
ΩT L 0

0 ωMM

)
.

4. Loop guard The loop guard is, as usual, RR <> () .
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5. Repartition The usual:
(

RL rM RR
)
→(

R0 r1 r2 R3
) ,

 HT L hT M HT R

ht
ML ηMM ht

MR

0 hBM HBR

→


H00 h01 h02 H03

ht
10 η11 η12 ht

13
0 η21 η22 ht

23
0 0 h32 H33

.

6. Before update The algorithm state is

AM−1R0 =
(

R0 r1
)( H00

ht
10

)
,
(

et
L 1

)( H00

ht
10

)
= 0t

(
R0 r1

)t M−1
(

R0 r1
)
=

(
Ω00 0

0 ω11

)
.

.

7. After update After the update, the algorithm state is

AM−1
(

R0 r1
)
=
(

R0 r1 r2
) H00 h01

ht
10 η11

0 h21

 ,
(

et
L 1 1

) H00 h01

ht
10 η11

0 h21

= 0t

(
R0 r1 r2

)t M−1
(

R0 r1 r2
)
=

 Ω0 0 0
0 ω1 0
0 0 ω2

 .

.

8. Update This leaves us with the following set to satisfy in the update:
AM−1r1 = R0h01 + r1η11 + r2η21

eth01 +η11 +η21 = 0
rt

2M−1r2 = ω2, rt
2M−1R0 = 0, rt

2M−1r1 = 0

which leads to the obvious update:


t← AM−1r1

h01 = Ω
−1
0 Rt

0t, t← t−R0h01

h11 = ω
−1
1 rt

1t, t← t− r1h11
h21 =−h11− eth01, t← t/h21, r2 = t

.

The full worksheet is in Figure 1.

3.2 Updated QR factorization

The crucial part in constructing GMRES from a CG or Arnoldi method, is to solve
the minimization problems (2) and (3) respectively. This is done by computing a QR
factorization of H or G, and update it in every iteration. This is in a way simpler than a
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Step Annotated Algorithm: AM−1R = RH, where etH = 0t

1a {Re0 = r0}

4 R→
(

RL rM RR
)
,H→

 HT L hT M HT R
ht

ML ηMM ht
MR

0 hBM HBR


2


AM−1RL =

(
RL rM

)( HT L
ht

ML

)
,
(

et
L 1

)( HT L
ht

ML

)
= 0t

(
RL rM

)t M−1
(

RL rM
)
=

(
ΩT L 0

0 ωMM

)
.


3 while RR <> () do

2,3



 AM−1RL =

(
RL rM

)( HT L
ht

ML

)
,
(

et
L 1

)( HT L
ht

ML

)
= 0t

(
RL rM

)t M−1
(

RL rM
)
=

(
ΩT L 0

0 ωMM

)
.

∧ ( RR <> () )




5a
(

RL rM RR
)
→(

R0 r1 r2 R3
) ,

 HT L hT M HT R

ht
ML ηMM ht

MR
0 hBM HBR

→


H00 h01 h02 H03

ht
10 η11 η12 ht

13
0 η21 η22 ht

23
0 0 h32 H33


6


AM−1R0 =

(
R0 r1

)( H00
ht

10

)
,
(

et
L 1

)( H00
ht

10

)
= 0t

(
R0 r1

)t M−1
(

R0 r1
)
=

(
Ω00 0

0 ω11

)
.


8

t← AM−1r1

h01 = Ω
−1
0 Rt

0t, t← t−R0h01

h11 = ω
−1
1 rt

1t, t← t− r1h11
h21 =−h11− eth01, t← t/h21, r2 = t

7


AM−1

(
R0 r1

)
=
(

R0 r1 r2
) H00 h01

ht
10 η11
0 h21

 ,
(

et
L 1 1

) H00 h01
ht

10 η11
0 h21

= 0t

(
R0 r1 r2

)t M−1
(

R0 r1 r2
)
=

 Ω0 0 0
0 ω1 0
0 0 ω2

 .


5b . . .

2


AM−1RL =

(
RL rM

)( HT L
ht

ML

)
,
(

et
L 1

)( HT L
ht

ML

)
= 0t

(
RL rM

)t M−1
(

RL rM
)
=

(
ΩT L 0

0 ωMM

)
.


endwhile

2,3


 AM−1RL =

(
RL rM

)( HT L
ht

ML

)
,
(

et
L 1

)( HT L
ht

ML

)
= 0t

(
RL rM

)t M−1
(

RL rM
)
=

(
ΩT L 0

0 ωMM

)
.

∧¬( RR <> () )


1b {Ppost }

Figure 1: Worksheet for the single recurrence derivation of CG
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regular QR, since we factor a Hessenberg matrix, which implies that already computed
columns do not need to be updated.

The PME is: HT L hT M HT R

ht
ML ηMM ht

MR
0 hBM HBR

=

 QT L qT M QT R

qt
ML γMM qt

MR
0 qBM QBR

 RT L rT M RT R

0 ρMM rt
MR

0 0 RBR


with the condition that

QtQ = I.

Doing the usual 3×3→ 4×4 shtick, we get before equations(
H00
h10

)
=

(
Q00
qt

10

)(
R00

)
and after equations H00 h01

ht
10 η11
0 η21

=

 Q00 q01
qt

10 γ11
0 γ21

( R00 r01
0 ρ11

)

The update needs to satisfy

H∗1 = Q∗0r01 +Q∗1ρ11

Multiply this by Q∗0 to get

Qt
∗0H∗1 = r01,

followed by

u := H∗1−Q∗0r01, ρ11 =
√

utu, Q∗1 = u/ρ11.

3.3 Minimized residuals

We now have a remarkable number of equations from which to derive GMRES. First
of all, we can derive CG from a single recurrence AR = RH where H has zero column
sums and R is orthogonal, or split recurrences APD = R(I − J) and P(I −U) = R,
again with orthogonality of R. Then, we can use Lanczos AN = NG with NtN = I,
which differs from CG by a scaling R = NΩ, giving H = Ω−1GΩ.
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AR = RH, etH = 0t , RtR = Ω2

H = (I− J)D−1(I−U)

APD = R(I− J), P(I−U) = R
H = Ω−1NΩ

The GMRES coefficient can then be computed from H or G:{
Ũ = mmin(ΩH,ΩE)
ΩŨ = mmin(G,ΩE)

.

Furthermore, we have the freedom of using Householder or Givens transformations
for solving the least squares problem. This gives us a plethora of methods, that are all
equivalent in exact arithmetic, but may have pronounced differences in actual computer
arithmetic. Also, this system of equations contains quantities that do not need to be
computed: if H is computed explicitly, D and U need not be (the other way around
may not be true). If G is computed, H,D,U are not needed at all. Et cetera. In an
automated derivation system this system should give rise to a true graph of possible
computations; only the end points matter, not what is computed in between.
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