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About me (and tensors)
I Taxonomy of contractions: Can you GEMM? E. Di Napoli, D. Traver-Fabregat, P.B.

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Performance prediction E. Peise, P.B.

“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I Density Functional Theory: FLAPW methods E. Di Napoli, E. Peise, P.B.

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I High-performance kernels P. Springer, P.B.

“TTC: A high-performance Compiler for Tensor Transpositions”, ACM TOMS 44(2), 2017 + J. Hammond

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, ACM TOMS 44(3), 2018
“Spin Summations: A High-Performance Perspective”, ACM TOMS 45(1), 2019 + D. Matthews

I High-intensity kernels C. Psarras, L. Karsson, P.B.

“Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, 2020
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Matrices vs. Tensors

Historical overview
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Linear Algebra Libraries: 1970s
“Basic Linear Algebra Subprograms for FORTRAN usage”, ACM TOMS, 1979

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1

, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1980s
BLAS-2: Mat-vec ops, ACM TOMS 1988. BLAS-3: mat-mat ops, ACM TOMS 1990

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Solvers & eigensolvers, 1992

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Distributed Memory, 1995, 1997

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Dense & Sparse, 1997

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries
and then more!

PETSc, Trilinos, . . .

ScaLAPACK, PLAPACK, Elemental, . . .

LAPACK, Plasma, SuperMatrix, Magma, . . .

BLAS-1, BLAS-2, BLAS-3, ATLAS, BTO-BLAS, BLIS, . . .
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(Dense) Linear Algebra Libraries
Salient features

I Community effort. Standardized interface

I Careful organization: support routines, linear-systems, eigen-decompositions

I Clear layering: functionality, parallelism

I Preferred outlet: ACM TOMS

I Performance & HW-driven development

But
I Rigid interface
I Black-box nature
I Often sub-optimal at small scale
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Kk := Pb
k HT (HPb

k HT + R)−1; xa
k := xb

k + Kk(zk − Hxb
k ); Pa

k := (I − KK H) Pb
k{

C† := PCPT + Q
K := C†HT (HC†HT )−1

Λ := S(ST AWAS)−1ST ; Θ := ΛAW ; Mk := XkA− I
Xk+1 := Xk −Mk Θ− (Mk Θ)T + ΘT (AXkA− A)Θ

x := A(BT B + AT RT ΛRA)−1BT BA−1y . . . E := Q−1U(I + UT Q−1U)−1UT

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

. . . BLAS LAPACK . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .

LINEAR ALGEBRA
MAPPING PROBLEM

(“LAMP”)

C. Psarras, H. Barthels, “The Linear Algebra Mapping Problem. Current state of linear algebra languages and libraries”.
[arXiv:1911.09421]
H. Barthels, C. Psarras, “Linnea: Automatic Generation of Efficient Linear Algebra Programs”, ACM TOMS, 2021.
[arXiv:1912.12924]
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Tensors

Tensor App #1 Tensor App #2 . . . Tensor App #N

??? ??? · · · ???
??? ??? · · · ???

BLAS
LAPACK ??? . . . ???

MUL ADD MOV

MOVAPD

VFMADDPD . . .
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Tensor App #1 Tensor App #2 . . . Tensor App #N
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but. . . Comp. Physics Data Science
Comp. Chemistry Machine Learning

??? ... ??? ??? ... ???
??? ??? ??? ???

BLAS
LAPACK ??? . . . ???

MUL ADD MOV

MOVAPD

VFMADDPD . . .
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Tensor computations

I (At least) Two separate worlds

I Computational physics / chemistry

Tensor = Multi-linear operator
Contractions = Generalization of matrix-matrix product

I Data science
Tensor = Collection of data
Decompositions = Generalization of matrix factorizations1

I Terminology and notation vary (and conflict) even within one world

I Very few software efforts cut across the boundary

1With notable differences.
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MS14 (today) & MS79 (tomorrow)

I (At least) Two separate worlds

I Computational physics / chemistry

Quantum Chemistry: Ed Valeev, Devin Matthews, Edgar Solomonik

Quantum Physics: Pan Zhang, Lei Wang, Miles Stoudenmire

I Data science
Furong Huong, Hanie Sedghi, Vagelis Papalexakis

I Notation: Miles Stoudenmire

I Software: Edgar Solomonik
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Tensors, presently

I No “Tensor BLAS” – no collections of building blocks

I No agreement on interface(s)

I Lack of reference implementations

I No community effort!
A jungle of independent libraries and packages, in a variety of languages
Massive redundancy: replication of effort, low performance

I Application-driven development:
Publications scattered among diffents fields
Re-invention of the wheel
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Matlab and R packages with support for CP decomposition (subset)
I Tensor Toolbox by Bader, Kolda, & others

https://www.tensortoolbox.org/
I Tensorlab by Vervliet, Debals, Sorber, Van Barel, & De Lathauwer

https://www.tensorlab.net/index.html
I The N-way Toolbox by Bro & Andersson

http://www.models.life.ku.dk/nwaytoolbox
I TensorBox by Phan, Tichavsky, & Cichocki

https://github.com/phananhhuy/TensorBox
I Tensor Package by Comon & others

http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html

I multiway by Helwig
https://cran.r-project.org/package=multiway

I ThreeWay by Giordani, Kiers, & Del Ferraro
https://cran.r-project.org/package=ThreeWay

I rTensor by Li, Bien, & Wells
https://cran.r-project.org/package=rTensor
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C/C++ packages with support for CP decomposition (subset)

I Genten by SANDIA (Phipps)
https://gitlab.com/tensors/genten

I SPLATT by Smith & Karypis
https://github.com/ShadenSmith/splatt

I ParTI! by Li, Ma, & Vuduc
https://github.com/hpcgarage/ParTI

I Cyclops by Solomonik & others
https://github.com/cyclops-community

And then there’s Python, Fortran, . . .
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Representative operations – building blocks candidates

Data layout operations Arithmetic operations Decompositions

I Reshape
I Permute / transpose
I Sort (sparse)
I Convert data layout
I Partition
I Distribute
I . . .

I Add, subtract, scale
I Inner product
I Norms
I Element-wise operations
I Tensor-times-vector (TTV)
I Tensor-times-matrix (TTM)
I MTTKRP
I Contractions
I . . .

I CP
(CANDECOMP/PARAFAC)

I Tucker
I INDSCAL
I PARAFAC2
I CANDELINC
I DEDICOM
I PARATUCK2
I . . .

In setting up a library, where to draw the boundaries?
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2-level “solution” Chromatography-MS

CP/PARAFAC Tucker PARAFAC2

Transposition Contraction · · · Alternating LS

Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV

MOVAPD

VFMADDPD . . .
16 / 20



Algorithms for CP (PARAFAC) decomposition
Hence all the different libraries

I Algebraic algorithms
I Generalized Rank Annihilation Method
I Direct TriLinear Decomposition
I The “algebraic algorithm”

by Domanov and De Lathauwer
I The “simpler algorithm”

by Pimentel-Alarcón
I . . .

I Alternating optimization algorithms
I Alternating Least Squares
I Fast ALS
I Hierarchical ALS
I Regularized ALS
I . . .

I All-at-once optimization algorithms
I Gradient descent
I (Damped) Gauss–Newton
I Nonlinear CG, GMRES
I Quasi-Netwon (e.g., L-BFGS)
I . . .

I Enhancements
I Line search
I Compression
I Randomization
I Transient constraints
I . . .

17 / 20



Also . . .

Coupled-Cluster methods

Finite Element 3D diffusion operator

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher – https://github.com/LLNL/acrotensor
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Same in data science: Gas Chromatography
Workflow
. . .

4. Fit model or rank k ∈ [1, . . . , 15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

5. Determine whether or not one of the models is “right”
I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

Computation of each individual model: bandwidth bound!

Hence: “Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, with
C. Psarras, L. Larsson. (Submitted).
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Summary

Matrices Tensors

Driver performance, HW applications
Community effort BLAST/LAPACK/... group by group
Industry wide support not much
Standardization interface, . . . “pointless”
Preferred outlet ACM TOMS —
Language support plenty language by language
Automation plenty TCE (2001), but then?

Still a long way to maturity! — Thank you for the attention.
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