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Ongoing survey

“The Landscape Of Software For Tensor Computations”
with C. Psarras, L. Karlsson, J. Li

https://arxiv.org/pdf/2103.13756.pdf

DatM: Data Manipulation EWOps: Element-Wise Operations Con: Contractions
SpecCon: Specific Contractions Decomp: Decompositions
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ID Package Name Functionality
Type Platform Language

DatM EWOps SpecCon Con Decomp

0 Acrotensor − − X X − D C, G C++

1 AdaTM − − X − X S C C
2 Boost.uBlas.Tensor X X X X − D C C++

3 COGENT − − X X − D G Python → CUDA
4 COMET − − X X − S C C++ → C++

5 CoTenGra − − X X − D C, D, G Python
6 CP-CALS − − X − X D C, G C++, Mati
7 CSTF − − − − X S D Scala
8 CuTensor X X X X − D G C, CUDA
9 cuTT X − − − − D G C++, CUDA
10 Cyclops X X X X − S C, D, G C++

11 DFacTo − − − − X S C, D C++

12 Eigen Tensor X X X X − D C, G C++

13 ExaTN X X X X X D C, D, G C++, Pyi
14 Fastor X X X X − D C C++

15 FTensor X X X X − D C C++

16 Genten − − − − X D, S C, G C++

17 GigaTensor − − − − X S C, D Unknown
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https://github.com/LLNL/acrotensor
https://github.com/hpcgarage/AdaTM
https://github.com/boostorg/ublas/tree/master/include/boost/numeric/ublas/tensor
https://github.com/kimjsung/CGO2019-AE
https://github.com/jcmgray/cotengra
https://github.com/HPAC/CP-CALS
https://github.com/ZacBlanco/cstf
https://developer.nvidia.com/cutensor/downloads
https://github.com/ap-hynninen/cutt
https://github.com/cyclops-community/ctf
http://www.joonheechoi.com/research.
https://gitlab.com/libeigen/eigen/-/tree/master/unsupported/Eigen/CXX11/src/Tensor
https://github.com/ORNL-QCI/exatn
https://github.com/romeric/Fastor
https://gitlab.com/wlandry/ftensor
https://gitlab.com/tensors/genten


ID Package Name Functionality
Type Platform Language

DatM EWOps SpecCon Con Decomp

18 HPTT X − − − − D C C++, Pythoni, Ci

19 ITensor − X X X X D, BS C, Gx C++, Julia
20 libtensor − − X X − D, BS C C++

21 Ltensor − − X X − D C C++

22 MATLAB X X − − − D C Matlab
23 MultiArray X − − − − D C C++

24 multiway − − − − X D C R
25 N-way toolbox − − − − X D C Matlab
26 NCON − − X X − D C Matlab
27 netcon − − X X − D C Matlab
28 NumPy X X X X − D C Python
29 Ocean X X − − − D C, G C, Pyi
30 ParCube − − − − X S C Matlab
31 ParTensor − − − − X D C, G C++

32 ParTI! X X X − X S C, G C, CUDA, Matx
33 PLANC − − − − X D C, D C++

34 PLS toolbox − − − − X D C Matlab
35 Pytensor X X X X X D, S C Python

2 / 19

https://github.com/HPAC/hptt
https://github.com/ITensor/ITensor
https://github.com/epifanovsky/libtensor
https://code.google.com/archive/p/ltensor/source/default/source
https://nl.mathworks.com/downloads/
https://dl.bintray.com/boostorg/release/1.75.0/source/
https://cran.r-project.org/web/packages/multiway/index.html
http://www.models.life.ku.dk/nwaytoolbox/download
https://physics.paperswithcode.com/paper/ncon-a-tensor-network-contractor-for-matlab#code
https://github.com/TensorCon/netcon
https://github.com/numpy/numpy
https://github.com/IBM/ocean-tensor-package
https://www.cs.ucr.edu/~epapalex/src/parCube.zip
https://github.com/neurocom/partensor-toolbox
https://github.com/hpcgarage/ParTI
https://github.com/ramkikannan/planc
https://eigenvector.com/software/pls-toolbox/
https://code.google.com/archive/p/pytensor/source/default/source


ID Package Name Functionality
Type Platform Language

DatM EWOps SpecCon Con Decomp

36 PyTorch X X X X − D, S C, G Python, C++, CUDA
37 quimb − − X X − D C, D, G Python
38 rTensor X X X − X D C R
39 rTensor (randomized) − − − − X D C Python
40 scikit-tensor X X X − X D, S C Python
41 Scikit-TT − − − − X D C Python
42 SPALS − − − − X S C C++

43 SPARTan − − − − X S C Matlab
44 SPLATT − − X − X S C, D C, C++, Oct, Mat
45 SuSMoST − − − − X D C Python
46 T3F X X − − X D C, G Python
47 TACO X X X X − D, S C, G C++, C++ → C++

48 TAL_SH X X X X − D C, G C, C++, Fort
49 TBlis X X X X − D C C++

50 TCCG − − X X − D C C++

51 TCL − − X X − D C C++, Pythoni
52 TDALAB − − − − X D, S C Matlab, GUI
53 TeNPy − − − − X D C Python
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https://github.com/pytorch/pytorch
https://github.com/jcmgray/quimb
https://github.com/jamesyili/rTensor
https://github.com/erichson/rTensor
https://github.com/mnick/scikit-tensor
https://github.com/PGelss/scikit_tt
https://github.com/dehuacheng/SpAls
https://github.com/kperros/SPARTan
https://github.com/ShadenSmith/splatt
https://susmost.com/downloads.html
https://github.com/Bihaqo/t3f
https://github.com/tensor-compiler/taco
https://github.com/DmitryLyakh/TAL_SH
https://github.com/devinamatthews/tblis
https://github.com/HPAC/tccg
https://github.com/springer13/tcl
https://github.com/andrewssobral/TDALAB
https://github.com/tenpy/tenpy


ID Package Name Functionality
Type Platform Language

DatM EWOps SpecCon Con Decomp

54 Tensor Fox − − − − X D, S C Python, Matlab
55 Tensor package − − − − X D C Matlab
56 Tensor Toolbox X X X X X D, S C Matlab
57 tensor_decomposition − − − − X D C, D Python
58 TensorBox − − − − X D, S C Matlab
59 TensorD − − − − X D C, G Python
60 TensorFlow X X X X − D, S C, D, G C++, Python
61 TensorLab − − − − X D, S C Matlab
62 TensorLy X X X X X D C, G Python
63 TensorNetwork − − X X − D, S C, G Python
64 TensorOperations.jl X X X X − D C, G Julia
65 TensorTrace − − X X − D C GUI → Py, Jul, Mat
66 Three-Way − − X X X D C R
67 TiledArray X X X X − D, BS C, D C++

68 tncontract − − X X − D C Python
69 TNR − − − − X D C Matlab
70 TorchMPS − − X X − D C Python
71 TT-Toolbox X X − − X D C, Dx, Gx Matlab, Python
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https://github.com/felipebottega/Tensor-Fox
http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html
https://gitlab.com/tensors/tensor_toolbox
https://github.com/cyclops-community/tensor_decomposition
https://github.com/phananhhuy/TensorBox
https://github.com/Large-Scale-Tensor-Decomposition/tensorD
https://github.com/tensorflow/tensorflow
https://www.tensorlab.net/
https://github.com/tensorly/tensorly
https://github.com/google/TensorNetwork
https://github.com/Jutho/TensorOperations.jl
https://www.tensortrace.com/downloads
https://github.com/cran/ThreeWay
https://github.com/ValeevGroup/tiledarray
https://github.com/andrewdarmawan/tncontract
https://github.com/ycyuustc/matlab
https://github.com/jemisjoky/TorchMPS
https://github.com/oseledets/TT-Toolbox


ID Package Name Functionality
Type Platform Language

DatM EWOps SpecCon Con Decomp

72 TTC X − − − − D C Python → C++

73 TTV − − X − − D C C++

74 TVM − X − − − D, S C, G Python
75 Uni10 X X X X − D C, Gx C++

76 xerus − − X X X D, S C, C++
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https://github.com/HPAC/TTC
https://github.com/bassoy/ttv
https://github.com/apache/tvm
https://gitlab.com/uni10/uni10/
https://git.hemio.de/xerus/xerus/


That is A LOT of libraries for tensor operations!!!

I The survey is by no means complete.
We are still finding libs, and
NEW libs are released regularly!

I Even considering different languages, different data types (sparse vs. dense),
different tensor orders, different types of parallelism . . .

STILL, this is an enormous duplication of effort and functionality!!
Also, many (severely) suboptimal implementations.

I 1) Why?!
2) Is there a way out?

3 / 19



That is A LOT of libraries for tensor operations!!!

I The survey is by no means complete.
We are still finding libs, and
NEW libs are released regularly!

I Even considering different languages, different data types (sparse vs. dense),
different tensor orders, different types of parallelism . . .

STILL, this is an enormous duplication of effort and functionality!!
Also, many (severely) suboptimal implementations.

I 1) Why?!
2) Is there a way out?

3 / 19



That is A LOT of libraries for tensor operations!!!

I The survey is by no means complete.
We are still finding libs, and
NEW libs are released regularly!

I Even considering different languages, different data types (sparse vs. dense),
different tensor orders, different types of parallelism . . .

STILL, this is an enormous duplication of effort and functionality!!
Also, many (severely) suboptimal implementations.

I 1) Why?!
2) Is there a way out?

3 / 19



That is A LOT of libraries for tensor operations!!!

I The survey is by no means complete.
We are still finding libs, and
NEW libs are released regularly!

I Even considering different languages, different data types (sparse vs. dense),
different tensor orders, different types of parallelism . . .

STILL, this is an enormous duplication of effort and functionality!!
Also, many (severely) suboptimal implementations.

I 1) Why?!
2) Is there a way out?

3 / 19



Have we seen this before?

I Libraries for computing FFTs,
prior to FFTW
FFT: 1 single op, many different algs,
different datatypes, 2 languages;
⇒ 1 small team (users) took over

I Libraries for message passing,
prior to MPI
Message passing: Lots of operations,
lots of algs, 2 languages;
⇒ community effort, HPC + vendors, 3-year
incubation time

I Different routes to “convergence”
What about Tensorland?

"The Fastest Fourier Transform in the West", MIT-LCS-TR-728
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Matrices vs. Tensors

Historical overview
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Linear Algebra Libraries: 1970s
“Basic Linear Algebra Subprograms for FORTRAN usage”, ACM TOMS, 1979

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1

, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1980s
BLAS-2: Mat-vec ops, ACM TOMS 1988. BLAS-3: mat-mat ops, ACM TOMS 1990

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Solvers & eigensolvers, 1992

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Distributed Memory, 1995, 1997

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries: 1990s
Dense & Sparse, 1997

PETSc, . . .

ScaLAPACK, PLAPACK, . . .

LAPACK

BLAS-1, BLAS-2, BLAS-3
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Linear Algebra Libraries
and then more!

PETSc, Trilinos, . . .

ScaLAPACK, PLAPACK, Elemental, . . .

LAPACK, Plasma, SuperMatrix, Magma, . . .

BLAS-1, BLAS-2, BLAS-3, ATLAS, BTO-BLAS, BLIS, . . .
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(Dense) Linear Algebra Libraries
Salient features

I Community effort. Standardized interface

I Careful organization: support routines, linear-systems, eigen-decompositions

I Clear layering: functionality, parallelism

I Preferred outlet: ACM TOMS

I Performance & HW-driven development

But
I Rigid interface

I Black-box nature

I Often sub-optimal at small scale
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Kk := Pb
k HT (HPb

k HT + R)−1; xa
k := xb

k + Kk(zk − Hxb
k ); Pa

k := (I − KK H) Pb
k{

C† := PCPT + Q
K := C†HT (HC†HT )−1

Λ := S(ST AWAS)−1ST ; Θ := ΛAW ; Mk := XkA− I
Xk+1 := Xk −Mk Θ− (Mk Θ)T + ΘT (AXkA− A)Θ

x := A(BT B + AT RT ΛRA)−1BT BA−1y . . . E := Q−1U(I + UT Q−1U)−1UT

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

. . . BLAS LAPACK . . .

MUL ADD MOV
MOVAPD

VFMADDPD . . .

LINEAR ALGEBRA
MAPPING PROBLEM

(“LAMP”)

C. Psarras, H. Barthels, P. Bientinesi, [arXiv:1911.09421]
“The Linear Algebra Mapping Problem. Current state of linear algebra languages and libraries”.
A. Sankaran, N.A. Alashti, C. Psarras, P. Bientinesi, [arXiv:2202.09888]
“Benchmarking the Linear Algebra Awareness of TensorFlow and PyTorch”.
H. Barthels, C. Psarras, P. Bientinesi, [arXiv:1912.12924]
“Linnea: Automatic Generation of Efficient Linear Algebra Programs”, ACM TOMS, 2021.
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Tensors

Tensor App #1 Tensor App #2 . . . Tensor App #N

??? ??? · · · ???
??? ??? · · · ???

BLAS
LAPACK ??? . . . ???

MUL ADD MOV
MOVAPD

VFMADDPD . . .
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but. . . Comp. Physics Data Science
Comp. Chemistry Machine Learning

??? ... ??? ??? ... ???
??? ??? ??? ???

BLAS
LAPACK ??? . . . ???

MUL ADD MOV
MOVAPD

VFMADDPD . . .
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Tensor computations

I (At least) Two separate worlds

I Computational physics / chemistry
Tensor = Multi-linear operator
Contractions = Generalization of matrix-matrix product

I Data science
Tensor = Collection of data
Decompositions = Generalization of matrix factorizations1

I Terminology and notation vary (and conflict) even within one world

I Very few software efforts cut across the boundary

1With notable differences.
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Tensors, presently

I No “Tensor BLAS” – no collections of building blocks

I Lack of reference implementations

I No agreement on interface(s)

I No community effort!
A jungle of independent libraries and packages, in a variety of languages
Massive redundancy: replication of effort, low performance

I Application-driven development:
Publications scattered among diffents fields
Re-invention of the wheel
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Representative operations – building blocks candidates
Data layout operations Arithmetic operations Decompositions

I Reshape
I Permute / transpose
I Sort (sparse)
I Convert data layout
I Partition
I Distribute
I . . .

I Add, subtract, scale
I Inner product
I Norms
I Element-wise operations
I Tensor-times-vector (TTV)
I Tensor-times-matrix (TTM)
I MTTKRP
I Contractions
I . . .

I CP
(CANDECOMP/PARAFAC)

I Tucker
I INDSCAL
I PARAFAC2
I CANDELINC
I DEDICOM
I PARATUCK2
I . . .

Where to draw the boundaries?
E.g., where does the “T-BLAS” end and the “T-LAPACK” begin?
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2-level “solution” Chromatography-MS

CP/PARAFAC Tucker PARAFAC2

Transposition Contraction · · · Alternating LS
Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV
MOVAPD

VFMADDPD . . .
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Algorithms for CP (PARAFAC) decomposition
Hence all the different libraries

I Algebraic algorithms
I Generalized Rank Annihilation Method
I Direct TriLinear Decomposition
I The “algebraic algorithm”

by Domanov and De Lathauwer
I The “simpler algorithm”

by Pimentel-Alarcón
I . . .

I Alternating optimization algorithms
I Alternating Least Squares
I Fast ALS
I Hierarchical ALS
I Regularized ALS
I . . .

I All-at-once optimization algorithms
I Gradient descent
I (Damped) Gauss–Newton
I Nonlinear CG, GMRES
I Quasi-Netwon (e.g., L-BFGS)
I . . .

I Enhancements
I Line search
I Compression
I Randomization
I Transient constraints
I . . .

Is a computational hierarchy even possible? Or is optimality achieved via specialized kernels?
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Also . . . one vs. many problem instances

Coupled-Cluster methods

Finite Element 3D diffusion operator

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher – https://github.com/LLNL/acrotensor
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Also . . . one vs. many problem instances

I BLAS and LAPACK built and optimized for single problems
Only much much later “streaming BLAS”, “batched BLAS”

I In Tensorland: multiple contractions, multiple indices contracted, tensor networks,
multiple decompositions in one workflow, . . .

Huge opportunities for multi-instance / multi-problem optimizations.

Example:

C. Psarras, L. Karsson, R. Bro, P. Bientinesi, [arXiv:2010.04678v2]
“Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, ACM TOMS.
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Summary & questions

Matrices Tensors

Driver performance, HW applications
Community effort BLAST/LAPACK/... group by group
Industry wide support some support
Standardization interface, layers, . . . “pointless” – CvL
Preferred outlet ACM TOMS —
Language native support plenty; BLAS so

I “DEV people”: What does it take to kickstart a community effort? . . . Dagstuhl?

I “APP people”: What would it take for you to consider using different libraries,
possibly a different language?
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