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Molecular Dynamics
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Interfacial systems
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Short-range method: “cutoff”
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Interface
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Long-range solvers

Ewald methods, based on FFT. O(nlog(n))
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Long-range solvers

Ewald methods, based on FFT. O(nlog(n))

WEAK SCALING
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PPPM long-range solver, 1200 particles/core, IBM BG/Q.
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@ Small cutoff — accuracy loss at the interface

@ Large cutoff — flops wasted in the bulk phase
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@ Small cutoff — accuracy loss at the interface
@ Large cutoff — flops wasted in the bulk phase

o Ildea
Cutoff chosen dynamically, according to the distance from the

interface
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Challenges & Objectives

Cutoff chosen particle by particle

@ How to detect the interface?

How to compute the distance particle-interface?

Complexity O(n)

Only local communication
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Dynamic Cutoff Method

1. Interface detection*
2. Distance calculation + cutoff assignemnt*

. (Almost) traditional short-range method
3. Neighbor-list*
4. Forces

5. Positions

*: not in every iteration
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Dynamic Cutoff Method

—7/ Particle positions / [ 1) Interface detection ]

Neighbor-
list build

Interface
detection

required? yes required?
[ 4) Force calculation J [ 2) Cutoff assignment J
( 5) Update particles J 3) Neighbor-list build J

/ New Particle positions /
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1) Interface detection

@ Bin particles to 3D bins
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1) Interface detection

@ Bin particles to 3D bins

@ Treat particle densities as gray values
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1) Interface detection

@ Bin particles to 3D bins
@ Treat particle densities as gray values

@ Apply image segmentation
Minimization of Mumford-Shah functional; periodic boundary conditions;
finite differences + filtering, local communication only
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2) Distance from interface

@ Distance is only required close to the interface

o Interface-box distance (Fast Sweeping Method) +
box-particle distance (trilinear interpolation)

local communication; one scalar reduction
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Cutoff-based Fast Sweeping Method
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Cutoff-based Fast Sweeping Method
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Cutoff-based Fast Sweeping Method
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Cutoff-based Fast Sweeping Method
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Dynamic Cutoff Method

—7/ Particle positions / [ 1) Interface detection ]

Neighbor-
list build

Interface
detection

required? yes required?
[ 4) Force calculation J [ 2) Cutoff assignment J
( 5) Update particles J 3) Neighbor-list build J

/ New Particle positions /
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3) Neighbor-list
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@ Spatial binning. Search limited to neighboring boxes = O(N)

o DCM = Newton's 3rd law not applicable anymore
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@ Spatial binning. Search limited to neighboring boxes = O(N)
o DCM = Newton's 3rd law not applicable anymore

@ Bins of size r[" x r"® x r"® = performance loss in bulk phase
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3) Neighbor-list

Spatial binning. Search limited to neighboring boxes = O(N)

DCM =- Newton's 3rd law not applicable anymore

@ Bins of size r[7® x r["® x r["® = performance loss in bulk phase

Bins of size r™" x r"" x r"" = speedups of 4 — 6x
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a) planar interface b) non-planar interface

System (a) — JUQUEEN, IBM, BG/Q
System (b) — SuperMUC, Intel, Sandy Bridge

LAMMPS Molecular Dynamics Simulator lammps.sandia.gov
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lammps.sandia.gov

Strong Scaling

Size: 1200 x 32768 ~ 4 - 10" particles
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Strong Scaling

Size: 1200 x 32768 ~ 4 - 10" particles
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Weak Scaling

1200 particles per core
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Weak Scaling

1200 particles per core

Time/step [ms]
w
o
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JUQUEEN
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Weak Scaling

1200 particles per core

Time/step [ms]
w
o
'

DCM —A—
10 DCM (serial interface) —&— |

PPPM (pure MPI) —5—
,  PPPM (8 threads/rank)

0
1024 2048 4096 8192 16384 32768 65536 131072 458752
#cores

DCM | 3.0/7.0 | 3.0/8.0 | 3.5/8.0 | 3.0/9.0 | 3.5/9.0
Speedup | 231 | 266 | 238 | 242 | 223 17/20




Accurac

Absolute error with respect to long-range Ewald summation
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Accuracy vs. performance

How to select min/max cutoffs
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Conclusions

o |ldea
Cutoff chosen particle by particle

= interface detection, distance calculation

@ Results
o Nearly perfect strong and weak scalability

e 5.5 x 108 particles on 458,752 cores
o As accurate as PPPM, much more scalable than PPPM

@ Future work
o Accelerators?

o Use DCM as short-range solver within Ewald-based solvers
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o |ldea
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= interface detection, distance calculation

@ Results
o Nearly perfect strong and weak scalability

e 5.5 x 108 particles on 458,752 cores
o As accurate as PPPM, much more scalable than PPPM

@ Future work
o Accelerators?

o Use DCM as short-range solver within Ewald-based solvers

Thank you for your attention
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