A Scalable, Linear-Time Dynamic Cutoff Algorithm for Molecular Dynamics

Paul Springer, Ahmed E. Ismail, Paolo Bientinesi

Aachen Institute for Advanced Study in Computational Engineering Science

ISC 2015, Frankfurt, 14.07.15

Molecular Dynamics

$$V_C(r) = \frac{1}{4\pi\epsilon} \frac{Q}{r}$$
 $V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right)$

Interfacial systems

Short-range method: "cutoff"

Interface

Long-range solvers

Ewald methods, based on FFT. $O(n \log(n))$

Long-range solvers

Ewald methods, based on FFT. $O(n \log(n))$

PPPM long-range solver, 1200 particles/core, IBM BG/Q.

Recap

- \bullet Small cutoff \rightarrow accuracy loss at the interface
- $\bullet~\mbox{Large cutoff} \to \mbox{flops wasted in the bulk phase}$

Recap

- \bullet Small cutoff \rightarrow accuracy loss at the interface
- $\bullet~\mbox{Large cutoff} \to \mbox{flops wasted in the bulk phase}$
- Idea

Cutoff chosen dynamically, according to the distance from the interface $% \left({{{\left[{{T_{{\rm{c}}}} \right]}}_{{\rm{c}}}}} \right)$

Challenges & Objectives

Cutoff chosen particle by particle

- How to detect the interface?
- How to compute the distance particle-interface?

- Complexity O(n)
- Only local communication

Dynamic Cutoff Method

- 1. Interface detection*
- **2.** Distance calculation + cutoff assignemnt*
 - . (Almost) traditional short-range method
 - 3. Neighbor-list*
 - 4. Forces
 - 5. Positions

*: not in every iteration

Dynamic Cutoff Method

1) Interface detection

• Bin particles to 3D bins

	•										-				
ŀ														••	•
						Ŀ.									
•								ŀ .							··
• •												 			
	 •														
•															
							Γ.								

1) Interface detection

- Bin particles to 3D bins
- Treat particle densities as gray values

1) Interface detection

- Bin particles to 3D bins
- Treat particle densities as gray values
- Apply image segmentation

Minimization of Mumford-Shah functional; periodic boundary conditions; finite differences + filtering, local communication only

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

- Distance is only required close to the interface
- Interface-box distance (Fast Sweeping Method) + box-particle distance (trilinear interpolation)

Initial state

Local CFSM step

Ghost Exchange

Local CFSM step

Ghost Exchange

Local CFSM step

Dynamic Cutoff Method

- Spatial binning. Search limited to neighboring boxes $\Rightarrow O(N)$
- DCM \Rightarrow Newton's 3rd law not applicable anymore

- Spatial binning. Search limited to neighboring boxes $\Rightarrow O(N)$
- DCM \Rightarrow Newton's 3rd law not applicable anymore
- Bins of size $r_c^{max} \times r_c^{max} \times r_c^{max} \Rightarrow$ performance loss in bulk phase

- Spatial binning. Search limited to neighboring boxes $\Rightarrow O(N)$
- DCM \Rightarrow Newton's 3rd law not applicable anymore
- Bins of size $r_c^{max} \times r_c^{max} \times r_c^{max} \Rightarrow$ performance loss in bulk phase
- Bins of size $r_c^{min} \times r_c^{min} \times r_c^{min} \Rightarrow$ speedups of $\mathbf{4} \mathbf{6} \times \mathbf{1}$

Experiments

a) planar interface

b) non-planar interface

Strong Scaling

Size: $1200 \times 32768 \approx 4 \cdot 10^7$ particles

Strong Scaling

Size: $1200 \times 32768 \approx 4 \cdot 10^7$ particles

Weak Scaling

1200 particles per core

Weak Scaling

1200 particles per core

Weak Scaling

1200 particles per core

Accuracy

Absolute error with respect to long-range Ewald summation

Accuracy vs. performance

How to select min/max cutoffs

Conclusions

Idea

Cutoff chosen particle by particle

 \Rightarrow interface detection, distance calculation

- Results
 - Nearly perfect strong and weak scalability
 - 5.5×10^8 particles on 458,752 cores
 - As accurate as PPPM, much more scalable than PPPM
- Future work
 - Accelerators?
 - Use DCM as short-range solver within Ewald-based solvers

Conclusions

Idea

Cutoff chosen particle by particle

 \Rightarrow interface detection, distance calculation

- Results
 - Nearly perfect strong and weak scalability
 - 5.5×10^8 particles on 458,752 cores
 - As accurate as PPPM, much more scalable than PPPM
- Future work
 - Accelerators?
 - Use DCM as short-range solver within Ewald-based solvers

Thank you for your attention