How fast can you drive your computer?

Paolo Bientinesi Umeå Universitet

Kunskapsveckan, Umeå Oct 28, 2020

About me

Professor in High-Performance Computing

High-Performance Computing Center North

About me

Professor in High-Performance Computing

High-Performance Computing Center North

"High-Performance Computing" ?

Computing

High-performance

High-performance \rightarrow Supercomputers

$\mathsf{High}\text{-}\mathsf{performance} \quad \rightarrow \quad \mathsf{Supercomputers}$

High-performance

In actuality

Every computer is a supercomputer, even laptops!

Analogy: Computers = Fast cars

Analogy: Computers = Fast cars

Km/h

Analogy: Computers = Fast cars

Fastest computers in the world

Projected Performance Development

"Peak performance" = Top speed

My laptop

"Peak performance" = Top speed =

 $Freq \times #cores \times #flops/cycle =$

My laptop

"Peak performance" = Top speed =

 $Freq \times #cores \times #flops/cycle =$

 2.8×10^9 Ghz $\times 4 \times 16$ ops/cycle = 179.2×10^9 ops/sec = **179 GFlops/sec**

My laptop > #1 supercomputer of 1996 !!!

Projected Performance Development

We all drive one of these

We all drive one of these

but ... do we know how to drive that?

Do we drive it like this?

... like this?

or . . . ?

How to "drive" computers?

How to "drive" computers?

Programming language

How to "drive" computers?

Programming language

Program

Program \mathcal{P}

•
$$[[\mathcal{P}]]$$
 = semantics of \mathcal{P} = "what does the program do?"

▶ Perf(\mathcal{P}) = performance of \mathcal{P} = "how fast does the program run?"

$\mathsf{Program} \ \mathcal{P}$

Whose responsibility? Programmer

▶ Perf(
$$\mathcal{P}$$
) = performance of \mathcal{P} = "how fast does the program run?"

Whose responsibility? Language/compiler/interpreter

$\mathsf{Program}\ \mathcal{P}$

Whose responsibility? Programmer

▶ Perf(\mathcal{P}) = performance of \mathcal{P} = "how fast does the program run?"

Whose responsibility? Language/compiler/interpreter \rightarrow Wishful thinking

$\mathsf{Program}\ \mathcal{P}$

Whose responsibility? Programmer

▶ Perf(\mathcal{P}) = performance of \mathcal{P} = "how fast does the program run?"

 $\label{eq:whose responsibility? Language/compiler/interpreter $$\rightarrow$ Wishful thinking Why is this important? $$$

Example

Refresher: Matrices

$$\begin{cases} 3x - 2y + z + 2w = -10\\ 2x + 2y - 8z - w = 0\\ -x - y + 3.5z = -2\\ 5x - 3y + 3z - 2w = 16 \end{cases}$$

Example

Refresher: Matrices

$$\begin{cases} 3x - 2y + z + 2w = -10\\ 2x + 2y - 8z - w = 0\\ -x - y + 3.5z = -2\\ 5x - 3y + 3z - 2w = 16 \end{cases}$$

$$A = \begin{pmatrix} 3 & -2 & 1 & 2 \\ 2 & 2 & -8 & -1 \\ -1 & -1 & 3.5 & 0 \\ 5 & -3 & 3 & -2 \end{pmatrix} \quad k = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \quad b = \begin{pmatrix} 10 \\ 0 \\ -2 \\ 16 \end{pmatrix}$$

Example

Refresher: Matrices

$$\begin{cases} 3x - 2y + z + 2w = -10\\ 2x + 2y - 8z - w = 0\\ -x - y + 3.5z = -2\\ 5x - 3y + 3z - 2w = 16 \end{cases}$$

$$A = \begin{pmatrix} 3 & -2 & 1 & 2 \\ 2 & 2 & -8 & -1 \\ -1 & -1 & 3.5 & 0 \\ 5 & -3 & 3 & -2 \end{pmatrix} \quad k = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \quad b = \begin{pmatrix} 10 \\ 0 \\ -2 \\ 16 \end{pmatrix}$$

Ak = b

A seemingly elementary example: Matrix-Matrix product

Essential operation at the core of most matrix computations

C := AB + C

$$\forall i \; \forall j \quad C_{ij} := C_{ij} + \sum_k A_{ik} B_{kj}$$

A seemingly elementary example: Matrix-Matrix product

Essential operation at the core of most matrix computations

C := AB + C

$$orall i \ orall j \quad C_{ij} := C_{ij} + \sum_k A_{ik} B_{kj}$$

Algorithm #1: a few lines of code

Algorithm #2: a few lines of code

Algorithm #3: a few lines of code

Algorithm #4: thousands of lines of code

Another analogy: Parallelism (concurrency)

Another analogy: Parallelism (concurrency)

"Driving" computers fast is more and more challenging

Simplifications

$$\alpha := \beta * \gamma * \beta^{-1} \quad \rightarrow \quad \alpha := \gamma$$

Simplifications

$$\alpha := \beta * \gamma * \beta^{-1} \quad \rightarrow \quad \alpha := \gamma$$

Multiplication times 0 or 1

Simplifications

$$\alpha := \beta * \gamma * \beta^{-1} \quad \rightarrow \quad \alpha := \gamma$$

- Multiplication times 0 or 1
- Common expressions

$$\begin{array}{cccc} \alpha := \beta * \gamma & & \alpha := \beta * \gamma \\ \delta := \epsilon * \beta * \gamma & \rightarrow & \delta := \epsilon * \alpha \end{array}$$

Simplifications

$$\alpha := \beta * \gamma * \beta^{-1} \quad \to \quad \alpha := \gamma$$

- Multiplication times 0 or 1
- Common expressions

$$\begin{array}{cccc} \alpha := \beta * \gamma & & \\ \delta := \epsilon * \beta * \gamma & \rightarrow & \delta := \epsilon * \alpha \end{array}$$

Code motion

...

a = 34 * 45; for(i=0; i<n; i++){ C[i] += A[i] * B[i]; }

Compilers: NOT so smart with matrices

Example: Parenthesisation

Product is associative, but its cost is not

Matrix computations

Signal Processing	$x := \left(A^{-T}B^{T}BA^{-1} + R^{T}LR\right)^{-1}A^{-T}B^{T}BA^{-1}y \qquad R \in \mathbb{R}^{n-1 \times n}, \text{ UT; } L \in \mathbb{R}^{n-1 \times n-1}, \text{ DI}$
Kalman Filter	$K_k := P_k^b H^T (HP_k^b H^T + R)^{-1}; \ x_k^a := x_k^b + K_k (z_k - Hx_k^b); \ P_k^a := (I - K_K H) P_k^b$
Ensemble Kalman Filter	$X^{a} := X^{b} + \left(B^{-1} + H^{T}R^{-1}H\right)^{-1}\left(Y - HX^{b}\right) \qquad B \in \mathbb{R}^{N \times N} \text{ SSPD; } R \in \mathbb{R}^{m \times m}, \text{ SSPD}$
Ensemble Kalman Filter	$\delta X := \left(B^{-1} + H^T R^{-1} H\right)^{-1} H^T R^{-1} \left(Y - H X^b\right)$
Ensemble Kalman Filter	$\delta X := XV^T \left(R + HX(HX)^T \right)^{-1} \left(Y - HX^b \right)$
Image Restoration	$\mathbf{x}_k := (H^T H + \lambda \sigma^2 I_n)^{-1} (H^T \mathbf{y} + \lambda \sigma^2 (\mathbf{v}_{k-1} - \mathbf{u}_{k-1}))$
Image Restoration	$H^{\dagger} := H^{T}(HH^{T})^{-1}; \ y_k := H^{\dagger}y + (I_n - H^{\dagger}H)x_k$
Rand. Matrix Inversion	$X_{k+1} := S(S^{T}AS)^{-1}S^{T} + (I_{n} - S(S^{T}AS)^{-1}S^{T}A)X_{k}(I_{n} - AS(S^{T}AS)^{-1}S^{T})$
Rand. Matrix Inversion	$X_{k+1} := X_k + WA^T S(S^T A W A^T S)^{-1} S^T (I_n - A X_k) $ $W \in \mathbb{R}^{n \times n}, \text{ SPD}$
Rand. Matrix Inversion	$X_{k+1} := X_k + (I_n - X_k A^T) S(S^T A^T W A S)^{-1} S^T A^T W$
Rand. Matrix Inversion	$\Lambda := S(S^T A W A S)^{-1} S^T; \ \Theta := \Lambda A W; \ M_k := X_k A - I$ $X_{k+1} := X_k - M_k \Theta - (M_k \Theta)^T + \Theta^T (A X_k A - A) \Theta$

Matrix computations (2)

Generalized Least Squares	$b := (X^T M^{-1} X)^{-1} X^T M^{-1} y \qquad n > m; M \in \mathbb{R}^{n \times n}, \text{ SPD}; X \in \mathbb{R}^{n \times m}; y \in \mathbb{R}^{n \times 1}$
Stochastic Newton	$B_{k} := \frac{k}{k-1} B_{k-1} (I_{n} - A^{T} W_{k} ((k-1)I_{l} + W_{k}^{T} A B_{k-1} A^{T} W_{k})^{-1} W_{k}^{T} A B_{k-1})$
Optimization	$x_f := WA^T (AWA^T)^{-1} (b - Ax); x_o := W (A^T (AWA^T)^{-1} Ax - c)$
Optimization	$x := W(A^T(AWA^T)^{-1}b - c)$
Triangular Matrix Inv.	$X_{10} := L_{10}L_{00}^{-1}; X_{20} := L_{20} + L_{22}^{-1}L_{21}L_{11}^{-1}L_{10}; X_{11} := L_{11}^{-1}; X_{21} := -L_{22}^{-1}L_{21}$
Tikhonov Regularization	$x := (A^T A + \Gamma^T \Gamma)^{-1} A^T b \qquad \qquad A \in \mathbb{R}^{n \times m}; \ \Gamma \in \mathbb{R}^{m \times m}; \ b \in \mathbb{R}^{n \times 1}$
Tikhonov Regularization	$x := (A^T A + \alpha^2 I)^{-1} A^T b$
Gen. Tikhonov Reg.	$x := (A^T P A + Q)^{-1} (A^T P b + Q x_0) \qquad P \in \mathbb{R}^{n \times n}, \text{ SSPD}; \ Q \in \mathbb{R}^{m \times m}, \text{ SSPD}; x_0 \in \mathbb{R}^{m \times 1}$
Gen. Tikhonov reg.	$x := x_0 + (A^T P A + Q)^{-1} (A^T P (b - A x_0))$
LMMSE estimator	$K_{t+1} := C_t A^T (A C_t A^T + C_z)^{-1}; \ x_{t+1} := x_t + K_{t+1} (y - A x_t); \ C_{t+1} := (I - K_{t+1} A) C_t$
LMMSE estimator	$x_{\text{out}} = C_X A^T (A C_X A^T + C_Z)^{-1} (y - Ax) + x$
LMMSE estimator	$x_{\text{out}} := (A^T C_Z^{-1} A + C_X^{-1})^{-1} A^T C_Z^{-1} (y - Ax) + x$

Compilers: NOT so smart with matrices

- Parenthesization
- Matrix properties

•

- Properties might propagate as computation unfolds
- Common subexpressions may/may not help
- Space needed for intermediate results

Domain-specific compiler

Henrik Barthels, Christos Psarras

- Linear algebra knowledge (from textbooks)
 - properties
 - equalities
 - theorems
- High-performance computing expertize (from experience)

Linnea speedups

Linnea vs. Julia, Armadillo, Eigen, Matlab, Octave, Python, R

Conclusion

- Despite 60 years of development, when it comes to matrix computations, compilers still have a long way to go
- Modern computers: It is increasingly more difficult to use their full potential
- Modern programming languages: They offer great productivity, but often at the cost of efficiency
- Linnea: our own compiler specialized in matrix computations

Thank you for your attention