
How fast can you drive your computer?

Paolo Bientinesi
Ume̊a Universitet

Kunskapsveckan, Ume̊a
Oct 28, 2020

About me

Professor in High-Performance Computing

High-Performance Computing Center North

“High-Performance Computing” ?

2 / 26

About me

Professor in High-Performance Computing

High-Performance Computing Center North

“High-Performance Computing” ?

2 / 26

Computing

3 / 26

UMEÅ UNIVERSITY

A A T A

C

A C
T T

G
A T

G

T G
C
GC

G

G

C

C

A A T A

C

A C
T T

G
A T

G

T G
T
AC

G

G

C

C

SNP
1

2

High-performance

→ Supercomputers

4 / 26

High-performance → Supercomputers

4 / 26

High-performance → Supercomputers

4 / 26

High-performance

→ Supercomputers

4 / 26

In actuality

Every computer is a supercomputer, even laptops!

5 / 26

Analogy: Computers = Fast cars

speed

FLOPS/sec

Km/h

6 / 26

Analogy: Computers = Fast cars

speed

FLOPS/sec

Km/h

6 / 26

Analogy: Computers = Fast cars

speed

FLOPS/sec Km/h

6 / 26

Fastest computers in the world

7 / 26

My laptop

“Peak performance” = Top speed

=

Freq × #cores × #flops/cycle =

2.8× 109 Ghz × 4× 16 ops/cycle = 179.2× 109 ops/sec = 179 GFlops/sec

8 / 26

My laptop

“Peak performance” = Top speed =

Freq × #cores × #flops/cycle =

2.8× 109 Ghz × 4× 16 ops/cycle = 179.2× 109 ops/sec = 179 GFlops/sec

8 / 26

My laptop

“Peak performance” = Top speed =

Freq × #cores × #flops/cycle =

2.8× 109 Ghz × 4× 16 ops/cycle = 179.2× 109 ops/sec = 179 GFlops/sec

8 / 26

My laptop > #1 supercomputer of 1996 !!!

9 / 26

We all drive one of these

but . . . do we know how to drive that?

10 / 26

We all drive one of these

but . . . do we know how to drive that?

10 / 26

Do we drive it like this?

11 / 26

. . . like this?

11 / 26

or . . . ?

11 / 26

How to “drive” computers?

Programming language

Program

12 / 26

How to “drive” computers?
Programming language

Program

12 / 26

How to “drive” computers?
Programming language Program

12 / 26

Program P

I [[P]] = semantics of P = “what does the program do?”

Whose responsibility? Programmer

I Perf(P) = performance of P = “how fast does the program run?”

Whose responsibility? Language/compiler/interpreter

→ Wishful thinking

Why is this important?

13 / 26

Program P

I [[P]] = semantics of P = “what does the program do?”

Whose responsibility? Programmer

I Perf(P) = performance of P = “how fast does the program run?”

Whose responsibility? Language/compiler/interpreter

→ Wishful thinking

Why is this important?

13 / 26

Program P

I [[P]] = semantics of P = “what does the program do?”

Whose responsibility? Programmer

I Perf(P) = performance of P = “how fast does the program run?”

Whose responsibility? Language/compiler/interpreter → Wishful thinking

Why is this important?

13 / 26

Program P

I [[P]] = semantics of P = “what does the program do?”

Whose responsibility? Programmer

I Perf(P) = performance of P = “how fast does the program run?”

Whose responsibility? Language/compiler/interpreter → Wishful thinking

Why is this important?

13 / 26

Example

Refresher: Matrices
3x − 2y + z + 2w = −10
2x + 2y − 8z − w = 0
−x − y + 3.5z = −2
5x − 3y + 3z − 2w = 16

A =

3 −2 1 2
2 2 −8 −1
−1 −1 3.5 0

5 −3 3 −2

 k =

x
y
z
w

 b =

10

0
−2
16

Ak = b

14 / 26

Example

Refresher: Matrices
3x − 2y + z + 2w = −10
2x + 2y − 8z − w = 0
−x − y + 3.5z = −2
5x − 3y + 3z − 2w = 16

A =

3 −2 1 2
2 2 −8 −1
−1 −1 3.5 0

5 −3 3 −2

 k =

x
y
z
w

 b =

10

0
−2
16

Ak = b

14 / 26

Example

Refresher: Matrices
3x − 2y + z + 2w = −10
2x + 2y − 8z − w = 0
−x − y + 3.5z = −2
5x − 3y + 3z − 2w = 16

A =

3 −2 1 2
2 2 −8 −1
−1 −1 3.5 0

5 −3 3 −2

 k =

x
y
z
w

 b =

10

0
−2
16

Ak = b

14 / 26

A seemingly elementary example: Matrix-Matrix product
Essential operation at the core of most matrix computations

C := AB + C

∀i ∀j Cij := Cij +
∑
k

AikBkj

for(i=0; i<m; i++)

for(j=0; j<n; j++)

for(l=0; l<k; l++)

C[i+j*m] += A[i+l*m] * B[l+j*k];

15 / 26

A seemingly elementary example: Matrix-Matrix product
Essential operation at the core of most matrix computations

C := AB + C

∀i ∀j Cij := Cij +
∑
k

AikBkj

for(i=0; i<m; i++)

for(j=0; j<n; j++)

for(l=0; l<k; l++)

C[i+j*m] += A[i+l*m] * B[l+j*k];

15 / 26

Algorithm #1: a few lines of code

● ● ●
●

●

●

●

●

●

● TL

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mSecs

16 / 26

Algorithm #2: a few lines of code

● ● ●
●

●

●

●

●

●

●

■ ■ ■ ■
■

■

■

■

■

■

TL

dot

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mSecs

16 / 26

Algorithm #3: a few lines of code

● ● ●
●

●

●

●

●

●

●

■ ■ ■ ■
■

■

■

■

■

■

◆ ◆ ◆ ◆
◆

◆

◆

◆

◆

◆

TL

dot

gemv

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mSecs

16 / 26

Algorithm #4: thousands of lines of code

● ● ●
●

●

●

●

●

●

●

■ ■ ■ ■
■

■

■

■

■

■

◆ ◆ ◆ ◆
◆

◆

◆

◆

◆

◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

TL

dot

gemv

gemm
100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mSecs

16 / 26

Another analogy: Parallelism (concurrency)

17 / 26

Another analogy: Parallelism (concurrency)

17 / 26

Morale

“Driving” computers fast is more and more challenging

18 / 26

Compilers: smart and powerful (with numbers)

I Simplifications
α := β ∗ γ ∗ β−1 → α := γ

I Multiplication times 0 or 1

I Common expressions

α := β ∗ γ
δ := ε ∗ β ∗ γ → α := β ∗ γ

δ := ε ∗ α
I Code motion

for(i=0; i<n; i++){ a = 34 * 45;

a = 34 * 45; for(i=0; i<n; i++){

C[i] += A[i] * B[i]; C[i] += A[i] * B[i];

} }

I . . .

19 / 26

Compilers: smart and powerful (with numbers)

I Simplifications
α := β ∗ γ ∗ β−1 → α := γ

I Multiplication times 0 or 1

I Common expressions

α := β ∗ γ
δ := ε ∗ β ∗ γ → α := β ∗ γ

δ := ε ∗ α
I Code motion

for(i=0; i<n; i++){ a = 34 * 45;

a = 34 * 45; for(i=0; i<n; i++){

C[i] += A[i] * B[i]; C[i] += A[i] * B[i];

} }

I . . .

19 / 26

Compilers: smart and powerful (with numbers)

I Simplifications
α := β ∗ γ ∗ β−1 → α := γ

I Multiplication times 0 or 1

I Common expressions

α := β ∗ γ
δ := ε ∗ β ∗ γ → α := β ∗ γ

δ := ε ∗ α
I Code motion

for(i=0; i<n; i++){ a = 34 * 45;

a = 34 * 45; for(i=0; i<n; i++){

C[i] += A[i] * B[i]; C[i] += A[i] * B[i];

} }

I . . .

19 / 26

Compilers: smart and powerful (with numbers)

I Simplifications
α := β ∗ γ ∗ β−1 → α := γ

I Multiplication times 0 or 1

I Common expressions

α := β ∗ γ
δ := ε ∗ β ∗ γ → α := β ∗ γ

δ := ε ∗ α

I Code motion

for(i=0; i<n; i++){ a = 34 * 45;

a = 34 * 45; for(i=0; i<n; i++){

C[i] += A[i] * B[i]; C[i] += A[i] * B[i];

} }

I . . .

19 / 26

Compilers: smart and powerful (with numbers)

I Simplifications
α := β ∗ γ ∗ β−1 → α := γ

I Multiplication times 0 or 1

I Common expressions

α := β ∗ γ
δ := ε ∗ β ∗ γ → α := β ∗ γ

δ := ε ∗ α
I Code motion

for(i=0; i<n; i++){ a = 34 * 45;

a = 34 * 45; for(i=0; i<n; i++){

C[i] += A[i] * B[i]; C[i] += A[i] * B[i];

} }

I . . .

19 / 26

Compilers: NOT so smart with matrices

Example: Parenthesisation

A B c

(AB)c O(n3) A(Bc) O(n2)

Product is associative, but its cost is not

20 / 26

Matrix computations
Signal Processing x :=

(
A−TBTBA−1 + RTLR

)−1
A−TBTBA−1y R ∈ Rn−1×n, UT; L ∈ Rn−1×n−1, DI

Kalman Filter Kk := Pb
kH

T (HPb
kH

T + R)−1; xak := xbk + Kk (zk − Hxbk); Pa
k := (I − KKH)Pb

k

Ensemble Kalman Filter X a := X b +
(
B−1 + HTR−1H

)−1 (
Y − HX b

)
B ∈ RN×N SSPD; R ∈ Rm×m, SSPD

Ensemble Kalman Filter δX :=
(
B−1 + HTR−1H

)−1
HTR−1

(
Y − HX b

)
Ensemble Kalman Filter δX := XVT

(
R + HX (HX)T

)−1 (
Y − HX b

)
Image Restoration xk := (HTH + λσ2In)−1(HT y + λσ2(vk−1 − uk−1))

Image Restoration H† := HT (HHT)−1; yk := H†y + (In − H†H)xk

Rand. Matrix Inversion Xk+1 := S(STAS)−1ST + (In − S(STAS)−1STA)Xk (In − AS(STAS)−1ST)

Rand. Matrix Inversion Xk+1 := Xk + WATS(STAWATS)−1ST (In − AXk) W ∈ Rn×n, SPD

Rand. Matrix Inversion Xk+1 := Xk + (In − XkA
T)S(STATWAS)−1STATW

Rand. Matrix Inversion
Λ := S(STAWAS)−1ST ; Θ := ΛAW ; Mk := XkA− I
Xk+1 := Xk −MkΘ− (MkΘ)T + ΘT (AXkA− A)Θ

21 / 26

Matrix computations (2)

Generalized Least Squares b := (XTM−1X)−1XTM−1y n > m; M ∈ Rn×n, SPD; X ∈ Rn×m; y ∈ Rn×1

Stochastic Newton Bk := k
k−1

Bk−1(In − ATWk ((k − 1)Il + WT
k ABk−1A

TWk)−1WT
k ABk−1)

Optimization xf := WAT (AWAT)−1(b − Ax); xo := W (AT (AWAT)−1Ax − c)

Optimization x := W (AT (AWAT)−1b − c)

Triangular Matrix Inv. X10 := L10L
−1
00 ; X20 := L20 + L−1

22 L21L
−1
11 L10; X11 := L−1

11 ; X21 := −L−1
22 L21

Tikhonov Regularization x := (ATA + ΓT Γ)−1ATb A ∈ Rn×m; Γ ∈ Rm×m; b ∈ Rn×1

Tikhonov Regularization x := (ATA + α2I)−1ATb

Gen. Tikhonov Reg. x := (ATPA + Q)−1(ATPb + Qx0) P ∈ Rn×n, SSPD; Q ∈ Rm×m, SSPD; x0 ∈ Rm×1

Gen. Tikhonov reg. x := x0 + (ATPA + Q)−1(ATP(b − Ax0))

LMMSE estimator Kt+1 := CtAT (ACtAT + Cz)−1; xt+1 := xt + Kt+1(y − Axt); Ct+1 := (I − Kt+1A)Ct

LMMSE estimator xout = CXA
T (ACXA

T + CZ)−1(y − Ax) + x

LMMSE estimator xout := (ATC−1
Z A + C−1

X)−1ATC−1
Z (y − Ax) + x

22 / 26

Compilers: NOT so smart with matrices

I Parenthesization

I Matrix properties

I Properties might propagate as computation unfolds

I Common subexpressions may/may not help

I Space needed for intermediate results

I . . .

23 / 26

Linnea arXiv:1912.12924

Domain-specific compiler Henrik Barthels, Christos Psarras

I Linear algebra knowledge (from textbooks)
I properties
I equalities
I theorems

I High-performance computing expertize (from experience)

24 / 26

Linnea speedups

Linnea vs. Julia, Armadillo, Eigen, Matlab, Octave, Python, R
25 / 26

Conclusion

I Despite 60 years of development, when it comes to matrix computations, compilers still
have a long way to go

I Modern computers: It is increasingly more difficult to use their full potential

I Modern programming languages: They offer great productivity, but often at the cost of
efficiency

I Linnea: our own compiler specialized in matrix computations

Thank you for your attention

26 / 26

