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Tensor decompositions, such as CANDECOMP/PARAFAC (CP), are widely used in a variety of applications,

such as chemometrics, signal processing, and machine learning. A broadly used method for computing such

decompositions relies on the Alternating Least Squares (ALS) algorithm. When the number of components

is small, regardless of its implementation, ALS exhibits low arithmetic intensity, which severely hinders

its performance and makes GPU offloading ineffective. We observe that, in practice, experts often have to

compute multiple decompositions of the same tensor, each with a small number of components (typically

fewer than 20), to ultimately find the best ones to use for the application at hand. In this paper, we illustrate

how multiple decompositions of the same tensor can be fused together at the algorithmic level to increase the

arithmetic intensity. Therefore, it becomes possible to make efficient use of GPUs for further speedups; at the

same time the technique is compatible with many enhancements typically used in ALS, such as line search,

extrapolation, and non-negativity constraints. We introduce the Concurrent ALS algorithm and library, which

offers an interface to Matlab, and a mechanism to effectively deal with the issue that decompositions complete

at different times. Experimental results on artificial and real datasets demonstrate a shorter time to completion

due to increased arithmetic intensity.

CCS Concepts: •Mathematics of computing→Mathematical software performance; • Software and
its engineering→ Software performance.

Additional Key Words and Phrases: Tensor, decomposition, high-performance

1 INTRODUCTION
The Canonical Polyadic Decomposition (CPD or CP), also known as PARAllel FACtor analysis

(PARAFAC), is a tensor decomposition or "tensor model" that has found applications in several

domains, including chemometrics [2], signal processing and machine learning [27]. A target tensor

is (often approximately) decomposed into a sum of rank-1 tensors, commonly referred to as

"components". A CP decomposition can be computed by, for example, the Alternating Least Squares

(CP-ALS) algorithm [12, 17]. This is an iterative algorithm that searches for a local minimum

to the sum of squared residuals starting from some given starting point with a given number

of components. Since only a local minimum is found, the result of the decomposition is highly

susceptible to both the chosen number of components and the starting point. For this reason,

application experts often resort to performing tens or hundreds of independent decompositions of

a tensor, varying the number of components and/or the starting point, to determine the quality

of each generated solution. Thus far, research has focused on improving methods that compute a

single decomposition. In this paper, we show that it is possible to combine several decompositions

at an algorithmic level to make more efficient use of the hardware. Even though the proposed

technique does not decrease the time to complete a single decomposition, the total time to complete

the whole set of decompositions can nevertheless be greatly reduced.

For dense tensors, the computational cost of CP-ALS is typically dominated by the so-called

MTTKRP operation [18] (see also Section 3 ahead). The processor is a bottleneck for MTTKRP

only when the number of components is large. Otherwise, the performance will be limited by the

transfer of data back and forth between main memory and processor; we say that MTTKRP is

"memory-bound" when the components are few, since the arithmetic intensity [36] (the number of

floating point operations divided by the number of memory accesses) is proportional to the number
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of components. Low arithmetic intensity leads to poor utilization of the CPU and also reduces the

benefit from multi-threaded execution and GPU offloading. Since the issue is inherent to MTTKRP

(and by extension to CP-ALS and many of its alternatives), we need to look beyond the narrow

problem of computing a single decomposition in order to make progress.

Algorithm 1: Common usage scenario

of CP-ALS.

Input :TTT : The tensor to decompose.

S: Set of 𝐾 starting points.

Output :P: Set of 𝐾 CP models fitted to

the tensor TTT .
1 P ← ∅
2 foreachAAA ∈ S do
3 BBB ← CP-ALS(TTT ,AAA)

4 P ← P ∪ {BBB}
5 return P

Algorithm 2: Common usage scenario

of CALS.

Input :TTT : The tensor to decompose.

S: Set of 𝐾 starting points.

Output :P: Set of 𝐾 CP models fitted to

the tensor TTT .
1 P ← CALS(TTT , S)
2 return P

Taking into account that a typical workflow of an application expert involves computing a

set of CP decompositions (with varying numbers of components and starting points), instead of

optimizing only the CP-ALS procedure, we consider the workflow as a whole (see Algorithm 1). We

introduce the Concurrent ALS (CALS) algorithm1
, which extends the standard CP-ALS algorithm

such that it concurrently computes a set of CP decompositions. We provide CALS as a C++ library,

with an interface to MATLAB and GPU offloading via CUDA. Within CALS, we combine multiple

invocations of CP-ALS at an algorithmic level such that the arithmetic intensity increases — without

numerically affecting any of the invocations. Crucially, CALS remains compatible with many

enhancements typically used in CP-ALS; to demonstrate, we included line search and non-negativity

constraints in our library implementation. A challenge is that different instances of CP-ALS require

a varying number of iterations before they converge. Therefore, we include a mechanism to

dynamically insert and remove instances with minimal impact on performance.

Contributions. These are the highlights:

• CALS achieves a higher arithmetic intensity than a sequence of CP-ALS invocations, without

numerically affecting the computation, and therefore completes a set of decompositions

faster.

• We showcase how CALS makes offloading to a GPU worthwhile by increasing the granularity

of the central MTTKRP operation, which further increases the speed.

• We demonstrate that CALS is compatible with enhancements of CP-ALS that preserve the

central MTTKRP operation by incorporating line search and non-negativity constraints to

the CALS library.

• To help application experts take full advantage of the CALS features within their existing

source code, we also provide an interface to MATLAB.

1
Since our algorithm is used to compute the CP decomposition, its proper name is CP-CALS. However, to avoid repetition

and make it easier for the reader to differentiate between CP-CALS and CP-ALS, throughout the paper we refer to CP-CALS

as just CALS.
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Organization. The rest of the paper is organized as follows. In Section 2, we provide an overview

of related research. In Section 3, we review the standard CP-ALS algorithm and introduce the basics

of CALS. We describe how CALS handles the issue of uneven convergence in Section 4. We present

several features of CALS in Section 5. In Section 6, we show experimental results that support the

claim that CALS reduces the time to completion by increasing the arithmetic intensity. We also

include preliminary experiments on a real dataset from fluorescence spectroscopy to demonstrate

its practicality.

Notation. For vectors and matrices, we use bold lowercase and uppercase roman letters, respec-

tively, e.g., v andU. For tensors, we follow the notation in [20]; specifically, we use bold calligraphic

fonts, e.g., TTT . The order (number of indices or modes) of a tensor is denoted by uppercase roman

letters, e.g., 𝑁 . For each mode 𝑛, a tensor TTT can be unfolded (matricized) into a matrix, denoted by

T(𝑛) , where the columns are the mode-𝑛 fibers of TTT , i.e., the vectors obtained by fixing all indices

except for mode 𝑛. Sets are denoted by non-bold calligraphic fonts, e.g., S. Given two matrices

A and B, with the same number of columns, the Khatri-Rao product, denoted by A ⊙ B, is the
column-wise Kronecker product of A and B.

2 RELATEDWORK
Several variations of the CP decomposition have been developed to meet the needs of applications.

Examples of constraints on the factor matrices include non-negativity [11], orthogonality [28],

and coherence [15]. In so called dictionary-based variants, the columns of a factor matrix are

constrained to a given set [13]. Other variations include weighting [24], missing values [31], and

alternative objective functions such as the Kullback-Leibler divergence [16].

Whether the given tensor is dense, sparse, or presented in factored form (e.g., Tucker or CP) has

a big impact on data structures and algorithms [4]. Other classes of methods besides ALS have been

proposed, e.g., methods based on eigendecompositions [14] and methods based on gradient-based

(all-at-once) optimization [1].

Several modifications to CP-ALS have been proposed. Line search [26] and extrapolation [3]

procedures accelerate convergence and appear to help avoid bad local minima. Pairwise perturbation

is a recently proposed acceleration technique that uses error-controlled approximations in order

to reduce the arithmetic cost of generating the CP-ALS subproblems [22]. For very large tensors,

randomization can reduce the time and space complexity of a CP-ALS iteration. Some randomization

methods use random sampling of the tensor [34] while others sample the Khatri-Rao product [7].

Compression-based techniques replace the tensor with an approximation of lower rank, thereby

shrinking the effective size of the tensor decomposition problem [10]. A CP decomposition of the

compressed tensor is computed and then inflated to form a decomposition of the large tensor.

In the context of large dense tensors and small ranks, the time complexity of the MTTKRP

dominates the cost of CP-ALS. Efficient (parallel) algorithms for the MTTKRP have therefore been

a target for research. Naïve permute-and-multiply algorithms, which explicitly permute data to

generate the unfolding prior to a matrix multiplication, are easy to implement but suffer from

large overheads due to the repeated permutations of data. The overhead can be reduced, but not

eliminated, with a high-performance tensor transposition library [29]. A leap forward was presented

in [25], where the authors showed how an MTTKRP can be done without any permutations at

all. They also removed redundant computations across the sequence of related MTTKRPs that

appear in a CP-ALS iteration. An alternative approach to avoiding permutation is to recognize that

the mode-𝑛 unfoldings have a natural block structure. This can be exploited to create a one-step

algorithm without permutations [18]. For very large problems, the size of intermediate objects (e.g.,

Khatri-Rao products) can become an issue. One way to overcome this issue is by using an algorithm
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that only requires a constant amount of workspace, like the one proposed in [33]. Unfortunately,

despite all these advances, a library that offers a high performance MTTKRP implementation still

does not exist.

The technique we propose in this paper complements rather than competes with many of these

related efforts. What we propose can be applied alongside other enhancements and even to other

methods besides CP-ALS. This is important because there is good reason to believe that it is the

accumulative effect of many disparate techniques that will lead to the best performance.

3 ALS AND CONCURRENT ALS (CALS)
We begin by reviewing the regular CP-ALS algorithm in Section 3.1 and introduce the CALS

algorithm in Section 3.2.

3.1 ALS

Algorithm 3: CP-ALS: Alternating least squares method for CP decomposition.

Input :TTT∈ R𝐼1,... ,𝐼𝑁 : The tensor to decompose.

U(1) , . . . , U(𝑁 ) : The factor matrices of the starting point (rank 𝑅).

Output :U(1) , . . . , U(𝑁 ) : The computed CP decomposition of TTT .
1 repeat
2 for 𝑛 = 1, 2, . . . , 𝑁 do
3 M(𝑛) ← T(𝑛) (⊙𝑖≠𝑛U(𝑖) ) ⊲MTTKRP

4 H(𝑛) ← ∗𝑖≠𝑛 (U(𝑖)
𝑇
U(𝑖) ) ⊲Hadamard product of Gramians

5 U(𝑛) ← M(𝑛)H(𝑛)
†

⊲H(𝑛)
†
: pseudoinverse of H(𝑛)

6 end
7 until convergence detected or maximum number of iterations reached

Algorithm 3 shows the standard alternating least squares method for CP decomposition (CP-ALS).

Given a starting point, the factor matrices are repeatedly updated one-by-one in sequence until

either convergence is detected or some maximum number of iterations has been reached. When

updating the factor matrix for mode-𝑛, the gradient of the objective function with respect to U(𝑛)

is set to zero and the resulting (linear) least squares problem is solved exactly via the normal

equations.

Computationally, the most expensive step is the Matricized Tensor Times Khatri-Rao Product

(MTTKRP) in line 3. Conceptually, the mode-𝑛 unfolding T(𝑛) is multiplied with the Khatri-Rao

Product (KRP) of all factor matrices except U(𝑛) . This involves 2𝑅
∏
𝑖 𝐼𝑖 flops (not counting the KRP,

which accounts for a lower order term) and

∏
𝑖 𝐼𝑖 accesses to tensor elements. Thus, the arithmetic

intensity of the MTTKRP is 2𝑅 flops per tensor element access. In line 4, the Gramians of each

factor matrix (U(𝑖)
𝑇
U(𝑖) ) are multiplied together, to form H(𝑛) , using the Hadamard product. Since

H(𝑛) is of size 𝑅 × 𝑅, the cost of solving the linear system in line 5 is O(𝑅2𝐼𝑛 + 𝑅3), which, for small

𝑅, is much less than the cost of MTTKRP.

Figure 1 illustrates the practical effect of the 2𝑅 arithmetic intensity of MTTKRP on its computa-

tional efficiency. Efficiency measures the performance of an algorithm relative to the Theoretical

Peak Performance (TPP) of the machine it runs on, and is given by the formula:

efficiency =
performance

tpp

=
total #flops/time

tpp
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Fig. 1. Efficiency of MTTKRP on a 300 × 300 × 300 tensor for increasing ranks.

For ranks up to 20, the efficiency is < 30% for single-threaded and < 20% for multi-threaded

execution. An efficiency over 50% is only reached for ranks over 60 and 500 with 1 and 12 threads,
respectively, and never reached (at least for ranks up to 5000) with 24 threads. According to Figure 1,
the efficiency, for a tensor of size 300 × 300 × 300, increases with 𝑅 until eventually reaching a

plateau, which in this case occurs around 𝑅 = 1000. Hence, the computational resources tend to be

better utilized when the decomposition has many components rather than few. Given that MTTKRP

accounts for the bulk of the cost of CP-ALS, the efficiency profiles of MTTKRP and CP-ALS are

similar. The particular implementations used to maximize efficiency are explained in Section 5.1.

3.2 Concurrent ALS (CALS)
A straightforward way to run 𝐾 instances of CP-ALS on the same tensor is to run them one-by-one

in sequence as in Algorithm 1 or, in the case of multi-threading, to run multiple instances in parallel.

As explained above, the arithmetic intensity when fitting model 𝑖 of rank 𝑅𝑖 will be only 2𝑅𝑖 . The
gist of CALS is to reorganize the computations involved in𝐾 instances of CP-ALS into a form which

achieves higher arithmetic intensity (and hence higher efficiency), namely 2
∑𝐾
𝑖=1 𝑅𝑖 . In particular,

if 𝐾 = 100 and 𝑅𝑖 = 10 for all 𝑖 , then from Figure 1 we expect about 17%MTTKRP efficiency for

a sequence of single-threaded CP-ALS instances. With CALS we will soon see that we expect an

MTTKRP efficiency closer to that observed for 𝑅 =
∑𝐾
𝑖=1 𝑅𝑖 = 1000 or about 78% — a speedup of

4.5×.
The key idea of CALS is to fuse𝐾 small and independent MTTKRPs with low arithmetic intensity

into one large MTTKRP with higher arithmetic intensity. To see how this can be done, first note

that (for appropriately sized matrices) independent KRPs can be fused into a larger KRP:[
A1 ⊙ B1 A2 ⊙ B2

]
=
[
A1 A2

]
⊙
[
B1 B2

]
. (1)

5



, , Psarras, Karlsson and Bientinesi

This allows the fusion of two (or more) independent MTTKRPs:[
mttkrp(X,A1,B1) mttkrp(X,A2,B2)

]
=
[
X(A1 ⊙ B1) X(A2 ⊙ B2)

]
= X

[
A1 ⊙ B1 A2 ⊙ B2

]
= X

( [
A1 A2

]
⊙
[
B1 B2

] )
= mttkrp(X,

[
A1 A2

]
,
[
B1 B2

]
).

Starting from two independent MTTKRPs, the common matrix factor X is extracted and the KRPs

are fused together using (1). The result is a single, larger MTTKRP.

Generalized to a tensor TTT of order 𝑁 , the mode-𝑛 MTTKRPs for two independent CP-ALS

instances (on the same tensor) can be fused:[
T(𝑛) (⊙𝑖≠𝑛U(𝑖)1 ) T(𝑛) (⊙𝑖≠𝑛U(𝑖)2 )

]
= T(𝑛)

(
⊙𝑖≠𝑛

[
U(𝑖)1 U(𝑖)2

] )
. (2)

This naturally extends to any number of CP-ALS instances.

Seemingly, to apply the fused MTTKRP in (2), it suffices to concatenate factor matrices and

extract submatrices from the result corresponding to the small MTTKRPs. This could potentially be

very expensive. One should instead work directly on the concatenated form of the factor matrices.

Let A1,A2, . . . ,A𝐾 be matrices with the same number of rows. Then we refer to the horizontal

concatenation A =
[
A1 A2 . . . A𝐾

]
as a multi-matrix. The 𝑘-th constituent matrix of A is

denoted by A |𝑘 , so A |𝑘 ≡ A𝑘 .

   

Fig. 2. Horizontally concatenating factor matrices into a multi-matrix.

During initialization, CALS creates 𝑁 multi-matrices U
(𝑖)
, one for each mode 𝑖 = 1, 2, . . . , 𝑁 by

concatenating the initial factor matrices from each starting point
2
, as shown in Figure 2. When a

single factor matrix is needed, say to compute a Gramian, then it is accessed as a submatrix of the

corresponding multi-matrix. The fused MTTKRP is readily computed using the multi-matrices as

input. The outputs of the small MTTKRPs are the constituent matrices of the multi-matrix output

of the fused MTTKRP. In summary, after initialization neither concatenation nor extraction is

necessary.

A simplified version of CALS is described in Algorithm 4. (In Section 4, we will extend the algo-

rithm to appropriately handle a large number of instances and convergence at different iterations.)

First, the 𝑁 factor multi-matrices are initialized by packing the factor matrices from the starting

points. Then the main phase begins. The 𝐾 small MTTKRPs are fused into one large MTTKRP

2
In practice, each multi-matrix is allocated to a fixed size, optionally specified by the user. Then the multi-matrices are filled

with horizontally concatenated factor matrices from each starting point, until they are full. When models converge, as the

algorithm progresses, space is freed up, and new starting points can take their place. More details about this mechanism are

provided in Section 4.
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Algorithm 4: CALS: Concurrent alternating least squares method for a set of independent

CP decompositions of one tensor. Basic algorithm without handling of uneven convergence.

Input :TTT∈ R𝐼1,... ,𝐼𝑁 : The tensor to decompose.

U(1)1 , . . . , U(𝑁 )
𝐾

: The factor matrices of the 𝐾 initial points (rank 𝑅𝑖 for

𝑖 = 1, 2, . . . 𝐾 ).

Output :U(1)1 , . . . , U(𝑁 )
𝐾

: The 𝐾 computed CP decompositions of TTT .
1 for 𝑛 = 1, 2, . . . , 𝑁 do ⊲Initialize one factor multi-matrix for each mode.
2 for 𝑘 = 1, 2, . . . , 𝐾 do
3 U

(𝑛)
|𝑘 ← U(𝑛)

𝑘

4 end
5 end
6 repeat ⊲Concurrently run 𝐾 instances of CP-ALS.
7 for 𝑛 = 1, 2, . . . , 𝑁 do
8 M

(𝑛) ← T(𝑛) (⊙𝑖≠𝑛U
(𝑖) )

9 for 𝑘 = 1, 2, . . . , 𝐾 do

10 H(𝑛)
𝑘
← ∗𝑖≠𝑛 (U

(𝑖)
|𝑘
𝑇

U
(𝑖)
|𝑘 )

11 U
(𝑛)
|𝑘 ← M

(𝑛)
|𝑘 H(𝑛)

𝑘

†

12 end
13 end
14 until convergence detected for all instances or maximum number of iterations reached

in line 8. The remaining parts of the algorithm are essentially the same as for regular CP-ALS

(Algorithm 3) and the instances are treated separately in a loop. In particular, lines 10 and 11 of

Algorithm 4 correspond to lines 4 and 5 of Algorithm 3.

The efficiency of CALS is determined by the efficiency of MTTKRP (see Figure 1) for rank

∑𝐾
𝑖=1 𝑅𝑖 ,

regardless of the individual ranks. In contrast, for CP-ALS, the efficiency when computing the 𝑖th

instance is determined by 𝑅𝑖 .

4 HANDLING CONVERGENCE
The idea of CALS is to concurrently run multiple instances of CP-ALS on the same tensor. The

ranks of the individual decompositions may or may not be equal. The starting points can also be

different. The CALS algorithm synchronously advances all instances one iteration at a time. But

the number of iterations required for an instance to converge can vary from a few to thousands.

If convergence is detected for one instance, then that instance should be removed from further

processing. Naturally, one may also want to add new instances during the execution. In this section,

we describe how CALS handles the dynamic insertion and removal of instances and present the

full CALS algorithm (Algorithm 5).

In the CALS library, a multi-matrix is stored in column-major format at the beginning of a

memory buffer of fixed size. Constituent matrices are therefore contiguous in memory, which

implies that a multi-matrix can grow at the end without moving data around. One multi-matrix is

allocated for each mode for the purpose of storing factor matrices. The size of the buffer for mode 𝑛

is set to 𝐼𝑛𝑅
∗
, where 𝑅∗ is a user-defined constant specifying the maximum width (number of

columns) of a multi-matrix. (𝑅∗ must be at least as large as the largest rank.) Ideally, 𝑅∗ is set to the

value which maximizes MTTKRP’s performance, which, according to Figure 1, for a 300×300×300

7
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Algorithm 5: CALS: Concurrent alternating least squares method for a set of independent

CP decompositions of one tensor. Full algorithm.

Input :TTT∈ R𝐼1,... ,𝐼𝑁 : The tensor to decompose.

𝑄in: Input queue with starting points.

Output :𝑄out: Output queue for computed CP decompositions.

1 𝑛active ← 0 ⊲Initialize.

2 Allocate buffers for 𝑁 factor multi-matrices U
(𝑖)

for 𝑖 = 1, 2, . . . , 𝑁

3 repeat ⊲Main loop.
4 while 𝑄in is not empty do ⊲Fill the factor multi-matrices.
5 AAA ← Front(𝑄in) ⊲Look at first element of queue.

6 if AAA can be inserted into the factor multi-matrices then
7 𝑛active ← 𝑛active + 1
8 InsertAAA into the factor multi-matrices

9 Deqeue(𝑄in)
10 else
11 Exit the loop

12 end
13 end
14 for 𝑛 = 1, 2, . . . , 𝑁 do ⊲Advance all instances one iteration.

15 M
(𝑛) ← T(𝑛) (⊙𝑖≠𝑛U

(𝑖) ) ⊲Fused MTTKRP.

16 for 𝑘 = 1, 2, . . . , 𝑛active do ⊲Separate processing of active instances.

17 H(𝑛)
𝑘
← ∗𝑖≠𝑛 (U

(𝑖)
|𝑘
𝑇

U
(𝑖)
|𝑘 )

18 U
(𝑛)
|𝑘 ← M

(𝑛)
|𝑘 H(𝑛)

𝑘

†

19 end
20 end
21 for 𝑘 = 1, 2, . . . , 𝑛active do ⊲Remove converged and stalled instances.

22 Let PPP denote the 𝑘th active instance: U
(1)
|𝑘 , . . . ,U

(𝑁 )
|𝑘

23 𝐸, 𝐹 ← error and fit of PPP
24 if 𝐹 − 𝐹𝑝𝑟𝑒𝑣 < tol or maximum number of iterations reached then
25 Add PPP to 𝑄𝑜𝑢𝑡

26 Remove the 𝑘th constituent matrix from each factor multi-matrix

27 𝑛active ← 𝑛active − 1
28 end
29 end
30 until 𝑄in is empty and 𝑛active = 0

tensor, plateaus at approximately 𝑅∗ = 1000. Choosing a larger 𝑅∗ would not affect performance

significantly in this case. This parameter can be chosen to trade off performance versus memory

consumption. The buffer size is enough to concurrently run instances with a rank sum ≤ 𝑅∗. Any
additional instances will have to wait in a queue until space is freed up by converged instances.

Algorithm 5 takes a tensor and a queue of starting points as input. The algorithm starts by

allocating buffers for the factor multi-matrices and then enters the main loop, which concludes

when the input queue is empty and there are no more active instances. At the start of each iteration

8
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(lines 4–12), the factor multi-matrices are filled with starting points from the input queue until

either the buffers are full or the input queue is empty. Next (lines 14–19), all active instances are

advanced one iteration. At the end of each iteration (lines 21–28), the error and fit of each instance

is computed. If the difference in fit between two consecutive iterations is lower than some tolerance,

then the instance is considered converged and its factor matrices are copied out of the factor

multi-matrices and placed in the output queue. The removal of instances may cause the buffers of

the multi-matrices to become fragmented, i.e., they may contain gaps of unused space in between

constituent matrices. To get rid of the fragmentation, a compression routine packs the constituent

matrices contiguously starting at the beginning of the respective buffers.

5 SOFTWARE FEATURES
In this section, we describe the various components of CALS (available on Github

3
), which include

MTTKRP, line search, and non-negativity constraints as well as features, such as GPU offloading

and the MATLAB interface.

CALS is written in C++ and depends on the BLAS and LAPACK libraries (supported by, e.g.,

Intel
®
MKL [19], BLIS [32], and OpenBLAS [37]). Optional dependencies are CUDA [23] (for GPU

offloading) and MATLAB [30].

5.1 MTTKRP
The MTTKRP operation accounts for the vast majority of the cost of both CP-ALS and CALS. There

does not exist a highly optimized black-box implementation of MTTKRP that performs well for

all modes and sizes. Recent research (e.g., [18]) has shown that the keys to fast MTTKRP is to (a)

avoid data permutations in memory, (b) cast the computations in terms of GEMM BLAS operations,

and (c) avoid explicitly computing Khatri-Rao products in certain cases.

To this end, CALS includes a family of algorithmic variants for MTTKRP. Depending on such

things as the size and shape of the tensor, the rank of the decomposition, the mode of the MTTKRP,

and the method used for parallelization, the variants vary greatly in terms of performance. No

single variant is best in all cases. Finding an effective way of determining a good variant for a

particular case is beyond the scope of this paper. For third-order tensors, we hardcoded the choice

of the best variant for each case and each algorithm (CP-ALS or CALS), according to benchmarks.

For higher-order tensors, CALS falls back to computing the Khatri-Rao product explicitly and then

performing one, or several, matrix multiplications.

5.2 Line search
Line search is a technique that can reduce the total number of iterations to reach convergence in

CP-ALS and to some extent can also help to avoid getting trapped in bad local minima. For these

reasons, line search is used by most high-quality implementations of CP-ALS (and other methods).

In order to demonstrate that CALS is compatible with line search, we include a basic version (see,

e.g., [8, 17]) as an optional feature. Let PPP (𝑖) and PPP (𝑖+1) denote points after the CP-ALS iterations 𝑖
and 𝑖 + 1, respectively. Then after iteration 𝑖 + 1, line search linearly extrapolates to a new point

PPPnew = PPP (𝑖) + 𝛼 (PPP (𝑖+1) − PPP (𝑖) ), where 𝛼 > 1 determines the amount of extrapolation. If PPPnew

provides a better fit than PPP (𝑖+1) , then PPP (𝑖+1) is replaced with PPPnew
. Otherwise, the extrapolated

point is rejected. Regarding the choice of 𝛼 , several proposals have been made. For example, Bro [8]

recommends setting 𝛼 =
3
√
𝑖 based on experience.

In CALS, line search is applied independently to each instance as follows. Let U
(𝑛)
|𝑘,𝑖 and U

(𝑛)
|𝑘,𝑖+1 be

the factor matrices for each mode 𝑛, of an instance 𝑘 , for iterations 𝑖 and 𝑖 + 1 respectively. The new,
3
https://github.com/HPAC/CP-CALS
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extrapolated, factor matrices are given by U
(𝑛)
|𝑘,new = U

(𝑛)
|𝑘,𝑖 + 𝛼 (U

(𝑛)
|𝑘,𝑖+1 − U

(𝑛)
|𝑘,𝑖 ), for each 𝑛, where

𝛼 > 1 is a user-defined constant. Given U
(𝑛)
|𝑘,new, the errors after iterations 𝑖 and 𝑖 + 1 are computed

and the extrapolated point is used only if it shows an improvement.

5.3 Non-negativity constraints
CALS is also compatible with active set-based approaches for enforcing non-negativity constraints

to the factor matrices. To demonstrate this, we included the active set-based method proposed

in [11] as a feature in CALS.

The non-negativity constraints propagate down to the least squares subproblem that updates a

factor matrix (see line 5 in Algorithm 3). The subproblem changes into a non-negative least squares
problem with multiple right-hand sides. Mirroring regular CP-ALS, the method proposed in [11]

computes the MTTKRP and the Hadamard product of the Gramians only once per inner iteration.

What changes compared to CP-ALS is the update step, which is replaced by an iterative search

for the right set of active constraints. Since the size of the matrices involved in this search is of

the order of the rank of an individual decomposition, the cost is negligible in our context of small

ranks and large tensors.

In CALS, the active set-based method is applied to each decomposition independently after the

fused MTTKRP in line 8 of Algorithm 4. The final active sets are saved for the next iteration for the

purposes of warm starting, as described and justified in [11].

5.4 GPU offloading
GPUs offer tremendous computational capabilities, especially for matrix operations. While the

MTTKRP in CP-ALS can in principle be offloaded to a GPU, the associated overhead likely outweighs

the gains due to the low arithmetic intensity. The larger arithmetic intensity achieved by CALS

makes it more suitable for offloading its MTTKRP to a GPU. To take advantage of this extra

capability CALS has to offer, we developed a CUDA interface to MTTKRP.

The elements required to perform MTTKRP on the GPU are the factor multi-matrices and the

tensor. Since the tensor does not change, we transfer it to the GPU during initialization and let it

remain there until the end. We also transfer the multi-matrices to the GPU during initialization,

and then, for each iteration, only the multi-matrix being updated is transferred back and forth

between the GPU and CPU. Specifically, after line 8 of Algorithm 4, M
(𝑛)

is brought to the CPU to

update U
(𝑛)
|𝑘 for each instance 𝑘 . Once all instances have had their updates completed, U

(𝑛)
is sent

back to the GPU. For the algorithmic variants of MTTKRP that require an explicit KRP, the KRP is

computed on the CPU and transferred to the GPU.

Section 6.3 showcases the additional speedup gained by from offloading computation to the GPU.

5.5 MATLAB interface
Some of the most popular software packages used in applications (e.g., Tensor Toolbox [5, 6], the

N-way Toolbox [9], and Tensorlab [35]) are developed for MATLAB. To make CALS accessible to

MATLAB users, we provide a MATLAB interface via MEX through a function called cp_cals. The
arguments of this function are similar to the cp_als function in Tensor Toolbox with some extra

optional arguments that enable features such as line search, non-negativity, and GPU offloading.

6 EXPERIMENTS
In this section, we demonstrate the performance improvements of CALS over CP-ALS. First, we

isolate the performance impact of the increased arithmetic intensity achieved by CALS. To this end,

10
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we present two synthetic experiments, one targeting speedup and the other efficiency. Second, we

showcase the performance improvements that CALS can offer in a real world application. Third,

we highlight the effect of GPU offloading made feasible by CALS.

The experiments were performed on a Linux-based system with an Intel® Xeon® Platinum 8160

Processor, which contains 24 physical cores split in 2 NUMA regions with 12 cores each. We report

results for 1 thread, 12 threads (one NUMA region), and 24 threads (both NUMA regions). The code

was compiled using GCC
4
and linked with the Intel® Math Kernel Library version 19.0, which

implements a superset of BLAS and LAPACK. For the CUDA experiments, an Nvidia Tesla V100

was used
5
. For the MATLAB experiments, MATLAB version 2019b was used. The source code is

available online.

6.1 Arithmetic intensity
We present experiments that isolate the impact of increased arithmetic intensity.

6.1.1 Speedup per iteration. Since CALS achieves a higher arithmetic intensity than CP-ALS, we

expect CALS to complete one iteration on 𝐾 instances faster than CP-ALS completes one iteration

on 𝐾 instances. We measured the size of this speedup with the following experiment. For a given

tensor and rank, we ran both CALS and CP-ALS on 𝐾 = 20 random starting points. All instances

ran for exactly 50 iterations and we measured the total time for each method. We then calculated

the average speedup per iteration using the formula

speedup per iteration =
time for cp-als

time for cals

.

The size of the tensor, the rank, and the multi-threading configuration all play important roles in de-

termining the execution time. We therefore repeated the experiment for all ranks 𝑅 ∈ {1, 2, . . . , 20}
on cubic tensors of size 𝑛 × 𝑛 × 𝑛 for all 𝑛 ∈ {100, 200, 300}. For each problem configuration, we

tested 1 thread, 12 threads, 24 threads, and CUDA (24 CPU threads plus one GPU).

The results are shown in Figure 3. CALS is faster than CP-ALS across all ranks, and especially

so on the smaller ranks where MTTKRP is particularly inefficient. The speedup seems to increase

with the volume of the tensor. In particular, GPU offloading leads to significant speedups over

multi-threaded CP-ALS on the larger tensors, reaching up to 60× for the smallest ranks.

6.1.2 Efficiency. The efficiency of CALS and CP-ALS, relative to the machine’s theoretical ca-

pabilities, was measured with the following experiment. We used a set of 𝐾 = 400 instances

distributed over ranks 1 through 20 with 20 instances for each rank. Hence, the sum of all ranks is∑20
𝑅=1 20𝑅 = 4200. All instances ran for exactly 50 iterations. We repeated the experiment for cubic

tensors of size 𝑛 × 𝑛 × 𝑛 for all 𝑛 ∈ {100, 200, 300}. For each problem configuration, we tested 1
thread, 12 threads, and 24 threads.
The buffer size for CALS (𝑅∗) was chosen to maximize performance in the BLAS based on the

MTTKRP benchmarks reported in Figure 4. Specifically, 𝑅∗ = 4200 in all cases except for the

single-threaded case on the 100 × 100 × 100 tensor, where a suboptimal implementation of the

BLAS routine dgemm made 𝑅∗ = 90 a better choice.
The results of the experiment are shown in Figure 5. This figure requires a bit of explanation

to comprehend. We partitioned the total computation into segments: One segment per iteration

for CALS and one segment per instance for CP-ALS. For each segment, we measured the time and

4
GCC version 8.2.0 with optimization flag -O3

5
Driver version: 450.51.06, CUDA Version: 11.0
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Fig. 3. Average speedup per iteration of CALS over CP-ALS.

counted the FLOPs. We then calculated the efficiency for each time segment using the formula

efficiency =
#flops/time

tpp

.

The figure shows the efficiency versus the fraction of the total computation performed (measured

in FLOPs and normalized). Each time segment corresponds one piece of the piece-wise constant

graphs. Note that both CALS and CP-ALS perform the same number of flops.

Since reaching the theoretical peak efficiency of 100% is impossible in practice, we also plot

the efficiency of the BLAS routine dgemm as an indicator of practical peak efficiency. The practical

peak is not reproducible, so we characterize it using the mean, median, and standard deviation

over many repetitions. We ran dgemm on square matrices of size𝑚 ×𝑚, where𝑚 =
√
𝑛3. From 100

samples, we calculated the arithmetic mean, median, and standard deviation and converted times

to efficiency using the formula above. The mean is shown as a solid line, the median as a dashed

line, and the mean ± one standard deviation is shown as a colored region.
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Fig. 4. Performance of the best available implementation of MTTKRP.

CP-ALS processes the ranks in ascending order, and the transition points are indicated by green

tick marks above the horizontal axis. Observe that the efficiency steadily increases during the

computation, which follows the MTTKRP benchmarks reported in Figure 4.

CALS, on the other hand, processes all ranks concurrently and is able to reach the peak efficiency

of MTTKRP (shown in Figure 4) for 𝑅∗ for all experiments. The occasional drops in performance

for CALS, especially in the single-threaded case, are likely due to CPU frequency throttling. The

locations of these drops are not reproducible, from which we conclude that they are not caused by

the algorithm.

6.2 Application: EEM analysis
We demonstrate the effectiveness of CALS on the real Fluorescence dataset [21] coming from an

application involving blood plasma for cancer diagnostics. We compare CALS with CP-ALS and

the cp_als function from Tensor Toolbox. We used a total of 𝐾 = 400 instances distributed over
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Fig. 5. The efficiency of CALS and CP-ALS during the computation of 400 decompositions of ranks 1 through
20 with 20 decompositions for each rank. CP-ALS processes the ranks in ascending order. For reference, the
dgemm efficiency is shown as a red solid line (mean), dashed line (median), and region (mean ± one standard
deviation); see the text for details.

ranks 1 through 20 with 20 instances per rank. The tolerance was set to 10−4 and the maximum

number of iterations was set to 50.
The results are shown in Figure 6. There is a clear advantage for CALS, exhibiting speedups of

5.6× (1 thread), 13.8× (12 threads), and 17× (24 threads) compared to cp_als of Tensor Toolbox.
Similarly, CALS achieves a 3.3× speedup compared to CP-ALS for all thread configuations. Note
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Fig. 6. Times for CALS, CP-ALS, and cp_als from Tensor Toolbox on the fluorescence dataset.

that only CALS benefits from GPU offloading, and its CUDA implementation achieves a 5.8×
speedup over CP-ALS.

6.3 GPU utilization
To demonstrate the effectiveness of utilizing the GPU within CALS, we repeated the EEM analysis

experiments using the CUDA capabilities of CALS. The resulting speedups are summarized in

Figure 7. Using a GPU is evidently more beneficial for larger tensors. CALS with GPU offloading

achieves speedups of ×4.3 and ×4.6 for tensor sizes 200× 200× 200 and 300× 300× 300 compared

to CALS without GPU offloading using 24 threads.

7 CONCLUSION
In this paper we present Concurrent ALS (CALS), an algorithm and library, which offers an interface

to MATLAB, for computing multiple, concurrent Alternating Least Squares algorithms for the

Canonical Polyadic Decomposition. We show that CALS is able to accommodate applications that

fit multiple models of different ranks and starting points, by achieving better efficiency for the same

computation. Furthermore, we demonstrate how higher efficiency favors the, otherwise impractical

under CP-ALS, offloading of the computation to GPUs to further speed up computation. Finally, we

showcase the effectiveness of CALS over our own optimized version of CP-ALS as well as Tensor

Toolbox’s implementatio cp_als on both artificial and real datasets.
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