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Dispersion Interactions

Dispersion potential:

Vdisp =
1

2

N∑
i=1

N∑
j=1
i 6=j

Cij
r6ij

E.g. in Lennard-Jones and
Buckingham potentials
Only attractive interaction
between all pairs of atoms
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Long-Range Methods

Existing long-range methods:

Direct evaluation
O
(
N2
)

typically too expensive
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Long-Range Methods

Existing long-range methods:

Direct evaluation
O
(
N2
)

typically too expensive

Standard methods: Ewald Mesh methods
Use fast Fourier transforms

O (N logN)

Don’t scale well

Multilevel summation method
O (N)
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Multilevel Summation
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Multilevel Summation

γ(x) is designed
so that cutoffs
can be used
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Multilevel Summation

γ(x) is designed
so that cutoffs
can be used

no cutoff on last grid
but if enough grids,
the effort there is
negligible
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Smoothing Function γ
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Smoothing Function γ
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Smoothing Function γ
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Smoothing Function γ
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Example:

γ(x) =


15

8
− 5

4
x12 +

3

8
x24 for x < 1

1

x6
for x ≥ 1

Tameling (AICES) Improved Long-Range Solvers 7 April 2014 6 / 23



Splitting
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Splitting
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Splitting

g0(r) =
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the part of the calculation with g0 can be done exactly

⇒ error arises completely from grid-based part
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Approximation of gi

1

r6
= g0 + g1 + g2 + · · ·+ gl−1 + gl
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Simulations

4000 particles

Lennard-Jones potential
with geometric mixing

11.01σ × 11.01σ × 176.16σ
with periodic boundaries

In the dispersion case there
are these parameters:

cutoff a
spacing of finest grid h
number of grids
function γ(x)

function Φ(x)
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Complexity

Results achieved with serial, unoptimized prototype implementation:
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Accuracy & Performance

Results achieved with serial, unoptimized prototype implementation:
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Number of Grids

Table: Timings for the 4000-particle system with a = 3σ and h = 0.688σ.
Serial runs on Sandy-Bridge on AICES cluster.

# grids k 2 3 4 5
Kspace time
per step [ms]

302.96 253.41 257.49 258.69

Pair time per
step [ms]

6.71 6.73 6.73 6.94
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Number of Grids

Table: Timings for the 4000-particle system with a = 3σ and h = 0.688σ.
Serial runs on Sandy-Bridge on AICES cluster.

# grids k 2 3 4 5
Kspace time
per step [ms]

302.96 253.41 257.49 258.69

Pair time per
step [ms]

6.71 6.73 6.73 6.94

# points on last
grid

8192 1024 128 16

# points within cutoff: 2801
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Number of Grids

Table: Accuracy for the 4000-particle system with a = 3σ and h = 0.688σ.

# grids k 3 4 5
|∆E3 −∆Ek|

∆E3
0 4.67× 10−4 6.05× 10−4

‖∆F3 −∆Fk‖
∆F3

0 2.15× 10−6 2.10× 10−6
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Accuracy & Performance

General form of error bounds:

ε = Cerror d
7 hn

an+7

n depends on: interpolation function Φ
smoothing function γ

Example:
ε = 844.9 d7h2/a9

d: mean nearest-neighbor distance (d3 = V/N )
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Accuracy & Performance

Performance model: expensive part are the cutoff calculations

Modeled by:

c(a, h) = Clocal

(a
d

)3
N + Cgrids

(a
h

)3 V

h3

V : volume of simulation box
d: mean nearest-neighbor distance (d3 = V/N )

(roughly 90% of total time on grids is spent on finest one)
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Accuracy & Performance

error bounds performance model

optimal parameters
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Accuracy & Performance

error bounds performance model

optimal parameters

a =

(
Cerror d

7hn

ε

) 1
n+7

h =

(
Cgrids

Clocal

(n+ 14)

n

)1/6

d

Tameling (AICES) Improved Long-Range Solvers 7 April 2014 16 / 23



Strong Scaling

Strong scaling for a 256,000-particle system with interface
h = 0.688σ (≈ 4.2m points on finest grid)

(Sandy-Bridge on AICES cluster)
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Strong Scaling

Table: Strong scaling for a 256,000-particle system with h = 0.688σ.

#p Pair Kspace Neigh Comm Other
1 412.97 10426. 120.24 1.92 12.77
2 206.77 5225.93 60.06 1.29 6.05
4 103.86 2758.69 30.95 0.91 28.71
16 26.85 888.13 7.98 3.79 18.63
32 13.67 468.45 3.94 1.24 10.69
64 7.07 294.16 2.02 0.98 6.76
80 5.60 302.97 1.60 0.93 5.34
96 4.74 275.88 1.36 1.11 5.17
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Strong Scaling

Strong scaling for a 1,024,000-particle system without interface
h = 0.688σ (≈ 4.2m points on finest grid)

(Sandy-Bridge on AICES cluster)
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Strong Scaling

Strong scaling for a 1,024,000-particle system without interface
h = 1.376σ (≈ 0.5m points on finest grid)

(Harpertown on AICES cluster)
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Liquid Density

Liquid density for 4,000 particles at T ∗ = 0.7
for various values of the cutoff a with h = 1.38σ:
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Conclusions

I implemented a MPI parallelized version of the multilevel
summation for dispersion interactions

Appealing properties of Multilevel Summation:

Linear scaling in number of particles

Mainly local communications

Error bounds and performance model deliver
recommendations for parameter selection
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Future Work

Error estimator requires further attention

Better model for performance?

What factors have an influence on Clocal and Cgrids?

Improve the scaling

Load-balancing for inhomogeneous systems

How to choose γ(x) and Φ(x)?

Different ways of construction γ(x)?
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